Function

Assistant: A Tool for NL Querying of APIs

Kyle Richardson and Jonas Kuhn
Institute for Natural Language Processing
University of Stuttgart
kyle@ims.uni-stuttgart.de

Abstract

In this paper, we describe Function
Assistant, a lightweight Python-based
toolkit for querying and exploring source
code repositories using natural language.
The toolkit is designed to help end-users
of a target API quickly find information
about functions through high-level natu-
ral language queries and descriptions. For
a given text query and background API,
the tool finds candidate functions by per-
forming a translation from the text to
known representations in the API using
the semantic parsing approach of Richard-
son and Kuhn (2017). Translations are
automatically learned from example text-
code pairs in example APIs. The toolkit
includes features for building translation
pipelines and query engines for arbitrary
source code projects. To explore this last
feature, we perform new experiments on
27 well-known Python projects hosted on
Github.

1 Introduction

Software developers frequently shift between us-
ing different third-party software libraries, or
APIs, when developing new applications. Much of
the development time is dedicated to understand-
ing the structure of these APIs, figuring out where
the target functionality lies, and learning about the
peculiarities of how such software is structured or
how naming conventions work. When the target
APl is large, finding the desired functionality can
be a formidable and time consuming task. Of-
ten developers resort to resources like Google or
StackOverflow to find (usually indirect) answers
to questions.

We illustrate these issues in Figure 1 using two

67

from nltk.parse.dependencygraph.py

class DependencyGraph(object):
"""A containerfor a dependency structure""

def remove_by_address(self, address):
Removes the node with the given address.
=> implementation
def add_arc(self, head_address, mod_address)
"""Adds an arc from the node specified by

head _address to the node specified by
the mod address....

Figure 1: Example function documentation in
Python NLTK about dependency graphs.

example functions from the well-known NLTK
toolkit. Each function is paired with a short
docstring, i.e., the quoted description under each
function, which provides a user of the software
a description of what the function does. While
understanding the documentation and code re-
quires technical knowledge of dependency pars-
ing and graphs, even with such knowledge, the
function naming conventions are rather arbitrary.
The function add_arc could just as well be
called create_arc. An end-user expecting an-
other naming convention might be left astray when
searching for this functionality. Similarly, the
available description might deviate from how an
end-user would describe such functionality.

Understanding the remove_ by_address
function, in contrast, requires knowing the
details of the particular DependencyGraph
implementation being used. Nonetheless, the
function corresponds to the standard operation of
removing a node from a dependency graph. Here,
the technical details about how this removal is
specific to a given address might obfuscate the
overall purpose of the function, making it hard to
find or understand.

Proceedings of the 2017 EMNLP System Demonstrations, pages 67-72
Copenhagen, Denmark, September 7-11, 2017. (©2017 Association for Computational Linguistics

At a first approximation, navigating a given API
requires knowing correspondences between tex-
tual descriptions and source code representations.
For example, knowing that the English expression
Adds an arc in Figure 1 translates (somewhat ar-
bitrarily) to add_arc, or that given address trans-
lates to address. One must also know how to
detect paraphrases of certain target entities or ac-
tions, for example that adding an arc means the
same as creating an arc in this context. Other
technical correspondences, such as the relation be-
tween an address and the target dependency
graph implementation, must be learned.

In our previous work (Richardson and Kuhn
(2017), henceforth RK), we look at learning these
types of correspondences from example API col-
lections in a variety of programming languages
and source natural languages. We treat each
given API, consisting of text and function rep-
resentation pairs, as a parallel corpus for train-
ing a simple semantic parsing model. In addi-
tion to learning translational correspondences, of
the type described above, we achieve improve-
ments by adding document-level features that help
to learn other technical correspondences.

In this paper, we focus on using our models as
a tool for querying API collections. Given a tar-
get APL, our model learns an MT-based seman-
tic parser that translates text to code representa-
tions in the API. End-users can formulate natural
language queries to the background API, which
our model will translate into candidate function
representations with the goal of finding the de-
sired functionality. Our tool, called Function
Assistant can be used in two ways: as a black-
box pipeline for building models directly from ar-
bitrary API collections. As well, it can be cus-
tomized and integrated with other outside compo-
nents or models using the tool’s flexible internal
Python API.

In this paper, we focus on the first usage of our
tool. To explore building models for new API col-
lections, we run our pipeline on 27 open source
Python projects from the well-known Awesome
Python project list.! As in previous work, we
perform synthetic experiments on these datasets,
which measure how well our models can generate
function representations for unseen API descrip-
tions, which mimic user queries.

1github.com/vinta/awesomefpython

68

2 Related Work

Natural language querying of APIs has long been
a goal in software engineering, related to the gen-
eral problem of software reuse (Krueger, 1992).
To date, a number of industrial scale products
are available in this area.’To our knowledge,
most implementations use shallow term match-
ing and/or information-extraction techniques (Lv
et al., 2015), differing from our methods that use
more conventional NLP components and tech-
niques. As we show in this paper and in RK, term
matching and related techniques can sometimes
serve as a competitive baseline, but are almost al-
ways outperformed by our translation approach.

More recently, there has been increased interest
in machine learning on learning code representa-
tions from APIs, especially using resources such
as GitHub or StackOverflow. However, this work
tends to look at learning from many API collec-
tions (Gu et al., 2016), making such systems hard
to evaluate and to apply to querying specific APIs.
Other work looks at learning to generate longer
code from source code annotations for natural lan-
guage programming (Allamanis et al., 2015), of-
ten focusing narrowly on a specific programming
language (e.g., Java) or set of APIs. To our knowl-
edge, none of these approaches include companion
software that facilitate building custom pipelines
for specific APIs and querying.

Technically, our approach is related to work
on semantic parsing, which looks at generating
formal representations from text input for natu-
ral language understanding applications, notably
question-answering. Many existing methods take
direct inspiration from work on MT (Wong and
Mooney, 2006) and parsing (Zettlemoyer and
Collins, 2009). Please see RK for more discussion
and pointers to related work.

3 Technical Approach

In this paper, we focus on learning to generate
function representations from textual descriptions
inside of source code collections, or APIs. We
will refer to these target function representations
as API components. Each component specifies a
function name, a list of arguments, and other op-
tional information such as a namespace.

Given a set of example text-component pairs
from an example API, D = {(x;, z;) }I_;, the goal

2
e.g., www.krugle.com, www.searchcode.com

is to learn how to generate correct, well-formed
components z € C for each text z. When viewed
as a semantic parsing problem, we can view each z
as analogous to a target logical form. In this paper,
we focus narrowly on Python source code projects,
and thus Python functions z, however our methods
are agnostic to the input natural language and out-
put programming language as shown in RK.

When used for querying, our model takes a text
input and attempts to generate the desired func-
tion representation. Technically, our approach fol-
lows our previous work and has two components:
a simple and lightweight word-based translation
model that generates candidate API components,
and a discriminative model that reranks the trans-
lation model output using additional phrase and
document-level features. All of these models are
implemented natively in our tool, and we describe
each part in turn.

3.1 Translation Model

Given an input text (or query) sequence r =
W1, .., W)y, the goal is to generate an output API
component z = u;, .., u|,|, which involves learn-
ing a conditional distribution p(z |). We pursue
a noisy-channel approach, where

p(z | z) ocp(z | 2)p(2)

By assuming a uniform prior p(z) on output
components, the model therefore involves com-
puting p(x | z), which under a word-based trans-
lation model can be expressed as:

Zpa:a\z

where the summation ranges over the set of all
many-to-one (word) alignments a from z — z.

While many different formulations of word-
based models exist, we previously found that the
simplest lexical translation model, or IBM Model
1 (Brown et al., 1993), outperforms even higher-
order alignment models with location parameters.
This model computes all alignments exactly using
the following equation:

p(z]z)=

|z =]

Hzpt w] |uz

7j=11=0

)

plz|z)~

where p; defines a multinomial distribution over a
given component term u; for all words w;.

69

While many parameter estimation strategies ex-
ist for training word-based models, we similarly
found that the simplest EM procedure of Brown
et al. (1993) works the best. In RK, we describe a
linear-time decoding strategy (i.e., for generating
components from input) over the number of com-
ponents C, which we use in this paper. Our tool
also implements our types of conventional MT de-
coding strategies that are better suited for large
APIs and more complex semantic languages.

3.2 Discriminative Reranking

Following most semantic parsing approaches
(Zettlemoyer and Collins, 2009), we use a dis-
criminative log-linear model to rerank the com-
ponents generated from the underlying translation
model. Such a model defines a conditional distri-
bution: p(z| z;6) o e??(®2)_ for a parameter vec-
tor § € R?, and a set of feature functions ¢(x, z).

Our tool implements several different training
and optimization methods. For the purpose of
this paper, we train our models using an online,
stochastic gradient ascent algorithm under a max-
imum conditional log-likelihood objective.

3.2.1 Features

For a given text input x and output component
z, ¢(x, z) defines a set of features between these
two items. By default, our pipeline implementa-
tion uses three classes of features, identical to the
feature set used in RK. The first class includes ad-
ditional word-level features, such as word/compo-
nent match, overlap, component syntax informa-
tion, and so on. The second includes phrase and
hierarchical phrase features between text and com-
ponent candidates, which are extracted standardly
from symmetric word-level alignment heuristics.
The other category of features includes
document-level features. This includes informa-
tion about the underlying API class hierarchy,
and relations between words/phrases and abstract
classes within this hierarchy. Also, we use
additional textual description of parameters in the
docstrings to indicate whether word-components
candidate pairs overlap in these descriptions.

4 Implementation and Usage

All of the functionality above is implemented in
the Function Assistant toolkit. The tool is
part of the companion software release for our pre-
vious work called Zubr. For efficiency, the core

pipeline parameters
params = [
(”—baseline” ,”baseline” ,False ,”bool”,
”Use baseline model [default=False]”,”GPipeline”)

]

Zubr pipeline tasks

tasks = [
”zubr.doc_extractor .DocExtractor” ,# extract docs
”process_data”, # custom function.
”zubr.SymmetricAlignment” ,# learn trans. model.
”zubr.Dataset”, # build dataset obj.
”zubr.FeatureExtractor”, ## build extractor obj.
”zubr.Optimizer”, ## train reranking model
”zubr.QueryInterface”, # build query interface
”zubr.web. QueryServer”, # launch HTTP server

1

def process_data(config):
"""Preprocess the extracted data using a custom
function or outside library (e.g., nltk)

:param config: The global configuration

nun

preprocess_function (config ,...)

Figure 2: An example pipeline script for building
a translation model and query server.

functionality is written in Cython 3, which is a
compiled superset of the Python language that fa-
cilitates native C/C++ integration.

The tool is designed to be used in two ways:
first, as a black-box pipeline to build custom trans-
lation pipelines and API query engines. The tool
can also be integrated with other components us-
ing our Cython and Python API. We focus on the
first type of functionality.

4.1 Library Design and Pipelines

Our library uses dependency-injection OOP de-
sign principles. All of the core components are
implemented as wholly independent classes, each
of which has a number of associated configura-
tion values. These components interact via a class
called Pipeline, which glues together various
user-specified components and dependencies, and
builds a global configuration from these compo-
nents. Subsequent instantiation and sharing of ob-
jects is dictated, or injected, by these global con-
figurations settings, which can change dynami-
cally throughout a pipeline run.

Pipelines are created by writing pipeline scripts,
such as the one shown in Figure 2. This file is
an ordinary Python file, with two mandatory vari-
ables. The first params variable specifies vari-
ous high-level configuration parameters associated
with the pipeline. In this case, there is a set-
ting ——baseline, which can be evoked to run

*http://cython.org/

70

a baseline experiment, and will effect the subse-
quent processing pipeline.

The second, and most important, variable is
called tasks, and this specifies an ordering of
subprocesses that should be executed. The fields
in this list are pointers to either core utilities in
the underlying Zubr toolkit (each with the pre-
fix zubr.), or user defined functions. This par-
ticular pipeline starts by building a dataset from
a user specified source code repository, using
DocExtractor, then builds a symmetric trans-
lation model SymmetricAlignment, a fea-
ture extractor FeatureExtractor, a discrim-
inative reranker Optimizer, all via various in-
termediate steps. It finishes by building a query
interface and query server, QueryInterface
and QueryServer, which can then be used for
querying the input APIL.

As noted already, each subprocesses has a num-
ber of associated configuration settings, which are
joined into a global configuration object by the
Pipeline instance. For the translation model,
settings include, for example, the type of trans-
lation model to use, the number of iterations to
use when training models, and so on. All of
these settings can be specified on the terminal,
or in a separate configuration file. As well, the
user is free to define custom functions, such as
process_data, or classes which can be used to
modify the default processing pipeline or imple-
ment new ML features.

4.2 'Web Server

The last step in this pipeline builds an HTTP web
server that can be used to query the input API. In-
ternally, the server makes calls to the trained trans-
lation model and discriminative reranker, which
takes user queries and attempts to translate them
into API function representations. These candi-
date translations are then returned to the user as
potential answers to the query. Depending on
the outcome, the user can either rephrase his/her
question if the target function is not found, or
look closer at the implementation by linking to the
function’s source code.

An example screen shot of the query server is
shown in Figure 3. Here, the background API is
the NLTK toolkit, and the query is Train a se-
quence tagger model. While not mentioned ex-
plicitly, the model returns training functions for
the HiddenMarkovModelTagger. The right

nitk

0.150354 seconds

tag.HiddenMarkovModelTagger

and unlabeled training instances.

tag.HiddenMarkovModelTrainer
train(labeled sequences,unlabeled sequences)

unsupervised techniques.

tag.HiddenMarkovModelTrainer
train_supervised(labelled_sequences,estimator)

Function{} Assistant

Your query is: 'Train a sequence tagger model. ' processed in

train(cls,labeled sequence,test sequence,unlabeled sequence)

Train a new hiddenmarkovmodeltagger using the given labeled

Trains the hmm using both or either of supervised and

def train(self, labeled_sequences=None, unlabeled_sequences=None,
#xkwargs)

Trains the HMM using both (or either of) supervised and unsupervised
techniques.

treturn: the trained model

srtype: HiddenMarkovModelTagger

:param labelled_sequences: the supervised training data, a set of
labelled sequences of observations

itype labelled_sequences: list

:param unlabeled_sequences: the unsupervised training data, a set of
sequences of observations

:type unlabeled_sequences: list

:param kwargs: additional arguments to pass to the training methods

assert labeled_sequences or unlabeled_sequences
model = None
if labeled_sequences:

model = self.train_supervised(labeled_sequences, x*kwargs)
if unlabeled_sequences:

1f model: kwargs[‘model'] = model

model = self.train_unsupervised(unlabeled_sequences, kkwargs)
return model

Figure 3: An example screen shot of the Function Assistant web server.

[Project #Pairs #Symbols # Words Vocab. |
scapy 757 1,029 7,839 1,576
zipline 753 1,122 8,184 1,517
biopython 2,496 2,224 20,532 2,586
renpy 912 889 10,183 1,540
pyglet 1,400 1354 12218 2,181
kivy 820 861 7,621 1,456
pip 1,292 1,359 13,011 2,201
twisted 5,137 3,129 49,457 4,830
vispy 1,094 1,026 9,744 1,740
orange 1,392 1,125 11,596 1,761
tensorflow 5,724 4,321 45,006 4,672
pandas 1,969 1,517 17,816 2,371
sqlalchemy 1,737 1,374 15,606 2,039
pyspark 1,851 1,276 18,775 2,200
nupic 1,663 1,533 16,750 2,135
astropy 2,325 2,054 24,567 3,007
sympy 5523 3201 52236 4777
ipython 1,034 1,115 9,114 1,771
orator 817 499 6,511 670
obspy 1,577 1,861 14,847 2,169
rdkit 1,006 1,380 9,758 1,739
django 2,790 2,026 31,531 3,484
ansible 2,124 1,884 20,677 2,593
statsmodels 2,357 2,352 21,716 2,733
theano 1,223 1,364 12,018 2,152
nltk 2,383 2,324 25,823 3,151
sklearn 1,532 1,519 13,897 2,115

Table 1: New English Github datasets.

side of the image shows the hyperlink path to the
original source in Github for the t rain function.

S Experiments

Our current DocExtractor implementation
supports building parallel datasets from raw
Python source code collections. Internally, the
tool reads source code using the abstract syntax
tree utility, ast, in the Python standard library,
and extracts sets of function and description pairs.
In addition, the tool also extracts class descrip-
tions, parameter and return value descriptions, and

71

information about the API’s internal class hierar-
chy. This last type of information is then used to
define document-level features.

To experiment with this feature, we built
pipelines and ran experiments for 27 popular
Python projects. The goal of these experiments is
to test the robustness of our extractor, and see how
well our models answer unseen queries for these
resources using our previous experimental setup.

5.1 Datasets

The example projects are shown in Table 1. Each
dataset is quantified in terms of # Pairs, or the
number of parallel function-component represen-
tations, the # Symbols in the component output
language, the # (NL) Words and Vocab size.

5.2 Experimental Setup

Each dataset is randomly split into train, test, and
dev. sets using a 70%-30% (or 15%/15%) split.
We can think of the held-out sets as mimicking
queries that users might ask the model. Stan-
dardly, all models are trained on the training sets,
and hyper-parameters are tuned to the dev. sets.

For a unseen text input during testing, the model
generates a candidate list of component outputs.
An output is considered correct if it matches ex-
actly the gold function representation. As before,
we measure the Accuracy @1, accuracy within
top ten (Accuracy @10), and the MRR.

As in our previous work, three additional base-
lines are used. The first is a simple bag-of-words

Method scapy zipline biopython renpy

pyglet kivy pip twisted vispy

BoW 00.051.317.4 01.738.312.9
Term Match 21.243.328.7 28.550.8 36.2
Translation 20.3 61.9 34.7 27.6 62.5 40.7

05.8 54.8 20.4
23.548.131.7
29.675.645.8

06.641.116.6 05.752.319.2 07.353.622.0 06.240.917.1 06.638.816.9 07.348.718.6
25.759.538.7 20.450.931.2 30.062.641.3 19.150.230.7 17.644.126.2 29.264.041.1
30.861.742.0 26.169.541.3 33367.445.3 18.656.432.3 27.761.439.4 28.670.142.3

Reranker 21.2 67.237.2 30.370.545.3 32.379.148.6 38.973.548.9 29.077.145.5 35.775.6 49.1 25.9 65.8 39.9 28.8 65.8 42.2 33.5 80.4 50.3
Method orange tensorflow pandas sglalchemy pyspark nupic astropy sympy ipython
BoW 13.460.529.1 09.447.421.2 03.740.6 15.6 07.345.018.4 07.550.920.8 06.455.022.8 07.752.021.1 06.444.418.5 01.941.213.9
Term Match 37.9 69.749.3 25.248.733.5 19.343.727.9 17.348.426.6 20.546.929.1 23.651.033.1 26.149.134.3 20.244.928.8 23.856.7 33.8
Translation 40.3 78.354.0 35.371.548.0 29.162.741.0 28.870.343.0 37.178.752.1 30.9 69.8 44.6 30.7 66.6 43.4 32.870.245.5 24.559.3 36.5
Reranker 45.184.159.9 38.477.751.8 31.166.143.1 35.076.149.7 41.581.555.3 29.376.745.6 33.974.447.4 32.175.046.6 29.6 66.4 42.3
Method orator obspy rdkit django ansible statsmodels theano nltk sklearn
BoW 10.6 66.3 28.6 06.749.520.2 05.340.617.1 04.540.916.2 17.955.330.5 05.646.1 18.6 03.243.716.2 05.044.216.3 05.245.8 17.7

Term Match 31.9 64.743.7 19.946.630.0 13.346.623.9 19.348.029.1 24.8 54.035.8
Translation 32.779.547.5 33.875.848.3 25.360.637.2 22.957.834.6 35571.647.5
32.7 82.7 49.7 37.7 80.0 52.3 25.3 63.3 39.6 25.8 64.5 39.4 40.577.0 53.1

Reranker

16.739.925.1 16.337.124.0 19.845.628.4 24.4 50.6 32.5
25.464.837.8 26.258.437.8 28.268.041.5 27.967.641.3
28.8 69.141.7 27.366.139.9 31.672.545.7 29.275.544.5

| Accuracy @1 | Accuracy @10 |Mean Reciprocal Rank (MRR) |

Table 2: Test results on our new Github datasets.

(BoW) model, which uses word-component pairs
as features. The second is a Term Match baseline,
which ranks candidates according to the number
of matches between input words and component
words. We also compare the results of the Trans-
lation (model) without the reranker.

6 Results and Discussion

Test results are shown in Table 2, and largely
conform to our previous findings. The BoW
and Term Match baselines are outperformed by
all other models, which again shows that API
querying is more complicated than simple word-
component matching. The Reranker model leads
to improvements on all datasets as compared with
only using the Translation model, indicating that
document-level and phrase features can help.

We note that these experiments are synthetic,
in the sense that it’s unclear whether the held-
out examples bear any resemblance to actual user
queries. Assuming, however, that each held-out
set is a representative sample of the queries that
real users would ask, we can then interpret the re-
sults as indicating how well our models answer
queries. Whether or not these held-out examples
reflect real queries, we believe that they still pro-
vide a good benchmark for model construction.
All code and data will be released to facilitate fur-
ther experimentation and application building. Fu-
ture work will look at eliciting more naturalistic
queries (e.g., through StackOverflow), and doing
usage studies via a permanent web demo®.

7 Conclusion

We introduce Function Assistant, a lightweight
tool for querying API collections using uncon-

4see demo here: http://zubr.ims.uni-stuttgart.de/

72

strained natural language. Users can supply our
tool with target source code projects and build cus-
tom translation or processing pipelines and query
servers from scratch. In addition to the tool,
we also created new resources for studying API
querying, in the form of datasets built from 27
popular Github projects. While our approach uses
simple components, we hope will that our tool
and resources will serve as a benchmark for fu-
ture work in this area, and ultimately help to solve
everyday software search and reusability issues.

References

Miltiadis Allamanis, Daniel Tarlow, Andrew D Gor-
don, and Yi Wei. 2015. Bimodal modelling of
source code and NL. In Proceedings of ICML.

Peter F Brown, Vincent J Della Pietra, Stephen A Della
Pietra, and Robert L Mercer. 1993. The mathemat-
ics of SMT. Computational linguistics, 19(2).

Xiaodong Gu, Hongyu Zhang, Dongmei Zhang, and
Sunghun Kim. 2016. Deep API Learning. arXiv
preprint arXiv:1605.08535.

Charles W. Krueger. 1992. Software reuse. ACM Com-
puting Surveys (CSUR), 24(2).

Fei Lv, Hongyu Zhang, Jian-guang Lou, Shaowei
Wang, Dongmei Zhang, and Jianjun Zhao. 2015.
Codehow: Effective code search based on api under-
standing and extended boolean model (e). In Pro-
ceedings of ASE.

Kyle Richardson and Jonas Kuhn. 2017. Learning Se-
mantic Correspondences in Technical Documenta-
tion. In Proceedings of ACL.

Yuk Wah Wong and Raymond J. Mooney. 2006. Learn-
ing for Semantic Parsing with Statistical Machine
Translation. In Proceedings of HLT-NAACL.

Luke S. Zettlemoyer and Michael Collins. 2009.
Learning context-dependent mappings from sen-
tences to logical form. In Proceedings of ACL.

