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Abstract

Multilingual knowledge graphs (KGs) such as
DBpedia and YAGO contain structured knowl-
edge of entities in several distinct languages,
and they are useful resources for cross-lingual
AI and NLP applications. Cross-lingual KG
alignment is the task of matching entities
with their counterparts in different languages,
which is an important way to enrich the cross-
lingual links in multilingual KGs. In this pa-
per, we propose a novel approach for cross-
lingual KG alignment via graph convolutional
networks (GCNs). Given a set of pre-aligned
entities, our approach trains GCNs to embed
entities of each language into a unified vector
space. Entity alignments are discovered based
on the distances between entities in the embed-
ding space. Embeddings can be learned from
both the structural and attribute information of
entities, and the results of structure embedding
and attribute embedding are combined to get
accurate alignments. In the experiments on
aligning real multilingual KGs, our approach
gets the best performance compared with other
embedding-based KG alignment approaches.

1 Introduction

Knowledge graphs (KGs) represent human knowl-
edge in the machine-readable format, are becom-
ing the important basis of many applications in
the areas of artificial intelligence and natural lan-
guage processing. Multilingual KGs such as DB-
pedia (Bizer et al., 2009), YAGO (Suchanek et al.,
2008; Rebele et al., 2016), and BabelNet (Nav-
igli and Ponzetto, 2012) are especially valuable if
cross-lingual applications are to be built. Besides
the knowledge encoded in each distinct language,
multilingual KGs also contain rich cross-lingual
links that match the equivalent entities in different
languages. The cross-lingual links play an impor-
tant role to bridge the language gap in a multilin-
gual KG; however, not all the equivalent entities

are connected by cross-lingual links in most mul-
tilingual KGs. Therefore, increasingly more re-
search work studies the problem of cross-lingual
KG alignment, aiming to match entities in differ-
ent languages in a multilingual KG automatically.

Traditional cross-lingual KG alignment ap-
proaches either rely on machine translation tech-
nique or defining various language-independent
features to discover cross-lingual links. Most
recently, several embedding-based approaches
have been proposed for cross-lingual KG align-
ment, including MTransE (Chen et al., 2017) and
JAPE (Sun et al., 2017). Given two KGs and a set
of pre-aligned entities of them, embedding-based
approaches project entities into low-dimensional
vector spaces; entities are matched based on the
computations on their vector representations. Fol-
lowing very similar ideas as above, JE (Hao
et al., 2016) and ITransE (Zhu et al., 2017)
are embedding-based approaches for matching
entities between heterogeneous KGs, and they
can also work for the problem of cross-lingual
KG alignment. The above embedding-based
approaches can achieve promising performance
without machine translation or feature engineer-
ing.

However, we find that the above approaches
all try to jointly model the cross-lingual knowl-
edge and the monolingual knowledge in one uni-
fied optimization problem. The loss of two kinds
of knowledge has to be carefully balanced dur-
ing the optimization. For example, JE, MTransE,
and ITransE all use hyper-parameters to weight the
loss of entity alignments in the loss functions of
their models; JAPE uses the pre-aligned entities to
combine two KGs as one, and adds weight to the
scores of negative samples in its loss function. In
the above approaches, entities’ embeddings have
to encode both the structural information in KGs
and the equivalent relations of entities. Further-
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more, the attributes of entities (e.g., the age of a
people, the population of a country) have not been
fully utilized in the existing models. MTransE
and ITransE cannot use attributional information
in KGs; although JAPE includes the attribute types
in the model, the attribute values of entities are ig-
nored. We believe that considering the attribute
values can further improve the results of KG align-
ment.

Having the above observations, we propose a
new embedding-based KG alignment approach
which directly models the equivalent relations be-
tween entities by using graph convolutional net-
works (GCNs). GCN is a kind of convolu-
tional network which directly operates on graph-
structured data; it generates node-level embed-
dings by encoding information about the nodes’
neighborhoods. The adjacencies of two equiva-
lent entities in KGs usually contain other equiv-
alent entities, so we choose GCNs to gener-
ate neighborhood-aware embeddings of entities,
which are used to discover entity alignments. Our
approach can also provide a simple and effec-
tive way to include entities’ attribute values in the
alignment model. More specifically, our approach
has the following advantages:

• Our approach uses the entity relations in each
KG to build the network structure of GCNs,
and it only considers the equivalent relations
between entities in model training. Our ap-
proach has small model complexity and can
achieve encouraging alignment results.

• Our approach only needs pre-aligned entities
as training data, and it does not require any
pre-aligned relations or attributes between
KGs.

• Entity relations and entity attributes are effec-
tively combined in our approach to improve
the alignment results.

In the experiments on aligning real multilingual
KGs, our approach gets the best performance com-
pared with the baseline methods.

The rest of this paper is organized as fol-
lows, Section 2 reviews some related work, Sec-
tion 3 introduces some background knowledge,
Section 4 describes our proposed approach, Sec-
tion 5 presents the evaluation results, Section 6 is
the conclusion and future work.

2 Related Work

2.1 KG Embedding
In the past few years, much work has been done
on the problem of KG embedding. KG embedding
models embed entities and relations in a KG into
a low-dimensional vector space while preserving
the original knowledge. The embeddings are usu-
ally learned by minimizing a global loss function
of all the entities and relations in a KG, which can
be further used for relation prediction, informa-
tion extraction, and some other tasks. TransE is
a representative KG embedding approach (Bordes
et al., 2013), which projects both entities and rela-
tions into the same vector space; if a triple (h, r, t)
holds, TransE wants that h + r ≈ t. The embed-
dings are learned by minimizing a margin-based
ranking criterion over the training set. TransE
model is simple but powerful, and it gets promis-
ing results on link prediction and triple classifica-
tion problems. To further improve TransE, several
enhanced models based on it have been proposed,
including TransR (Lin et al., 2015), TransH (Wang
et al., 2014) and TransD (Ji et al., 2015) etc.
By introducing new representations of relational
translation, later approaches achieve better perfor-
mance at the cost of increasing model complexity.
There are many other KG embedding approaches,
recent surveys (Wang et al., 2017; Nickel et al.,
2016) give detailed introduction and comparison.

2.2 Embedding-based KG Alignment
Here we introduce the KG Alignment approaches
most related to ours, and discuss the main differ-
ences between our approach and them.

JE (Hao et al., 2016) jointly learns the embed-
dings of multiple KGs in a uniform vector space
to align entities in KGs. JE uses a set of seed
entity alignments to connect two KGs, and then
learns the embeddings by using a modified TransE
model, which adds a loss of entity alignments in
its global loss function.

MTransE (Chen et al., 2017) encodes entities
and relations of each KG in a separated embed-
ding space by using TransE; it also provides tran-
sitions for each embedding vector to its cross-
lingual counterparts in other spaces. The loss
function of MTransE is the weighted sum of two
component models’ loss (i.e., knowledge model
and alignment model). To train the alignment
model, MTransE needs a set of aligned triples of
two KGs.
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JAPE (Sun et al., 2017) combines structure em-
bedding and attribute embedding to match enti-
ties in different KGs. Structure embedding fol-
lows the TransE model, which learns vector rep-
resentations of entities in the overlay graph of two
KGs. Attribute embedding follows the Skip-gram
model, which aims to capture the correlations of
attributes. To get desirable results, JAPE needs the
relations and attributes of two KGs to be aligned
in advance.

ITransE (Zhu et al., 2017) is a joint knowledge
embedding approach for multiple KGs, which is
also suitable for the cross-lingual KG alignment
problem. ITransE first learns both entity and rela-
tion embeddings following TransE; then it learns
to map knowledge embeddings of different KGs
into a joint space according to a set of seed en-
tity alignments. ITransE performs iterative entity
alignment by using the newly discovered entity
alignments to update joint embeddings of entities.
ITransE requires all relations being shared among
KGs.

The above approaches follow the similar frame-
work to match entities in different KGs. They all
rely on TransE model to learn entity embeddings,
and then define some kinds of transformation be-
tween embeddings of aligned entities. Compared
with these approaches, our approach uses an en-
tirely different framework; it uses GCNs to embed
entities in a unified vector space, where aligned
entities are expected to be as close as possible.
Our approach only focuses on matching entities in
two KGs, and it does not learn embeddings of re-
lations. MTransE, JAPE, and ITransE all require
relations being aligned or shared in KGs; our ap-
proach does not need this kind of prior knowledge.

3 Problem Formulation

KGs represent knowledge about real-world en-
tities as triples. Here we consider two kinds
of triples in KGs: relational triples, and attri-
butional triples. Relational triples represents re-
lations between entities, and it has the form
〈entity1, relation, entity2〉. Attributional triples
describe attributes of entities, and it has the form
〈entity, attribute, value〉. For example in the
data of YAGO, graduatedFrom is a relation, and
(Albert Einstein, graduatedFrom, ETH Zurich) is
a relational triple; diedOnDate is an attribute, and
(Albert Einstein, diedOnDate, 1955) is an attri-
butional triple. Both relational and attributional

triples describe important information about enti-
ties, we will take both of them into account in the
task of cross-lingual KG alignment.

Formally, we represent a KG as G =
(E,R,A, TR, TA), where E,R,A are sets of en-
tities, relations and attributes, respectively; TR ⊂
E × R × E is the set of relational triples, TA ⊂
E×A×V is the set of attributional triples, where
V is the set of attribute values.

Let G1 = (E1, R1, A1, T
R
1 , T

A
1 ) and G2 =

(E2, R2, A2, T
R
2 , T

A
2 ) be two KGs in different lan-

guages, and S = {(ei1 , ei2)|ei1 ∈ E1, ei2 ∈
E2}mi=1 be a set of pre-aligned entity pairs between
G1 andG2. We define the task of cross-lingual KG
alignment as finding new entity alignments based
on the existing ones. In multilingual KGs such
as DBpedia and YAGO, the cross-lingual links in
them can be used to build the sets of pre-aligned
entity pairs. The already known entity alignments
are used as seeds or training data in the process of
KG alignment.

4 The Proposed Approach

The framework of our proposed approach is shown
in Figure 1. Given two KGsG1 andG2 in different
languages, and a set of known aligned entity pairs
S = {(ei1 , ei2)}mi=1 between them, our approach
automatically find new entity alignments based on
GCN-based entity embeddings. The basic idea
of our approach is to use GCNs to embed enti-
ties from different languages into a unified vector
space, where equivalent entities are expected to be
as close as possible. Entity alignments are pre-
dicted by applying a pre-defined distance function
to entities’ GCN-representations.

4.1 GCN-based Entity Embedding

GCNs (Bruna et al., 2014; Henaff et al., 2015;
Defferrard et al., 2016; Kipf and Welling, 2017)
are a type of neural network that directly operates
on graph data. GCNs allow end-to-end learning
of prediction pipelines whose inputs are graphs of
arbitrary size and shape. The inputs of a GCN are
feature vectors of nodes and the structure of the
graph; the goal of a GCN is to learn a function of
features on the input graph and produces a node-
level output. GCNs can encode information about
the neighborhood of a node as a real-valued vec-
tor, which was usually used for classification or re-
gression. When solving the problem of KG align-
ment, we assume that (1) equivalent entities tend
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Figure 1: Framework of our approach (dashed blue lines connects equivalent entities in two KGs)

to have similar attributes, and (2) equivalent enti-
ties are usually neighbored by some other equiva-
lent entities. GCNs can combine the attribute in-
formation and the structure information together,
therefore our approach uses GCNs to project en-
tities into low-dimensional vector space, where
equivalent entities are close to each other.

A GCN-model consists of multiple stacked
GCN layers. The input to the l-th layer of the GCN
model is a vertex feature matrix, H(l) ∈ Rn×d(l) ,
where n is the number of vertices and d(l) is the
number of features in the l-th layer. The output of
the l-th layer is a new feature matrixH(l+1) by the
following convolutional computation:

H(l+1) = σ
(
D̂−

1
2 ÂD̂−

1
2H(l)W (l)

)
(1)

where σ is an activation function;A is a n×n con-
nectivity matrix that represents the structure infor-
mation of the graph; Â = A+ I , and I is the iden-
tity matrix; D̂ is the diagonal node degree matrix
of Â; W (l) ∈ Rd(l)×d(l+1)

is the weight matrix of
the l-th layer in the GCN, d(l+1) is the dimension-
ality of new vertex features.

Structure and Attribute Embedding. In our ap-
proach, GCNs are used to embed entities of two
KGs in a unified vector space. To utilize both
structure and attribute information of entities, our
approach assigns two feature vectors to each entity
in GCN layers, structure feature vector hs and at-
tribute feature vector ha. In the input layer, h(0)s is
randomly initialized and updated during the train-
ing process; h(0)a is the attribute vectors of entities
and it is fixed during the model training. Let Hs

and Ha be the structure and attribute feature ma-
trices of all the entities, we redefine the convolu-

tional computation as:

[H(l+1)
s ;H(l+1)

a ]

= σ
(
D̂−

1
2 ÂD̂−

1
2 [H(l)

s W (l)
s ;H(l)

a W (l)
a ]
) (2)

where W (l)
s and W (l)

a are the weight matrices for
structure features and attribute features in the l-th
layer, respectively; [ ; ] denotes the concatenation
of two matrices. The activation function σ is cho-
sen as ReLU(·) = max(0, ·).
Model Configuration. More specifically, our ap-
proach uses two 2-layer GCNs, and each GCN
processes one KG to generate embeddings of its
entities. As defined in Section 3, we denote two
KGs as G1 = (E1, R1, A1, T

R
1 , T

A
1 ) and G2 =

(E2, R2, A2, T
R
2 , T

A
2 ); and let their corresponding

GCN models be denoted as GCN1 and GCN2.
As for the structure feature vectors of entities, we
set the dimensionality of feature vectors to ds in
all the layers of GCN1 and GCN2; and two GCN
models share the weight matrices W (1)

s and W (2)
s

for the structure features in two layers. As for
the attribute vectors of entities, we set the dimen-
sionality of output feature vectors to da. Because
two KGs may have different number of attributes
(i.e. |A1| 6= |A2|), the dimensionalities of the in-
put attribute feature vectors in two GCN models
are different. The first layer of each GCN model
transforms the input attribute feature vectors into
vectors of size da; and two GCN-models gener-
ate attribute embeddings of the same dimensional-
ity. Table 1 outlines the parameters of two GCNs
in our approach. The final outputs of two GCNs
are (ds + da)-dimensional embeddings of entities,
which are further used to discover entity align-
ments.
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Parameter GCN1 GCN2

Initial Structure Feature Matrices H
(0)
s1 ∈ R|E1|×ds H

(0)
s2 ∈ R|E2|×ds

Weight Matrix for Structure Features in Layer 1 W
(1)
s ∈ Rds×ds

Weight Matrix for Structure Features in Layer 2 W
(2)
s ∈ Rds×ds

Output Structure Embeddings H
(2)
s1 ∈ R|E1|×ds H

(2)
s2 ∈ R|E2|×ds

Initial Attribute Feature Matrices H
(0)
a1 ∈ R|E1|×|A1| H

(0)
a2 ∈ R|E2|×|A2|

Weight Matrix for Attribute Features in Layer 1 W
(1)
a1 ∈ R|A1|×da W

(1)
a2 ∈ R|A2|×da

Weight Matrix for Attribute Features in Layer 2 W
(2)
a ∈ Rda×da

Output Attribute Embeddings H
(2)
a1 ∈ R|E1|×da H

(2)
a2 ∈ R|E2|×da

Table 1: Parameters of two GCNs

Computation of Connectivity Matrix. In a
GCN model, the connectivity matrix A defines
the neighborhoods of entities in the convolutional
computation. For an undirected graph, the adja-
cency matrix can be directly used as As. But KGs
are relational multi-graphs, entities are connected
by typed relations. Therefore, we design a par-
ticular method for computing A of a KG; we let
aij ∈ A indicate to what extent the information of
alignments propagates from the i-th entity to the
j-th entity. The probability of two entities being
equivalent differs greatly considering they connect
to aligned entities by different relations (e.g., has-
Parent vs. hasFriend). Therefore, we compute
two measures, which are called functionality and
inverse functionality, for each relation:

fun(r) =
#Head Entities of r

#Triples of r
(3)

ifun(r) =
#Tail Entities of r

#Triples of r
(4)

where #Triples of r is the number of triples
of relation r; #Head Entities of r and
#Tail Entities of r are the numbers of head
entities and tail entities of r, respectively. To
measure the influence of the i-th entity over the
j-the entity, we set aij ∈ A as:

aij =
∑

〈ei,r,ej〉∈G

ifun(r)+
∑

〈ej ,r,ei〉∈G

fun(r) (5)

4.2 Alignment prediction

Entity alignments are predicted based on the dis-
tances between entities from two KGs in the GCN-
representation space. For entities ei in G1 and vj

inG2, we compute the following distance measure
between them:

D(ei, vj) =β
f(hs(ei),hs(vj)

ds

+ (1− β)f(ha(ei),ha(vj))

da

(6)

where f(x,y) =‖ x − y ‖1, hs(·) and ha(·)
denote the structure embedding and attribute em-
bedding of an entity, respectively; ds and da are
dimensionalities of structure embeddings and at-
tribute embeddings; β is a hyper-parameter that
balances the importance of two kinds of embed-
dings.

The distance is expected to be small for equiva-
lent entities and large for non-equivalent ones. For
a specific entity ei in G1, our approach computes
the distances between ei and all the entities in G2,
and returns a list of ranked entities as candidate
alignments. The alignment can be also performed
from G2 to G1. In the experiments, we report the
results of both directions of KG alignment.

4.3 Model Training

To enable GCNs to embed equivalent entities as
close as possible in the vector space, we use a
set of known entity alignments S as training data
to train GCN models. The model training is per-
formed by minimizing the following margin-based
ranking loss functions:

Ls =
∑

(e,v)∈S

∑
(e′,v′)∈S′

(e,v)

[f(hs(e),hs(v)) + γs

− f(hs(e
′),hs(v

′)]+
(7)
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La =
∑

(e,v)∈S

∑
(e′,v′)∈S′

(e,v)

[f(ha(e),ha(v)) + γa

− f(ha(e
′),ha(v

′)]+
(8)

where [x]+ = max{0, x}, S′(e,v) denotes the set of
negative entity alignments constructed by corrupt-
ing (e, v), i.e. replacing e or v with a randomly
chosen entity in G1 or G2; γs, γa > 0 are margin
hyper-parameters separating positive and negative
entity alignments. Ls and La are loss functions for
structure embedding and attribute embedding, re-
spectively; they are independent of each other and
hence are optimized separately. We adopt stochas-
tic gradient descent (SGD) to minimize the above
loss functions.

5 Experiment

5.1 Datasets

We use the DBP15K datasets in the experiments,
which were built by Sun et al. (2017). The datasets
were generated from DBpedia, a large-scale multi-
lingual KG containing rich inter-language links
between different language versions. Subsets
of Chinese, English, Japanese and French ver-
sions of DBpedia are selected following certain
rules. Table 2 outlines the detail information
of the datasets. Each dataset contains data two
KGs in different languages and 15 thousand inter-
language links connecting equivalent entities in
two KGs. In the experiments, the known equiv-
alent entity pairs are used for model training and
testing.

5.2 Experiment Settings

In the experiments, we compared our approach
with JE, MTransE and JAPE. We also build JAPE′,
a variant of JAPE which does not use pre-aligned
relations and attributes. Because the approach
ITransE performs iterative alignment and it re-
quires two KGs sharing the same relations, we
do not include it in the comparison. The inter-
language links in each dataset are used as the gold
standards of entity alignments. For all the com-
pared approaches, we use 30% of inter-language
links for training and 70% of them for testing;
the split of training and testing are the same for
all approaches. We use Hits@k as the evalua-
tion measure to assess the performance of all the

approaches. Hits@k measures the proportion of
correctly aligned entities ranked in the top k candi-
dates. For the parameters of our approach, we set
ds = 1, 000, da = 100; the margin γs = γa = 3
in the loss function, and β in the distance measure
is emperically set to 0.9.

5.3 Results

Table 3 shows the results of all the compared
approaches on DBP15K datasets. We report
Hits@1, Hits@10 and Hits@50 of approaches
on each dataset. Because we use the same datasets
as in (Sun et al., 2017), the results of JE, MTransE,
and JAPE are obtained from (Sun et al., 2017).
For JAPE and JAPE′, each of them has three
variants: Structure Embedding without negative
triples (SE w/o neg.), Structure Embedding (SE),
Structure and attribute joint embedding (SE+AE).
We use GCN(SE) and GCN(SE+AE) to denote
two variants of our approach: one only uses re-
lational triples to perform structure embedding,
and the other uses both relational and attributional
triples to perform structure and attribute embed-
ding.

GCN(SE) vs. GCN(SE+AE)
We first compare the results of GCN(SE) and

GCN(SE+AE) to see whether the attributional in-
formation is helpful in the KG alignment task.
According to the results, adding attributes in our
approach do lead to slightly better results. The
improvements range from 1% to 10%, which are
very similar to the improvements of JAPE(SE)
over JAPE(SE+AE). It shows that the KG align-
ment mainly relays on the structural information in
KGs, but the attributional information is still use-
ful. Our approach uses the same framework for
embedding structure and attribute information, the
combination of two kinds of embeddings works
effectively.

GCN(SE+AE) vs. Baselines
On the dataset of DBP15KZH−EN ,

JAPE(SE+AE) performs best and gets five
best Hits@k values; our approach GCN(SE+AE)
gets the best Hits@1 in the alignment direction
of ZH→EN. The results of GCN(SE+AE) and
JAPE gets very close results regarding Hits@1
and Hits@10 in the direction of ZH→EN. In the
alignment direction of EN→ZH, JAPE(SE+AE)
outperforms GCN(SE+AE) by about 2-3%. But
it should be noticed that JAPE uses additional
aligned relations and attributes as its inputs,
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Datasets Entities Relations Attributes Rel. triples Attr. triples

DBP15KZH−EN
Chinese 66,469 2,830 8,113 153,929 379,684
English 98,125 2,317 7,173 237,674 567,755

DBP15KJA−EN
Japanese 65,744 2,043 5,882 164,373 354,619
English 95,680 2,096 6,066 233,319 497,230

DBP15KFR−EN
French 66,858 1,379 4,547 192,191 528,665
English 105,889 2,209 6,422 278,590 576,543

Table 2: Details of the datasets

DBP15KZH−EN
ZH → EN EN → ZH

Hits@1 Hits@10 Hits@50 Hits@1 Hits@10 Hits@50

*JE 21.27 42.77 56.74 19.52 39.36 53.25

*MTransE 30.83 61.41 79.12 24.78 52.42 70.45

*JAPE
SE w/o neg. 38.34 68.86 84.07 31.66 59.37 76.33

SE 39.78 72.35 87.12 32.29 62.79 80.55
SE + AE 41.18 74.46 88.90 40.15 71.05 86.18

JAPE′
SE w/o neg. 30.10 62.58 80.28 23.04 52.91 72.17

SE 30.54 66.41 83.94 23.91 57.02 77.31
SE + AE 33.32 69.28 86.40 33.02 66.92 85.15

GCN SE 38.42 70.34 81.24 34.43 65.68 77.03
SE + AE 41.25 74.38 86.23 36.49 69.94 82.45

DBP15KJA−EN
JA → EN EN → JA

Hits@1 Hits@10 Hits@50 Hits@1 Hits@10 Hits@50

*JE 18.92 39.97 54.24 17.80 38.44 52.48

*MTransE 27.86 57.45 75.94 23.72 49.92 67.93

*JAPE
SE w/o neg. 33.10 63.90 80.80 29.71 56.28 73.84

SE 34.27 66.39 83.61 31.40 60.80 78.51
SE + AE 36.25 68.50 85.35 38.37 67.27 82.65

JAPE′
SE w/o neg. 28.90 60.61 80.03 25.34 53.36 71.94

SE 29.35 63.31 82.76 26.37 57.35 76.87
SE + AE 31.06 64.11 81.57 32.45 62.21 79.08

GCN SE 38.21 72.49 82.69 36.90 68.50 79.51
SE + AE 39.91 74.46 86.10 38.42 71.81 83.72

DBP15KFR−EN
FR → EN EN → FR

Hits@1 Hits@10 Hits@50 Hits@1 Hits@10 Hits@50

*JE 15.38 38.84 56.50 14.61 37.25 54.01

*MTransE 24.41 55.55 74.41 21.26 50.60 69.93

*JAPE
SE w/o neg. 29.55 62.18 79.36 25.40 56.55 74.96

SE 29.63 64.55 81.90 26.55 60.30 78.71
SE + AE 32.39 66.68 83.19 32.97 65.91 82.38

JAPE′
SE w/o neg. 28.23 60.99 78.47 24.68 55.25 74.19

SE 27.58 62.03 79.98 24.93 58.95 77.79
SE + AE 30.21 65.81 82.57 31.42 63.86 80.95

GCN SE 36.51 73.42 85.93 36.08 72.37 85.44
SE + AE 37.29 74.49 86.73 36.77 73.06 86.39

Table 3: Results comparison of cross-lingual KG alignment (* marks the results obtained from (Sun et al.,
2017))

while our approach does not use these kinds
of prior knowledge. If compared with JAPE′,

GCN(SE+AE) performs better than it regrading
Hits@1 and Hits@10. While compared with
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Figure 2: GCN and JAPE using different sizes of training data (horizontal coordinates: proportions of
pre-aligned entities used in training data; vertical coordinates: Hits@1 )

JE and MTransE, GCN(SE+AE) outperform
them by more than 10% in most cases. On the
datasets of DBP15KJA−EN and DBP15KFR−EN ,
GCN(SE+AE) outperforms all the compared ap-
proaches regarding all the Hits@k measures.
Even compared with JAPE which uses extra
relation and attribute alignments, GCN(SE+AE)
still gets better results than it.

Comparing with all the baselines, both
GCN(SE) and GCN(SE+AE) outperform JE and
MTransE significantly. Among all the baselines,
JAPE is the strongest one; it might due to its
ability of using both relational and attributional
triples, and the extra alignments of relations and
attributes that it consumes. Our approach achieves
better results than JAPE on two datasets; Al-
though JAPE performs better than our approach,
the differences between their results are small.
If there are no existing relation and attribute
alignments between two KGs, our approach will
have distinct advantage over JAPE.

GCN vs. JAPE using different sizes of train-
ing data

To investigate how the size of training set affects
the results of our approach, we further compare
our approach with JAPE by using different number
of pre-aligned entities as training data. For JAPE,
the pre-aligned entities are used as seeds to make
their vectors overlapped. In our approach, all the
pre-aligned entities are used to train GCN models.
Intuitively, the more pre-aligned entities used, the
better results should be obtained by both GCN and
JAPE.

Here we use different proportions of pre-aligned
entities as training data, which ranges 10% to 50%
with step 10%; all the rest of pre-aligned entities
are used for testing. Figure 2 shows the Hits@1
of two approaches in three datasets. It shows that

both approaches perform better as the size of train-
ing data increases. And our approach always out-
performs JAPE except using 40% pre-aligned en-
tities as training data in Figure 2(a). Especially
in the tasks of aligning Japanese to English and
French to English, our approach has a distinct ad-
vantage over JAPE.

6 Conclusion and Future Work

This paper presents a new embedding-based KG
alignment approach which discovers entity align-
ments based on the entity embeddings learned by
GCNs. Our approach can make use of both the
relational and the attributional triples in KGs to
discover the entity alignments. We evaluate our
method on the data of real multilingual KGs, and
the results show the advantages of our approach
over the compared baselines.

In the future work, we will explore more ad-
vanced GCN models for KG alignment task, such
as Relational GCNs (Schlichtkrull et al., 2017)
and Graph Attention Networks (GATs) (Velick-
ovic et al., 2017). Furthermore, how to iteratively
discover new entity alignments in the framework
of our approach is another interesting direction
that we will study in the future.
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