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Abstract

We propose a simple modification to exist-
ing neural machine translation (NMT) models
that enables using a single universal model to
translate between multiple languages while al-
lowing for language specific parameterization,
and that can also be used for domain adapta-
tion. Our approach requires no changes to the
model architecture of a standard NMT system,
but instead introduces a new component, the
contextual parameter generator (CPG), that
generates the parameters of the system (e.g.,
weights in a neural network). This param-
eter generator accepts source and target lan-
guage embeddings as input, and generates the
parameters for the encoder and the decoder,
respectively. The rest of the model remains
unchanged and is shared across all languages.
We show how this simple modification enables
the system to use monolingual data for train-
ing and also perform zero-shot translation. We
further show it is able to surpass state-of-the-
art performance for both the IWSLT-15 and
IWSLT-17 datasets and that the learned lan-
guage embeddings are able to uncover inter-
esting relationships between languages.

1

Neural Machine Translation (NMT) directly mod-
els the mapping of a source language to a target
language without any need for training or tuning
any component of the system separately. This has
led to a rapid progress in NMT and its successful
adoption in many large-scale settings (Wu et al.,
2016; Crego et al., 2016). The encoder-decoder
abstraction makes it conceptually feasible to build
a system that maps any source sentence in any lan-
guage to a vector representation, and then decodes
this representation into any target language. Thus,
various approaches have been proposed to extend
this abstraction for multilingual MT (Luong et al.,
2016; Dong et al., 2015; Johnson et al., 2017; Ha
et al., 2016; Firat et al., 2016a).

Prior work in multilingual NMT can be broadly
categorized into two paradigms. The first, univer-
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sal NMT (Johnson et al., 2017; Ha et al., 2016),
uses a single model for all languages. Univer-
sal NMT lacks any language-specific parameter-
ization, which is an oversimplification and detri-
mental when we have very different languages and
limited training data. As verified by our experi-
ments, the method of Johnson et al. (2017) suf-
fers from high sample complexity and thus un-
derperforms in limited data settings. The univer-
sal model proposed by Ha et al. (2016) requires a
new coding scheme for the input sentences, which
results in large vocabulary sizes that are diffi-
cult to scale. The second paradigm, per-language
encoder-decoder (Luong et al., 2016; Firat et al.,
2016a), uses separate encoders and decoders for
each language. This does not allow for sharing of
information across languages, which can result in
overparameterization and can be detrimental when
the languages are similar.

In this paper, we strike a balance between these
two approaches, proposing a model that has the
ability to learn parameters separately for each lan-
guage, but also share information between simi-
lar languages. We propose using a new contextual
parameter generator (CPG) which (a) generalizes
all of these methods, and (b) mitigates the afore-
mentioned issues of universal and per-language
encoder-decoder systems. It learns language em-
beddings as a context for translation and uses them
to generate the parameters of a shared translation
model for all language pairs. Thus, it provides
these models the ability to learn parameters sepa-
rately for each language, but also share informa-
tion between similar languages. The parameter
generator is general and allows any existing NMT
model to be enhanced in this way.! In addition, it
has the following desirable features:

1. Simple: Similar to Johnson et al. (2017) and
Ha et al. (2016), and in contrast with Luong

et al. (2016) and Firat et al. (2016a), it can

'In fact, it could likely be applied in other scenarios, such
as domain adaptation, as well.
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be applied to most existing NMT systems with
some minor modification, and it is able to ac-
commodate attention layers seamlessly.

2. Multilingual: Enables multilingual translation

using the same single model as before.

Semi-supervised: Can use monolingual data.

4. Scalable: Reduces the number of parameters
by employing extensive, yet controllable, shar-
ing across languages, thus mitigating the need
for large amounts of data, as in Johnson et al.
(2017). It also allows for the decoupling of lan-
guages, avoiding the need for a large shared vo-
cabulary, as in Ha et al. (2016).

5. Adaptable: Can adapt to support new lan-
guages, without requiring complete retraining.

6. State-of-the-art: Achieves better performance
than pairwise NMT models and Johnson et al.
(2017). In fact, our approach can surpass state-
of-the-art performance.

et

We first introduce a modular framework that can
be used to define and describe most existing NMT
systems. Then, in Section 3, we introduce our
main contribution, the contextual parameter gen-
erator (CPG), in terms of that framework. We also
argue that the proposed approach takes us a step
closer to a common universal interlingua.

2 Background

We first define the multi-lingual NMT setting and
then introduce a modular framework that can be
used to define and describe most existing NMT
systems. This will help us distill previous contri-
butions and introduce ours.

Setting. We assume that we have a set of source
languages S and a set of target languages 7T'. The
total number of languages is L = |[S U T|. We
also assume we have a set of C' < |S| x [T
pairwise parallel corpora, {P,..., Pc}, each of
which contains a set of sentence pairs for a single
source-target language combination. The goal of
multilingual NMT is to build a model that, when
trained using the provided parallel corpora, can
learn to translate well between any pair of lan-
guages in S xT'. The majority of related work only
considers pairwise NMT, where |S| = |T'| = 1.

2.1 NMT Modules

Most NMT systems can be decomposed to the fol-
lowing modules (also visualized in Figure 1).

Preprocessing Pipeline. The data preprocessing
pipeline handles tokenization, cleaning, normaliz-
ing the text data and building a vocabulary, i.e. a
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two-way mapping from preprocessed sentences to
sequences of word indices that will be used for the
translation. A commonly used proposal for defin-
ing the vocabulary is the byte-pair encoding (BPE)
algorithm which generates subword unit vocabu-
laries (Sennrich et al., 2016b). This eliminates the
notion of out-of-vocabulary words, often resulting
in increased translation quality.

Encoder/Decoder. The encoder takes in in-
dexed source language sentences, and produces an
intermediate representation that can later be used
by a decoder to generate sentences in a target lan-
guage. Generally, we can think of the encoder as
a function, £(¢"%), parameterized by 6(¢"°). Simi-
larly, we can think of the decoder as another func-
tion, £(4¢), parameterized by 6(4). The goal
of learning to translate can then be defined as
finding the values for 6(¢"¢) and #(4) that re-
sult in the best translations. A large amount of
previous work proposes novel designs for the en-
coder/decoder module. For example, using atten-
tion over the input sequence while decoding (Bah-
danau et al., 2015; Luong et al., 2015) provides
significant gains in translation performance.’

Parameter Generator. All modules defined so
far have previously been used when describing
NMT systems and are thus easy to conceptual-
ize. However, in previous work, most models
are trained for a given language pair, and it is
not trivial to extend them to work for multiple
pairs of languages. We introduce here the con-
cept of the parameter generator, which makes it
easy to define and describe multilingual NMT sys-
tems. This module is responsible for generating
67 and 6(¢) for any given source and target
language. Different parameter generators result
in different numbers of learnable parameters and
can thus be used to share information across dif-
ferent languages. Next, we describe related work,
in terms of the parameter generator for NMT:

* Pairwise: In the simple and commonly used
pairwise NMT setting (Wu et al., 2016; Crego
etal., 2016), the parameter generator would gen-
erate separate parameters, g(enc) and g(dec) for
each pair of source-target languages. This re-

“Note that depending on the vocabulary that is used and
on whether it is one shared vocabulary across all languages,
or one vocabulary per language, the output projection layer of
the decoder (which produces probabilities over words) may
be language dependent, or common across all languages. In
our experiments, we used separate vocabularies and thus this
layer was language-dependent.
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Figure 1: Overview of an NMT system, under our modular framework. Our main contribution lies in the parameter generator
module (i.e., coupled or decoupled — each of the boxes with blue titles is a separate option). Note that g denotes a parameter
generator network. In our experiments, we consider linear forms for this network. However, our contribution does not depend
on the choices made regarding the rest of the modules; we could still use our parameter generator with different architectures
for the encoder and the decoder, as well as using different kinds of vocabularies.

sults in no parameter sharing across languages,

and thus O(ST') parameters.
* Per-Language: In the case of Dong et al.
(2015), Luong et al. (2016) and Firat et al.
(2016a), the parameter generator would gener-
ate separate encoder parameters, 0(¢"%), for each
source language, and separate decoder parame-
ters, 0(%¢c), for each target language. This leads
to a reduction in the number of learnable pa-
rameters for multilingual NMT, from O(ST) to
O(S+T). On one hand, Dong et al. (2015) train
multiple models as a one-to-many multilingual
NMT system that translates from one source lan-
guage to multiple target languages. On the other
hand, Luong et al. (2016) and Firat et al. (2016a)
perform many-to-many translation. Luong et al.
(2016), however, only report results for a single
language pair and do not attempt multilingual
translation. Firat et al. (2016a) propose an at-
tention mechanism that is shared across all lan-
guage pairs. We generalize the idea of multi-
way multilingual NMT with the parameter gen-
erator network, described later.
Universal: In the case of Ha et al. (2016) and
Johnson et al. (2017), the authors propose us-
ing a single common set of encoder-decoder
parameters for all language pairs. While Ha
et al. (2016) embed words in a common se-
mantic space across languages, Johnson et al.
(2017) learn language embeddings that are in
the same space as the word embeddings. Here,
the parameter generator would provide the same
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parameters 0(¢"¢) and 0(%) for all language
pairs. It would also create and keep track of
learnable variables representing language em-
beddings that are prepended to the encoder input
sequence. As we observed in our experiments,
this system fails to perform well when the train-
ing data is limited. Finally, we believe that em-
bedding languages in the same space as words
is not intuitive; in our approach, languages are
embedded in a separate space.

In contrast to all these related systems, we pro-
vide a simple, efficient, yet effective alternative —
a parameter generator for multilingual NMT, that
enables semi-supervised and zero-shot learning.
We also learn language embeddings, similar to
Johnson et al. (2017), but in our case they are sep-
arate from the word embeddings and are treated as
a context for the translation, in a sense that will
become clear in the next section. This notion of
context is used to define parameter sharing across
various encoders and decoders, and, as we discuss
in our conclusion, is even applicable beyond NMT.

3 Proposed Method

We propose a new way to share information across
different languages and to control the amount of
sharing, through the parameter generator module.
More specifically, we propose contextual parame-
ter generators.

Contextual Parameter Generator. Let us de-
note the source language for a given sentence pair



by /s and the target language by ¢;. Then, when
using the contextual parameter generator, the pa-
rameters of the encoder are defined as 9(¢"¢) £
g9)(1), for some function ¢{¢"®), where 1 de-
notes a language embedding for the source lan-
guage /. Similarly, the parameters of the decoder
are defined as A(9¢¢) & g(dec)(1,) for some func-
tion (%), where 1; denotes a language embed-
ding for the target language ¢;. Our generic for-
mulation does not impose any constraints on the
functional form of ¢(¢"¢) and ¢(%¢). In this case,
we can think of the source language, ¢, as a con-
text for the encoder. The parameters of the en-
coder depend on its context, but its architecture is
common across all contexts. We can make a simi-
lar argument for the decoder, and that is where the
name of this parameter generator comes from. We
can even go a step further and have a parameter
generator that defines 9(¢"¢) £ g(enc)(ls, l¢) and
g(dec) & gldec) (I 1y), thus coupling the encoding
and decoding stages for a given language pair. In
our experiments we stick to the previous, decou-
pled, form, because unlike Johnson et al. (2017),
it has the potential to lead to an interlingua.

Concretely, because the encoding and decoding
stages are decoupled, the encoder is not aware of
the target language while generating it. Thus, we
can take an encoded intermediate representation of
a sentence and translate it to any target language.
This is because, in this case, the intermediate rep-
resentation is independent of any target language.
This makes for a stronger argument that the inter-
mediate representation produced by our encoder
could be approaching a universal interlingua, more
so than methods that are aware of the target lan-
guage when they perform encoding.

3.1 Parameter Generator Network

We refer to the functions ¢(¢"¢) and ¢(¢®) as pa-
rameter generator networks. Even though our pro-
posed NMT framework does not rely on a specific
choice for ¢(¢"®) and ¢(?¢®) here we describe the
functional form we used for our experiments. Our
goal is to provide a simple form that works, and
for which we can reason about. For this reason,
we decided to define the parameter generator net-
works as simple linear transforms, similar to the
factored adaptation model of Michel and Neubig
(2018), which was only applied to the bias terms
of the output softmax:

g(enc)(ls) A Vv(enc)l57 (1)
g(dec) (lt) A W(dec)lt7 )
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where 15,1, € RM, Wlene) g RPExM
Wdec) ¢ RPUIXM pr i the language embed-
ding size, P(¢"¢) is the number of parameters of
the encoder, and P(%) is the number of parame-
ters of the decoder.

Another way to interpret this model is that it im-
poses a low-rank constraint on the parameters. As
opposed to our approach, in the base case of using
multiple pairwise models to perform multilingual
translation, each model has P = P(enc) 4 p(dec)
learnable parameters for its encoder and decoder.
Given that the models are pairwise, for L lan-
guages, we have a total of L(L — 1) learnable
parameter vectors of size P. On the other hand,
using our contextual parameter generator we have
a total of L vectors of size M (one for each lan-
guage), and a single matrix of size P x M. Then,
the parameters of the encoder and the decoder, for
a single language pair, are defined as a linear com-
bination of the M columns of that matrix.

Controlled Parameter Sharing. We can further
control parameter sharing by observing that the
encoder/decoder parameters often have some “nat-
ural grouping”. For example, in the case of recur-
rent neural networks we may have multiple weight
matrices, one for each layer, as well as attention-
related parameters. Based on this observations, we
now propose a way to control how much infor-
mation is shared across languages. The language
embeddings need to represent all of the language-
specific information and thus may need to be large
in size. However, when computing the parame-
ters of each group, only a small part of that infor-
mation is rel(eva)nt. Let §(en0) = {95.6”0) ]Gzl and
(9](-67@ c R o , where GG denotes the number of
groups. Then, we define:

e§enc) A Wj(enc) P§enc)ls’ 3)

(enc) !
where Wj(enc) S RY M and Pgenc) S

RM'*M 'with M’ < M (and similarly for the de-
coder parameters). We can see now that Plene) s
used to extract the relevant information (size M’)
for parameter group j, from the larger language
embedding (size M). This allows us to control
the parameter sharing across languages in the fol-
lowing way: if we want to increase the number
of per-language parameters (i.e., the language em-
bedding size) we can increase M while keeping
M’ small enough so that the total number of pa-
rameters does not explode. This would not have
been possible without the proposed low-rank ap-



proximation for W(enc), that uses the parameter
grouping information.

Alternative Options. Given that our proposed
approach does not depend on the specific choice of
the parameter generator network, it might be inter-
esting to design models that use side-information
about the languages that are being used (such as
linguistic information about language families and
hierarchies). This is outside the scope of this pa-
per, but may be an interesting future direction.

3.2 Semi-Supervised and Zero-Shot Learning

The proposed parameter generator also enables
semi-supervised learning via back-translation.
Concretely, monolingual data can be used to train
the shared encoder/decoder networks to translate a
sentence from some language to itself (similar to
the idea of auto-encoders by Vincent et al. (2008)).
This is possible and can help learning because of
the fact that many of the learnable parameters are
shared across languages.

Furthermore, zero-shot translation, where the
model translates between language pairs for which
it has seen no explicit training data, is also pos-
sible. This is because the same per-language pa-
rameters are used to translate to and from a given
language, irrespective of the language at the other
end. Therefore, as long as we train our model us-
ing some language pairs that involve a given lan-
guage, it is possible to learn to translate in any di-
rection involving that language.

3.3 Potential for Adaptation

Let us assume that we have trained a model using
data for some set of languages, 1, 4o, ..., 0. If
we obtain data for some new language ¢,,, we do
not have to retrain the whole model from scratch.
In fact, we can fix the parameters that are shared
across all languages and only learn the embed-
ding for the new language (along with the relevant
word embeddings if not using a shared vocabu-
lary). Assuming that we had a sufficient number
of languages in the beginning, this may allow us to
obtain reasonable translation performance for the
new language, with a minimal amount of training.’

3.4 Number of Parameters

For the base case of using multiple pairwise mod-
els to perform multilingual translation, each model
has P + 2WV parameters, where P = P(€n¢) 4

3This is due to the small number of parameters that need
to be learned in this case. To put this into perspective, in most
of our experiments we used language embeddings of size 8.
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Pldec) 1Y/ is the word embedding size, and V is
the vocabulary size per language (assumed to be
the same across languages, without loss of gen-
erality). Given that the models are pairwise, for
L languages, we have a total of L(L — 1)(P +
2WV) = O(L?>P + 2L?>WYV) learnable param-
eters. For our approach, using the linear parame-
ter generator network presented in Section 3.1, we
have a total of O(PM + LWV) learnable param-
eters. Note that the number of encoder/decoder
parameters has no dependence on L now, meaning
that our model can easily scale to a large number
of languages.

4 Experiments

In this section, we describe our experimental setup
along with our results and key observations.

Setup. For all our experiments we use as the
base NMT model an encoder-decoder network
which uses a bidirectional LSTM for the encoder,
and a two-layer LSTM with the attention model
of Bahdanau et al. (2015) for the decoder. The
word embedding size is set to 512. This is a com-
mon baseline model that achieves reasonable per-
formance and we decided to use it as-is, without
tuning any of its parameters, as extensive hyperpa-
rameter search is outside the scope of this paper.

During training, we use a label smoothing fac-
tor of 0.1 (Wu et al., 2016) and the AMSGrad op-
timizer (Reddi et al., 2018) with its default param-
eters in TensorFlow, and a batch size of 128 (due
to GPU memory constraints). Optimization was
stopped when the validation set BLEU score was
maximized. The order in which language pairs are
used while training was as follows: we always first
sample a language pair (uniformly at random), and
then sample a batch for that pair (uniformly at ran-
dom).* During inference, we employ beam search
with a beam size of 10 and the length normaliza-
tion scheme of (Wu et al., 2016). We want to em-
phasize that we did not run experiments with other
architectures or configurations, and thus this archi-
tecture was not chosen because it was favorable to
our method, but rather because it was a frequently
mentioned baseline in existing literature.

All experiments were run on a machine with
a single Nvidia V100 GPU, and 24 GBs of sys-
tem memory. Our most expensive experiment
took about 10 hours to complete, which would

*We did not observe any “forgetting” effect, because we
keep “re-visiting” all language pairs throughout training. It
would be interesting to explore other sampling schemes, but
it is outside the scope of this paper.



Table 1: Comparison of our proposed approach (shaded rows) with the base pairwise NMT model (PNMT) and the Google
multilingual NMT model (GML) for the IWSLT-15 dataset. The Percent Parallel row shows what portion of the parallel corpus
is used while training; the rest is being used only as monolingual data. Results are shown for the BLEU and Meteor metrics.
CPG* represents the same model as CPG, but trained without using auto-encoding training examples. The best score in each

case is shown in bold.

BLEU Meteor

PNMT GML CPG* CPG PNMT GML CPG* CPG

En~Cs 14.89 1592 16.88 17.22 19.72 20.93 21.51 21.72

Cs»En 24.43 25.25 26.44 27.37 27.29 27.46 28.16 28.52

« En-De 25.99 15.92 26.41 26.77 44.72 42.97 45.97 46.30

g De-En 30.93 29.60 31.24 31.77 30.73 29.90 30.95 31.13

= EnsFr 38.25 34.40 38.10 38.32 57.43 53.86 57.42 57.68

= Fr-En 37.40 35.14 37.11 37.89 34.83 33.14 34.34 34.89
S En-Th 23.62 22.22 26.03 26.33 - - - -

; Th»En 15.54 14.03 16.54 26.77 21.58 21.02 22.78 23.05
=) En-Vi 27.47 25.54 28.33 29.03 - - - -

— VisEn 24.03 23.19 2591 26.38 27.59 26.96 28.23 28.79

Mean 26.26 24.12 27.30 27.80 32.98 32.03 33.67 34.01

En-Cs 5.71 8.18 8.40 9.49 12.18 14.97 15.25 15.90

Cs-»En 6.64 14.56 14.81 15.38 13.02 20.04 19.98 20.87

s En-De 11.70 14.60 15.09 16.03 29.98 33.74 34.88 36.19

S De-En 18.10 19.02 19.77 20.25 22.57 23.27 23.65 24.40

= EnsFr 24.47 25.15 24.00 25.79 44.10 44.84 44.95 46.22

§ Fr+En 23.79 25.02 24.55 27.12 26.28 26.61 26.20 28.18
& En->Th 7.86 15.58 18.41 17.65 - - - -

© Th+En 7.13 9.11 10.19 10.14 13.91 16.32 16.78 16.92
= En-Vi 18.01 17.51 18.92 18.90 - - - -

Vi-En 6.69 16.00 16.28 16.86 13.39 21.01 21.34 22.28

Mean 13.01 16.47 17.04 17.76 21.93 25.10 25.38 26.37

En-Cs 0.49 1.25 1.57 2.38 4.60 6.24 6.28 8.38

Cs+En 1.10 1.76 1.87 4.60 6.29 7.13 7.08 11.15

- En-De 1.22 4.13 4.06 6.46 12.23 18.29 17.61 23.83

g De-En 1.46 342 3.86 7.49 7.58 8.79 8.95 13.73

= EnsFr 2.88 7.74 7.41 12.45 13.88 21.29 21.80 30.36

= Fr-En 4.05 5.22 5.06 11.39 9.58 9.86 9.83 16.34
E En-Th 1.22 5.72 8.01 9.26 - - - -

< Th+En 1.42 1.66 1.65 3.37 6.08 7.22 5.89 8.74
— En-Vi 5.35 5.61 5.48 8.00 - - - -

VisEn 2.01 3.57 3.64 6.43 7.86 8.76 8.48 12.04

Mean 2.12 4.01 4.26 7.18 8.51 10.95 10.74 15.58

cost about $25 on a cloud computing service such
as Google Cloud or Amazon Web Services, thus
making our results reproducible, even by indepen-
dent researchers.

Experimental Settings. The goal of our exper-
iments is to show how, by using a simple modi-
fication of this model, (i) we can achieve signif-
icant improvements in performance, while at the
same time (ii) being more data and computation
efficient, and (iii) enabling support for zero-shot
translation. To that end, we perform three types of
experiments:

1. Supervised: In this experiment, we use full
parallel corpora to train our models. Plain
pairwise NMT models (PNMT) are compared
to the same models modified to use our pro-
posed decoupled parameter generator. We use
two variants: (i) one which does not use auto-
encoding of monolingual data while training
(CPG*), and (ii) one which does (CPG). Please

refer to Section 3.2 for more details.

2. Low-Resource: Similar to the supervised ex-
periments except that we limit the size of the
parallel corpora used in training. However, for
GML and CPG the full monolingual corpus is
used for auto-encoding training.

3. Zero-Shot: In this experiment, our goal is to
evaluate how well a model can learn to trans-
late between language pairs that it has not seen
while training. For example, a model trained
using parallel corpora between English and
German, and English and French, will be eval-
vated in translating from German to French.
PNMT can perform zero-shot translation in this
setting using pivoting. This means that, in the
previous example, we would first translate from
German to English and then from English to
French (using two pairwise models for a sin-
gle translation). However, pivoting is prone to
error propagation incurred when chaining mul-
tiple imperfect translations. The proposed CPG
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Table 2: Comparison of our proposed approach (shaded rows) with the base pairwise NMT model (PNMT) and the Google
multilingual NMT model (GML) for the IWSLT-17 dataset. Results are shown for the BLEU metric only because Meteor does
not support It, N1, and Ro. CPG?® represents CPG using language embeddings of size 8. The “cy” subscript represents the
low-rank version of CPG for controlled parameter sharing (see Section 3.1), using rank 4, etc. The best score in each case is

shown in bold.

BLEU
PNMT GML CPG® CPG}, CPG}, CPG;, CPGS; CPGY?

De~En 21.78 21.25 22.56 20.78 22.09 21.23 21.50 2238
De-It 13.16 13.84 14.73 14.34 14.43 13.84 14.34 14.11
DesRo 10.85 11.95 12.24 12.37 12.72 10.37 11.32 11.94
En-De 19.75 17.06 19.41 19.04 18.42 17.04 17.46 19.29
EnsIt 27.70 25.74 27.57 27.11 28.21 26.26 27.26 27.48

En-N1 24.41 22.46 24 .47 25.15 24.64 23.94 24.48 24.50

- En-Ro 19.23 18.60 20.83 20.96 18.69 17.23 20.20 20.86
2 It+De 14.39 12.76 14.61 15.06 14.15 13.12 14.18 14.69
& It+En 29.84 27.96 30.62 30.10 29.44 29.22 29.56 30.18
& | ItoN1 16.74 16.27 17.99 18.11 18.05 17.13 17.71 17.99
2 N1-En 26.30 24.78 2631 26.17 25.74 26.15 26.33 26.20
N1-It 16.03 16.10 16.81 17.50 17.03 16.81 16.89 17.09
N1+Ro 12.84 12.48 14.01 14.44 12.56 11.79 12.38 13.66
Ro-+De 12.75 12.21 13.58 13.66 13.02 12.62 12.96 13.63
RoEn 24.33 22.88 23.83 23.88 24.20 23.58 24.65 23.57
Ro-N1 13.70 14.11 15.34 15.51 15.11 14.65 15.29 15.19
Mean 18.99 18.15 19.68 19.75 19.28 18.44 19.16 19.74

_ De~N1 1275 12.50 12.74 12.80 11.65 12.41 12.67 12.75
£ It+Ro 9.97 9.57 10.57 10.17 10.42 9.65 10.69 10.32
2 | Nlspe 11.32 10.47 11.52 11.20 11.28 10.89 11.63 11.45
5 Ro-It 11.69 10.82 11.51 11.40 11.66 11.42 11.78 11.27
N Mean 11.43 10.84 11.59 11.39 11.25 11.09 11.69 11.44

models inherently support zero-shot translation
and require no pivoting.

For the experiments using the CPG model with-
out controlled parameter sharing, we use language
embeddings of size 8. This is based merely on
the fact that this is the largest model size we could
fit on one GPU. Whenever possible, we compare
against PNMT, GML by Johnson et al. (2017),’
and other state-of-the-art results.

Datasets. We use the following datasets:

* IWSLT-15: Used for supervised and low-
resource experiments only (this dataset does not
support zero-shot learning). We report results
for Czech (Ch), English (En), French (Fr), Ger-
man (De), Thai (Th), and Vietnamese (Vi).
This dataset contains ~90,000-220,000 training
sentence pairs (depending on the language pair),
~500-900 validation pairs, and ~1,000-1,300
test pairs.

* IWSLT-17: Used for supervised and zero-shot
experiments. We report results for Dutch (N1),
English (En), German (De), Italian (It), and
Romanian (Ro). This dataset contains ~220,000

>We use our own implementation of GML in order to ob-
tain a fair comparison, in terms of the whole MT pipeline. We
have modified it to use the same per-language vocabularies
that we use for our approaches, as the proposed shared BPE
vocabulary fails to perform well for the considered datasets.

training sentence pairs (for all language pairs
except for the zero-shot ones), ~900 validation
pairs, and ~1,100 test pairs.

Data Preprocessing. We preprocess our data us-
ing a modified version of the Moses tokenizer
(Koehn et al., 2007) that correctly handles escaped
HTML characters. We also perform some Uni-
code character normalization and cleaning. While
training, we only consider sentences up to length
50. For both datasets, we generate a per-language
vocabulary consisting of the most frequently oc-
curring words, while ignoring words that appear
less than 5 times in the whole corpus, and capping
the vocabulary size to 20,000 words.

Results. Our results for the IWSLT-15 experi-
ments are shown in Table 1. It is clear that our
approach consistently outperforms both the corre-
sponding pairwise model and GML. Furthermore,
its advantage grows larger in the low-resource
setting (up to 5.06 BLEU score difference, or
a 2.4x increase), which is expected due to the
extensive parameter sharing in our model. For
this dataset, there exist some additional published
state-of-the-art results not shown in Tables 1 and
2. Huang et al. (2018) report a BLEU score of
28.07 for the En>V1i task, while our model is able
to achieve a score of 29.03. Furthermore, Ha
et al. (2016) report a BLEU score of 25.87 for the
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EnsDe task, while our model is able to achieve
a score of 26.77.° Our results for the IWSLT-17
experiments are shown in Table 2.7 Again, our
method consistently outperforms both PNMT and
GML, in both the supervised and the zero-shot set-
tings. Furthermore, the results indicate that our
model performance is robust to different sizes of
the language embeddings and the choice of M’ for
controllable parameter sharing. It only underper-
forms in the degenerate case where M’ = 1. Itis
also worth noting that, in the fully supervised set-
ting, GML, the current state-of-the-art in the mul-
tilingual setting, underperforms the pairwise mod-
els.

The presented results provide evidence that our
proposed approach is able to significantly improve
performance, without requiring extensive tuning.

Language Embeddings. An important aspect
of our model is that it learns language embeddings.
In Figure 2 we show pairwise cosine distances be-
tween the learned language embeddings for our
fully supervised experiments. There are some in-
teresting patterns that indicate that the learned lan-
guage embeddings are reasonable. For example,
we observe that German (De) and Dutch (N1) are
most similar for the IWSLT-17 dataset, with Ital-
ian (It) and Romanian (Ro) coming second. Fur-
thermore, Romanian and German are the furthest
apart for that dataset. These relationships agree
with linguistic knowledge about these languages
and the families they belong to. We see similar
patterns in the IWSLT-15 results but we focus on
IWSLT-17 here, because it is a larger, better qual-
ity, dataset with more supervised language pairs.
These results are encouraging for analyzing such
embeddings to discover relationships between lan-
guages that were previously unknown. For exam-
ple, perhaps surprisingly, French (Fr) and Viet-
namese (Vi) appear to be significantly related for
the IWSLT-15 dataset results. This is likely due
to French influence in Vietnamese because to the
occupation of Vietnam by France during the 19
and 20" centuries (Marr, 1981).

SWe were unable to find reported state-of-the-art results
for the rest of the language pairs.

"Note that, our results for IWSLT-17 are not comparable
to those of the official challenge report (Cettolo et al., 2017),
as we use less training data, a smaller baseline model, and our
evaluation pipeline potentially differs. However, the numbers
presented for all methods in this paper are comparable, as
they were all obtained using the same baseline model and
evaluation pipeline.
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Language Distances
IWSLT-15

IWSLT-17

th en fr vi de nl ro en it

Figure 2: Pairwise cosine distance for all language pairs in
the IWSLT-15 and IWSLT-17 datasets. Darker colors repre-
sent more similar languages.

4.1 Implementation and Reproducibility

Along with this paper we are releasing an imple-
mentation of our approach and experiments as part
of a new Scala framework for machine transla-
tion.® It is built on top of TensorFlow Scala (Pla-
tanios, 2018) and follows the modular NMT de-
sign (described in Section 2.1) that supports var-
ious NMT models, including our baselines (e.g.,
Johnson et al. (2017)). It also contains data load-
ing and preprocessing pipelines that support mul-
tiple datasets and languages, and is more efficient
than other packages (e.g., t f-nmt”). Further-
more, the framework supports various vocabular-
ies, among which we provide a new implementa-
tion for the byte-pair encoding (BPE) algorithm
(Sennrich et al., 2016b) that is 2 to 3 orders of
magnitude faster than the released one.'® All ex-
periments presented in this paper were performed
using version 0.1 .0 of the framework.

5 Related Work

Interlingual translation (Richens, 1958) has been
the object of many research efforts. For a long
time, before the move to NMT, most practical
machine translation systems only focused on in-
dividual language pairs. Since the success of
end-to-end NMT approaches such as the encoder-
decoder framework (Sutskever et al., 2014; Bah-
danau et al., 2015; Cho et al., 2014), recent work
has tried to extend the framework to multi-lingual
translation. An early approach was Dong et al.
(2015) who performed one-to-many translation
with a separate attention mechanism for each de-
coder. Luong et al. (2016) extended this idea with
a focus on multi-task learning and multiple en-
coders and decoders, operating in a single shared
vector space. The same architecture is used in

8https ://github.com/eaplatanios/symphony-mt
9https ://github.com/tensorflow/nmt
Ohttps ://github.com/rsennrich/subword-nmt


https://github.com/eaplatanios/symphony-mt
https://github.com/tensorflow/nmt
https://github.com/rsennrich/subword-nmt

(Caglayan et al., 2016) for translation across mul-
tiple modalities. Zoph and Knight (2016) flipped
this idea with a many-to-one translation model,
however requiring the presence of a multi-way
parallel corpus between all the languages, which is
difficult to obtain. Lee et al. (2017) used a single
character-level encoder across multiple languages
by training a model on a many-to-one transla-
tion task. Closest to our work are more recent
approaches, already described in Section 2 (Firat
etal., 2016a; Johnson et al., 2017; Ha et al., 2016),
that attempt to enforce different kinds of parame-
ter sharing across languages.

Parameter sharing in multilingual NMT natu-
rally enables semi-supervised and zero-shot learn-
ing. Unsupervised learning has been previously
explored with key ideas such as back-translation
(Sennrich et al., 2016a), dual learning (He et al.,
2016), common latent space learning (Lample
etal., 2018), etc. In the vein of multilingual NMT,
Artetxe et al. (2018) proposed a model that uses
a shared encoder and multiple decoders with a fo-
cus on unsupervised translation. The entire sys-
tem uses cross-lingual embeddings and is trained
to reconstruct its input using only monolingual
data. Zero-shot translation was first attempted
in (Firat et al., 2016b) who performed zero-zhot
translation using their pre-trained multi-way mul-
tilingual model, fine-tuning it with pseudo-parallel
data generated by the model itself. This was
recently extended using a teacher-student frame-
work (Chen et al., 2017). Later, zero-shot transla-
tion without any additional steps was attempted in
(Johnson et al., 2017) using their shared encoder-
decoder network. An iterative training procedure
that leverages the duality of translations directly
generated by the system for zero-shot learning was
proposed by Lakew et al. (2017). For extremely
low resource languages, Gu et al. (2018) proposed
sharing lexical and sentence-level representations
across multiple source languages with a single tar-
get language. Closely related is the work of Cheng
et al. (2016) who proposed the joint training of
source-to-pivot and pivot-to-target NMT models.

Ha et al. (2018) are probably the first to intro-
duce a similar idea to that of having one network
(called a hypernetwork) generate the parameters of
another. However, in that work, the input to the
hypernetwork are structural features of the original
network (e.g., layer size and index). Al-Shedivat
et al. (2017) also propose a related method where
a neural network generates the parameters of a lin-
ear model. Their focus is mostly on interpretabil-
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ity (i.e., knowing which features the network con-
siders important). However, to our knowledge,
there is no previous work which proposes hav-
ing a network generate the parameters of another
deep neural network (e.g., a recurrent neural net-
work), using some well-defined context based on
the input data. This context, in our case, is the
language of the input sentences to the translation
model, along with the target translation language.

6 Conclusion and Future Directions

We have presented here a novel contextual pa-
rameter generation approach to neural machine
translation. Our resulting system, which outper-
forms other state-of-the-art systems, uses a stan-
dard pairwise encoder-decoder architecture. How-
ever, it differs from earlier approaches by incor-
porating a component that generates the parame-
ters to be used by the encoder and the decoder for
the current sentence, based on the source and tar-
get languages, respectively. We refer to this novel
component as the contextual parameter genera-
tor. The benefit of this approach is that it dra-
matically improves the ratio of the number of pa-
rameters to be learned, to the number of training
examples available, by leveraging shared structure
across different languages. Thus, our approach
does not require any extra machinery such as back-
translation, dual learning, pivoting, or multilin-
gual word embeddings. It rather relies on the sim-
ple idea of treating language as a context within
which to encode/decode. We also showed that the
proposed approach is able to achieve state-of-the-
art performance without requiring any tuning. Fi-
nally, we performed a basic analysis of the learned
language embeddings, which showed that cosine
distances between the learned language embed-
dings reflect well known similarities among lan-
guage pairs such as German and Dutch.

In the future, we want to extend the concept of
the contextual parameter generator to more gen-
eral settings, such as translating between different
modalities of data (e.g., image captioning). Fur-
thermore, based on the discussion of Section 3.3,
we hope to develop an adaptable, never-ending
learning (Mitchell et al., 2018) NMT system.
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