SGNMT - A Flexible NMT Decoding Platform for Quick Prototyping of
New Models and Search Strategies

Felix Stahlberg’ and Eva Hasler’ and Danielle Saunders’ and Bill Byrne!!

"Department of Engineering, University of Cambridge, UK

ISDL Research, Cambridge, UK

Abstract

This paper introduces SGNMT, our ex-
perimental platform for machine transla-
tion research. SGNMT provides a generic
interface to neural and symbolic scoring
modules (predictors) with left-to-right se-
mantic such as translation models like
NMT, language models, translation lat-
tices, n-best lists or other kinds of scores
and constraints. Predictors can be com-
bined with other predictors to form com-
plex decoding tasks. SGNMT implements
a number of search strategies for travers-
ing the space spanned by the predictors
which are appropriate for different predic-
tor constellations. Adding new predictors
or decoding strategies is particularly easy,
making it a very efficient tool for proto-
typing new research ideas. SGNMT is ac-
tively being used by students in the MPhil
program in Machine Learning, Speech and
Language Technology at the University of
Cambridge for course work and theses, as
well as for most of the research work in
our group.

1 Introduction

We are developing an open source decoding
framework called SGNMT, short for Syntactically
Guided Neural Machine Translation.! The soft-
ware package supports a number of well-known
frameworks, including TensorFlow? (Abadi
et al., 2016), OpenFST (Allauzen et al., 2007),
Blocks/Theano (Bastien et al.,, 2012; van
Merriénboer et al., 2015), and NPLM (Vaswani
et al.,, 2013). The two central concepts in the

"http://ucam-smt.github.io/sgnmt/html/
2SGNMT relies on the TensorFlow fork available at
https://github.com/ehasler/tensorflow

25

SGNMT tool are predictors and decoders. Predic-
tors are scoring modules which define scores over
the target language vocabulary given the current
internal predictor state, the history, the source
sentence, and external side information. Scores
from multiple, diverse predictors can be combined
for use in decoding.

Decoders are search strategies which traverse
the space spanned by the predictors. SGNMT
provides implementations of common search tree
traversal algorithms like beam search. Since de-
coders differ in runtime complexity and the kind
of search errors they make, different decoders are
appropriate for different predictor constellations.

The strict separation of scoring module and
search strategy and the decoupling of scoring
modules from each other makes SGNMT a very
flexible decoding tool for neural and symbolic
models which is applicable not only to machine
translation. SGNMT is based on the OpenFST-
based Cambridge SMT system (Allauzen et al.,
2014). Although the system is less than a year old,
we have found it to be very flexible and easy for
new researchers to adopt. Our group has already
integrated SGNMT into most of its research work.

We also find that SGNMT is very well-suited
for teaching and student research projects. In
the 2015-16 academic year, two students on the
Cambridge MPhil in Machine Learning, Speech
and Language Technology used SGNMT for their
dissertation projects.> The first project involved
using SGNMT with OpenFST for applying sub-
word models in SMT (Gao, 2016). The second
project developed automatic music composition
by LSTMs where WFSAs were used to define the
space of allowable chord progressions in ‘Bach’
chorales (Tomczak, 2016). The LSTM provides
the ‘creativity’ and the WFSA enforces constraints

*http://www.mlsalt.eng.cam.ac.uk/Main/
CurrentMPhils

Proceedings of the 2017 EMNLP System Demonstrations, pages 25-30
Copenhagen, Denmark, September 7-11, 2017. (©2017 Association for Computational Linguistics

Predictor Predictor state initialize(-) predict_next () consume (token)
NMT State vector in the GRU | Runencoder network to | Forward pass through | Feed back token to
or LSTM layer of the | compute annotations. the decoder to compute | the NMT network and
decoder network and the posterior given the | update the decoder state
current context vector. current decoder GRU | and the context vector.
or LSTM state and the
context vector.
FST ID of the current node | Load FST from the file | Explore all outgoing | Traverse the outgoing
in the FST. system, set the predic- | edges of the current | edge from the current
tor state to the FST start | node and use arc | node labelled with
node. weights as scores. token and update the
predictor state to the
target node.
n-gram Current n-gram history | Set the current n-gram | Return the LM scores | Add token to the cur-
history to the begin-of- | for the current n-gram | rent n-gram history.
sentence symbol. history.
Word count | None Empty Return acostof 1 forall | Empty
tokens except </s>.
UNK count | Number of consumed | Set UNK counter to 0, | For </s> use the log- | Increase internal
UNK tokens. estimate the \ parame- | probability of the cur- | counter by 1 if token
ter of the Poisson distri- | rent number of UNKs | is UNK.
bution based on source | given A. Use zero for
sentence features. all other tokens.

Table 1: Predictor operations for the NMT, FST, n-gram LM, and counting modules.

that the chorales must obey. This second project
in particular demonstrates the versatility of the ap-
proach. For the current, 2016-17 academic year,
SGNMT is being used heavily in two courses.

2 Predictors

SGNMT consequently emphasizes flexibility and
extensibility by providing a common interface to
a wide range of constraints or models used in MT
research. The concept facilitates quick prototyp-
ing of new research ideas. Our platform aims to
minimize the effort required for implementation;
decoding speed is secondary as optimized code for
production systems can be produced once an idea
has been proven successful in the SGNMT frame-
work. In SGNMT, scores are assigned to partial
hypotheses via one or many predictors. One pre-
dictor usually has a single responsibility as it rep-
resents a single model or type of constraint. Pre-
dictors need to implement the following methods:

e initialize (src_sentence) Initialize
the predictor state using the source sentence.

e get_state () Get the internal predictor
state.

e set_state (state) Set the internal pre-
dictor state.

e predict_next () Given the internal pre-
dictor state, produce the posterior over target
tokens for the next position.

26

Predictor

Description

nmt

Attention-based neural machine trans-
lation following Bahdanau et al. (2015).
Supports Blocks/Theano (Bastien et al.,
2012; van Merriénboer et al., 2015) and
TensorFlow (Abadi et al., 2016).

fst

Predictor for rescoring deterministic
lattices (Stahlberg et al., 2016).

nfst

Predictor for rescoring
deterministic lattices.

non-

rtn

Rescoring recurrent transition networks
(RTNs) as created by HiFST (Allauzen
et al., 2014) with late expansion.

srilm

n-gram Kneser-Ney language model
using the SRILM (Heafield et al., 2013;
Stolcke et al., 2002) toolkit.

nplm

Neural n-gram language models based
on NPLM (Vaswani et al., 2013).

rnnlm

Integrates RNN language models with
TensorFlow as described by Zaremba et
al. (2014).

forced

Forced decoding with a single refer-
ence.

forcedlst

n-best list rescoring.

bow

Restricts the search space to a bag
of words with or without repeti-
tion (Hasler et al., 2017).

Irhiero

Experimental implementation of left-
to-right Hiero (Siahbani et al., 2013) for
small grammars.

wC

Number of words feature.

unkc

Applies a Poisson model for the number
of UNKSs in the output.

ngramc

Integrates external n-gram posteriors,
e.g. for MBR-based NMT according
Stahlberg et al. (2017).

length

Target sentence length model using
simple source sentence features.

Table 2:

Currently implemented predictors.

e consume (token) Update the internal pre-
dictor state by adding token to the current
history.

The structure of the predictor state and the im-
plementations of these methods differ substan-
tially between predictors. Tab. 2 lists all predictors
which are currently implemented. Tab. 1 summa-
rizes the semantics of this interface for three very
common predictors: the neural machine transla-
tion (NMT) predictor, the (deterministic) finite
state transducer (FST) predictor for lattice rescor-
ing, and the n-gram predictor for applying n-gram
language models. We also included two examples
(word count and UNK count) which do not have a
natural left-to-right semantic but can still be repre-
sented as predictors.

2.1 Example Predictor Constellations

SGNMT allows combining any number of pre-
dictors and even multiple instances of the same
predictor type. In case of multiple predictors we
combine the predictor scores in a linear model.
The following list illustrates that various interest-
ing decoding tasks can be formulated as predictor
combinations.

e nmt: A single NMT predictor represents
pure NMT decoding.

e nmt, nmt, nmt: Using multiple NMT pre-
dictors is a natural way to represent ensem-
ble decoding (Hansen and Salamon, 1990;
Sutskever et al., 2014) in our framework.

fst,nmt: NMT decoding constrained to
an FST. This can be used for neural lat-
tice rescoring (Stahlberg et al., 2016) or
other kinds of constraints, for example in
the context of source side simplification in
MT (Hasler et al., 2016) or chord progres-
sions in ‘Bach’ (Tomczak, 2016). The fst pre-
dictor can also be used to restrict the output of
character-based or subword-unit-based NMT
to a large word-level vocabulary encoded as
FSA.

nmt, rnnlm, srilm, nplm: Combining
NMT with three kinds of language mod-
els: An RNNLM (Zaremba et al., 2014),
a Kneser-Ney n-gram LM (Heafield et al.,
2013; Stolcke et al., 2002), and a feedforward
neural network LM (Vaswani et al., 2013).

27

Decoder
greedy
beam

Description

Greedy decoding.

Beam search as described in Bahdanau
et al. (Bahdanau et al., 2015).
Depth-first search. Efficiently enumer-
ates the complete search space, e.g. for
exhaustive FST-based rescoring.
Similar to DFS but with better admissi-
ble pruning behaviour.

A* search (Russell and Norvig, 2003).
The heuristic function can be defined
via predictors.

Associates hypotheses in the beam with
only one predictor. Efficiently approxi-
mates system-level combination.

Beam search which compares hypothe-
ses after consuming a special synchro-
nization symbol rather than after each
iteration.

Multiple beam search passes with small
beam size. Can have better pruning be-
haviour than standard beam search.
Fast beam search decoder for (ensem-
bled) NMT. This implementation is
similar to the decoder in Blocks (van
Merriénboer et al., 2015) but can only
be used for NMT as it bypasses the pre-
dictor framework.

dfs

restarting

astar

sepbeam

syncbeam

bucket

vanilla

Table 3: Currently implemented decoders.

e nmt, ngramc, wc: MBR-based NMT fol-
lowing Stahlberg et al. (2017) with n-gram
posteriors extracted from an SMT lattice
(ngramc) and a simple word penalty (wc).

3 Decoders

Decoders are algorithms to search for the
highest scoring hypothesis. ~ The list of pre-
dictors determines how (partial) hypothe-
ses are scored by implementing the meth-
ods initialize (-), get_state (),
set_state (+), predict_next (), and
consume (-). The Decoder class implements
versions of these methods which apply to all
predictors in the list. initialize(:) is
always called prior to decoding a new sentence.
Many popular search strategies can be described
via the remaining methods get_state (),
set_state (+), predict_next (), and
consume (-). Algs. 1 and 2 show how to define
greedy and beam decoding in this way.*>

Tab. 3 contains a list of currently implemented
decoders. The UML diagram in Fig. 1 illustrates
the relation between decoders and predictors.

*Formally, predict_next () in Algs. 1 and 2 returns
pairs of tokens and their costs.
3String concatenation is denoted with -.

GreedyDecoder

TheanoNMTPredictor

Decoder

#initialize(src_sentence)

BeamDecoder #predict_next()

<<Interface>>

Predictor

TensorFlowNMTPredictor

#consume(token)
#get_state()
#set_state(state[))
decode(src_sentence)

DFSDecoder

initialize(src_sentence)
predict_next()
consume(token)
get_state()
set_state(state)

;

]

]

1

1

1

I
—+ -

1

I

1

1

1

1

1

FSTPredictor

Figure 1: Reduced UML class diagram.

Algorithm 1 Greedy(src_sen)

Algorithm 2 Beam(n, src_sen)

I: initialize(src_sen)

h — (<s>)

repeat
P «—predict_next ()
(t,c) « argmax(syep
h~—h-t
consume(?)

until t = </s>

return h

R A O o e

NMT batch decoding The flexibility of the pre-
dictor framework comes with degradation in de-
coding time. SGNMT provides two ways of
speeding up pure NMT decoding, especially on
the GPU. The vanilla decoding strategy exposes
the beam search implementation in Blocks (van
Merriénboer et al., 2015) which processes all ac-
tive hypotheses in the beam in parallel. We also
implemented a beam decoder version which de-
codes multiple sentences at once (batch decoding)
rather than in a sequential order. Batch decoding is
potentially more efficient since larger batches can
make better use of GPU parallelism. The key con-
cepts of our batch decoder implementation are:

e We use a scheduler running on a separate
CPU thread to construct large batches of
computation (GPU jobs) from multiple sen-
tences and feeding them to the jobs queue.

e The GPU is operated by a single thread which
communicates with the CPU scheduler thread
via queues containing jobs. This thread is
only responsible for retrieving jobs in the
jobs queue, computing them, and putting
them in the jobs_results queue, minimizing
the down-time of GPU computation.

e Yet another CPU thread is responsible for
processing the results computed on the GPU

28

I: initialize(src_sen)

2: H — {((<s>),0.0,get_state())}
3: repeat
4: Hpewt — 0
5. forall (h,c,s) € H do
6: set_state (s)
7: P «—predict_next ()
8: Hyept <+ HpegtU
U(t/,c’)eP(h et d, s)
9: end for
10 H«—1
11: forall (h,c,s) € n-best(Hpeyt) do
12: set_state(s)
13: consume(h‘m)
14: H «— HU{(h,c,get_state())}
15: end for
16: until Best hypothesis in H ends with </ s>

17: return Best hypothesis in H

in the job_results queue, e.g. by getting the
n-best words from the posteriors. Processed
jobs are sent back to the CPU scheduler
where they are reassembled into new jobs.

This decoder is able to translate the WMT
English-French test sets news-test2012 to news-
test2014 on a Titan X GPU with 911.6 words
per second with the word-based NMT model de-
scribed in Stahlberg et al. (2016).% This decoding
speed seems to be slightly faster than sequential
decoding with high-performance NMT decoders
like Marian-NMT (Junczys-Dowmunt et al., 2016)
with reported decoding speeds of 865 words per
second.” However, batch decoding with Marian-
NMT is much faster reaching over 4,500 words

5Theano 0.9.0, cuDNN 5.1, Cuda 8 with CNMeM, Intel®
Core i7-6700 CPU

"Note that the comparability is rather limited since even

though we use the same beam size (5) and vocabulary sizes
(30k), we use (a) a slightly slower GPU (Titan X vs. GTX

per second.® We think that these differences are
mainly due to the limited multithreading support
and performance in Python especially when using
external libraries as opposed to the highly opti-
mized C++ code in Marian-NMT. We did not push
for even faster decoding as speed is not a major
design goal of SGNMT. Note that batch decoding
bypasses the predictor framework and can only be
used for pure NMT decoding.

Ensembling with models at multiple tokeniza-
tion levels SGNMT allows masking predictors
with alternative sets of modelling units. The con-
version between the tokenization schemes of dif-
ferent predictors is defined with FSTs. This makes
it possible to decode by combining scores from
both a subword-unit (BPE) based NMT (Sennrich
et al., 2016) and a word-based NMT model with
character-based NMT, masking the BPE-based
and word-based NMT predictors with FSTs which
transduce character sequences to BPE or word se-
quences. Masking is transparent to the decod-
ing strategy as predictors are replaced by a spe-
cial wrapper (fsttok) that uses the masking FST
to translate predict _next () and consume ()
calls to (a series of) predictor calls with alter-
native tokens. The syncbeam variation of beam
search compares competing hypotheses only af-
ter consuming a special word boundary symbol
rather than after each token. This allows com-
bining scores at the word level even when using
models with multiple levels of tokenization. Joint
decoding with different tokenization schemes has
the potential of combining the benefits of the dif-
ferent schemes: character- and BPE-based mod-
els are able to address rare words, but word-based
NMT can model long-range dependencies more
efficiently.

System-level combination We showed in
Sec. 2.1 how to formulate NMT ensembling as
a set of NMT predictors. Ensembling averages
the individual model scores in each decoding
step. Alternatively, system-level combination
decodes the entire sentence with each model
separately, and selects the best scoring complete
hypothesis over all models. In our experiments,
system-level combination is not as effective as en-

1080), (b) a different training and test set, (c) a slightly differ-
ent network architecture, and (d) words rather than subword
units.

$https://marian-nmt.github.io/
features/

29

sembling but still leads to moderate gains for pure
NMT. However, a trivial implementation which
selects the best translation in a postprocessing
step after separate decoding runs is slow. The
sepbeam decoding strategy reduces the runtime
of system-level combination to the single system
level. The strategy applies only one predictor
rather than a linear combination of all predictors
to expand a hypothesis. The single predictor
is linked by the parent hypothesis. The initial
stack in sepbeam contains hypotheses for each
predictor (i.e. system) rather than only one as
in normal beam search. We report a moderate
gain of 0.5 BLEU over a single system on the
Japanese-English ASPEC test set (Nakazawa
et al., 2016) by combining three BPE-based NMT
models from Stahlberg et al. (2017) using the
sepbeam decoder.

Iterative beam search Normal beam search is
difficult to use in a time-constrained setting since
the runtime depends on the farget sentence length
which is a priori not known, and it is therefore
hard to choose the right beam size beforehand.
The bucket search algorithm sidesteps the problem
of setting the beam size by repeatedly perform-
ing small beam search passes until a fixed com-
putational budget is exhausted. Bucket search pro-
duces an initial hypothesis very quickly, and keeps
the partial hypotheses for each length in buckets.
Subsequent beam search passes refine the initial
hypothesis by iteratively updating these buckets.
Our initial experiments suggest that bucket search
often performs on a similar level as standard beam
search with the benefit of being able to support
hard time constraints. Unlike beam search, bucket
search lends itself to risk-free (i.e. admissible)
pruning since all partial hypotheses worse than the
current best complete hypothesis can be discarded.

4 Conclusion

This paper presented our SGNMT platform for
prototyping new approaches to MT which involve
both neural and symbolic models. SGNMT sup-
ports a number of different models and constraints
via a common interface (predictors), and vari-
ous search strategies (decoders). Furthermore,
SGNMT focuses on minimizing the implementa-
tion effort for adding new predictors and decoders
by decoupling scoring modules from each other
and from the search algorithm. SGNMT is ac-
tively being used for teaching and research and we

welcome contributions to its development, for ex-
ample by implementing new predictors for using
models trained with other frameworks and tools.

Acknowledgments

This work was supported by the U.K. Engineering
and Physical Sciences Research Council (EPSRC
grant EP/L.027623/1).

References

Martin Abadi, Ashish Agarwal, Paul Barham, Eugene
Brevdo, Zhifeng Chen, Craig Citro, Greg S Corrado,
Andy Davis, Jeffrey Dean, Matthieu Devin, et al.
2016. Tensorflow: Large-scale machine learning on
heterogeneous distributed systems. arXiv preprint
arXiv:1603.04467.

Cyril Allauzen, Bill Byrne, Adria de Gispert, Gonzalo
Iglesias, and Michael Riley. 2014. Pushdown au-
tomata in statistical machine translation. Computa-
tional Linguistics, 40(3):687-723.

Cyril Allauzen, Michael Riley, Johan Schalkwyk, Wo-
jeciech Skut, and Mehryar Mohri. 2007. OpenFst: A
general and efficient weighted finite-state transducer
library. In International Conference on Implemen-
tation and Application of Automata, pages 11-23.
Springer.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. 2015. Neural machine translation by jointly
learning to align and translate. In ICLR.

Frédéric Bastien, Pascal Lamblin, Razvan Pascanu,
James Bergstra, Ian Goodfellow, Arnaud Bergeron,
Nicolas Bouchard, David Warde-Farley, and Yoshua
Bengio. 2012. Theano: New features and speed im-
provements. In NIPS.

Jiameng Gao. 2016. Variable length word encodings
for neural translation models. MPhil dissertation,
University of Cambridge.

Lars Kai Hansen and Peter Salamon. 1990. Neu-
ral network ensembles. IEEE transactions on pat-
tern analysis and machine intelligence, 12(10):993—
1001.

Eva Hasler, Adria de Gispert, Felix Stahlberg, Aurelien
Waite, and Bill Byrne. 2016. Source sentence sim-
plification for statistical machine translation. Com-
puter Speech & Language.

Eva Hasler, Felix Stahlberg, Marcus Tomalin, Adria
de Gispert, and Bill Byrne. 2017. A comparison of
neural models for word ordering. In INLG, Santiago
de Compostela, Spain.

Kenneth Heafield, Ivan Pouzyrevsky, Jonathan H.
Clark, and Philipp Koehn. 2013. Scalable modified
Kneser-Ney language model estimation. In ACL,
pages 690-696, Sofia, Bulgaria.

30

Marcin Junczys-Dowmunt, Tomasz Dwojak, and Hieu
Hoang. 2016. Is neural machine translation ready
for deployment? a case study on 30 translation di-
rections. arXiv preprint arXiv:1610.01108.

Bart van Merri€nboer, Dzmitry Bahdanau, Vincent Du-
moulin, Dmitriy Serdyuk, David Warde-Farley, Jan
Chorowski, and Yoshua Bengio. 2015. Blocks and
fuel: Frameworks for deep learning. arXiv preprint
arXiv:1506.00619.

Toshiaki Nakazawa, Manabu Yaguchi, Kiyotaka Uchi-
moto, Masao Utiyama, Eiichiro Sumita, Sadao
Kurohashi, and Hitoshi Isahara. 2016. ASPEC:
Asian scientific paper excerpt corpus. In LREC,
pages 22042208, Portoroz, Slovenia.

Stuart J. Russell and Peter Norvig. 2003. Artificial In-
telligence: A Modern Approach, 2 edition. Pearson
Education.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016. Neural machine translation of rare words with
subword units. In ACL, pages 1715-1725, Berlin,
Germany.

Maryam Siahbani, Baskaran Sankaran, and Anoop
Sarkar. 2013. Efficient left-to-right hierarchical
phrase-based translation with improved reordering.
In EMNLP, pages 1089-1099, Seattle, Washington,
USA.

Felix Stahlberg, Adria de Gispert, Eva Hasler, and
Bill Byrne. 2017. Neural machine translation by
minimising the Bayes-risk with respect to syntactic
translation lattices. In EFACL, pages 362-368, Va-
lencia, Spain.

Felix Stahlberg, Eva Hasler, Aurelien Waite, and Bill
Byrne. 2016. Syntactically guided neural machine
translation. In ACL, pages 299-305, Berlin, Ger-
many.

Andreas Stolcke et al. 2002. SRILM - an extensible
language modeling toolkit. In Interspeech, volume
2002, page 2002.

Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. 2014.
Sequence to sequence learning with neural net-
works. In NIPS, pages 3104-3112. MIT Press.

Marcin Tomczak. 2016. Bachbot. MPhil dissertation,
University of Cambridge.

Ashish Vaswani, Yinggong Zhao, Victoria Fossum,
and David Chiang. 2013. Decoding with large-
scale neural language models improves translation.
In EMNLP, pages 1387-1392, Seattle, Washington,
USA.

Wojciech Zaremba, Ilya Sutskever, and Oriol Vinyals.
2014. Recurrent neural network regularization.
arXiv preprint arXiv:1409.2329.

