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Abstract

Stylistic variations of language, such as
formality, carry speakers’ intention be-
yond literal meaning and should be con-
veyed adequately in translation. We pro-
pose to use lexical formality models to
control the formality level of machine
translation output. We demonstrate the
effectiveness of our approach in empiri-
cal evaluations, as measured by automatic
metrics and human assessments.

1 Introduction

Automatically analyzing and generating natural
language requires capturing not only what is said,
but also how to say it. Consider the sentences
“anybody hurt?” and “is someone wounded?”.
The first one is less formal than the second one,
and carries information beyond its literal meaning,
such as the situation in which it might be used.
Such differences in formality have been identi-
fied as an important dimension of style (Trudgill,
1992) or tone (Halliday, 1978) variation.

In this paper, we build on prior computational
work that has focused on analyzing formality of
texts (Lahiri and Lu, 2011; Brooke and Hirst,
2013; Pavlick and Nenkova, 2015; Pavlick and
Tetreault, 2016) with a different aim: modeling
formality for the purpose of controlling style in
applications that generate language, with a focus
on machine translation. Human translators trans-
late a document for a specific audience (Nida and
Taber Charles, 1969), and often ask what is the
expected tone of the content when taking a new
translation job. We design a machine translation
system that operates under similar conditions and
explicitly takes an expected level of formality as
input. While ultimately we would like systems
to preserve the formality of the source, this is a

challenging task that requires not only automati-
cally inferring the formality of the source, but also
understanding how formality differs across lan-
guages and cultures. As a first step, we therefore
limit our study to the scenario where the expected
output formality is given to the MT system as an
additional input.

We first select a formality model providing
the most accurate scores on intrinsic formality
datasets. We compare existing lexical formality
models and novel variants based on inducing for-
mality dimensions or subspaces in vector space
models. We then turn to machine translation and
show that a lexical formality model can have a
positive impact when used to control the formal-
ity of machine translation output. When the ex-
pected formality matches the reference, we obtain
improvement of translation quality evaluated by
automatic metrics (BLEU). A human assessment
also verified the effectiveness of our proposed sys-
tem in generating translations at diverse levels of
formality.

2 Formality-Sensitive MT

Our goal is to provide systems with the ability
to generate language across a range of formality
style. We propose a Formality-Sensitive Ma-
chine Translation (FSMT) scenario where the
system takes two inputs: (1) text in the source
language to be translated, and (2) a desired for-
mality level capturing the intended audience of the
translation. We propose to implement it as n-best
re-ranking within a standard phrase-based MT ar-
chitecture. Unlike domain adaptation approaches,
which aim to produce domain-specific or poten-
tially formality-specific systems, our goal is to ob-
tain a single system trained on diverse data which
can adaptively produce output for a range of styles.

We therefore introduce a formality-scoring fea-
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ture for re-ranking. For each translation hypothe-
sis h, given the formality level ` as a parameter:

f(h; `) = |Formality(h)− `|

where Formality(h) is the sentence-level formal-
ity score for h. f(h; `), along with standard model
features, is fed into a standard re-ranking model.
When training the re-ranking model, the parame-
ter ` is set to the actual formality score of the ref-
erence translation for each instance. At test time,
` is provided by the user. The re-scoring weights
help promote candidate sentences whose formality
scores approach the expected level.

3 Formality Modeling

The FSMT system requires quantifying the for-
mality level of a sentence. Following prior work,
we define sentence-level formality based on lexi-
cal formality scores (Brooke et al., 2010; Pavlick
and Nenkova, 2015). We conduct an empiri-
cal comparison of existing techniques that can be
adapted as lexical formality models, and intro-
duce a sentence-level formality scheme based on
weighted average.

3.1 Lexical Formality

State-of-the-art lexical formality models (Brooke
et al., 2010; Brooke and Hirst, 2014) are based on
vector space models of word meaning, and a set of
pre-selected seed words that are representative of
formal and informal language.

SimDiff Brooke et al. (2010) proposed to
score the formality of a word w by comparing its
meaning to that of seed words of known formal-
ity using cosine similarity. Intuitively, w is more
likely formal if it is semantically closer to formal
seed words than to informal seed words. Formally,
given a formal word set Sf and an informal word
set Si, SimDiff scores a word w by

score(w) =
1
|Sf |

∑
v∈Sf

cos(ew, ev)− 1
|Si|

∑
v∈Si

cos(ew, ev)

Turning this difference into a formality score re-
quires further manipulation. A neutral word r has
to be manually selected to anchor the midpoint of
the formality score range. In other words, the final
formality score for r is enforced to be zero:

Formality(w) =
score(w)− score(r)
normalizer(w, r)

The neutral word is typically selected from func-
tion words. We select “at” because it appears in
nearly every document and appears with nearly
equivalent probabilities in formal/informal cor-
pora. Finally, a normalizer which is maximized
among the whole vocabulary ensures that scores
cover the entire [−1, 1] range.

Instead of using cosine diff as the score function
score(w), other standard techniques can be also
applied under this framework.

SVM As an alternative to the model proposed by
Brooke and Hirst (2014), we propose to train an
Support Vector Machine (SVM) model to find a hy-
perplane that separates formal and informal words
and define the score function as the distance to the
hyperplane.

Formality Subspace Another category of meth-
ods consists in identifying a subspace that captures
formality within the original vector space. Lexical
scores can then simply be obtained by projecting
word representations onto the formality subspace.
One example is training a Principal Component
Analysis (PCA) model on word representations of
all seeds. This method is based on the assumption
that representative formal/informal words princi-
pally vary along the direction of formality. Al-
ternatively, inspired by DENSIFIER (Rothe et al.,
2016), we can learn a subspace that aims at sepa-
rating words in Sf vs. words in Si and grouping
words in the same set.

3.2 From Word to Sentence Formality

While previous work scored sentence by averag-
ing word scores (Brooke and Hirst, 2014; Pavlick
and Nenkova, 2015), we propose a weighted aver-
age scheme for word sequences W to downgrade
the formality contribution of neutral words:

Formality(W ) =∑
wi∈W |Formality(wi)| · Formality(wi)∑

wi∈W |Formality(wi)|

3.3 Evaluation

Before evaluating our FSMT framework, we eval-
uate the formality models at the sentence level.
Lahiri (2015) and Pavlick and Tetreault (2016)
collected 5-way human scores for 11,263 sen-
tences in the genres of blog, email, answers and
news. Following Pavlick and Tetreault (2016), we
averaged human scores for each sentence as the
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gold standard. As in prior work, the score quality
was evaluated by the Spearman correlation.

A large mixed-topic corpus is required to train
vector space models. As suggested by Brooke
et al. (2010), we used the ICWSM 2009 Spinn3r
dataset (English tier-1) which consists of about
1.6 billion words (Burton et al., 2009). We
also compared the term-document association
model Latent Semantic Analysis (LSA) (Deer-
wester et al., 1990) and the term-term association
model word2vec (W2V) (Mikolov et al., 2013).
We used the same 105 formal seeds and 138 in-
formal seeds as Brooke et al. (2010).

Followed Brooke et al. (2010), to achieve best
performance, we used a small dimensionality (10)
for training LSA and word2vec. In practice, we
normalized the LSA word vectors to make them
have unit length for SVM and PCA, but did not ap-
plied it to word2vec. This suggests that the magni-
tude of LSA word vectors is harmful for formality
modeling.

We also compared formality models based on
word representations to a baseline that relies on
unigram models to compare word statistics in cor-
pora representative of formal vs. informal lan-
guage (Pavlick and Nenkova, 2015). This method
requires language examples of diverse formality.
Conversational transcripts are generally consid-
ered as casual text, so we concatenated corpora
such as Fisher (Cieri et al., 2004), Switchboard
(Godfrey et al., 1992), SBCSAE (Bois et al., 2000-
2005), CallHome1, CallFriend2, BOLT SMS/Chat
(Song et al., 2014) and NPS Chatroom (Forsyt-
hand and Martell, 2007). As the formal counter-
part, we extracted comparable size of text from
Europarl (Koehn, 2005). This results in 30 Mil-
lion tokens of formal corpora (1.1M segments) and
29 Million tokens of informal corpora (2.7M seg-
ments).

Table 1 shows that all models based on the vec-
tor space achieve similar performance in terms
of Spearman’s ρ (except SVM-W2V which yields
lower performance). The baseline method based
on unigram models was outperformed by 0.1+
point. So we select DENSIFIER-LSA as a repre-
sentative for our FSMT system.

1https://catalog.ldc.upenn.edu/
LDC97S42

2https://talkbank.org/access/CABank/
CallFriend/

LSA W2V
SimDiff 0.660 0.654
SVM 0.657 0.585
PCA 0.656 0.663
DENSIFIER 0.664 0.644
baseline 0.540

Table 1: Sentence-level formality quantifying
evaluation (Spearman’s ρ) among different mod-
els with different vector spaces.

4 Evaluation of the FSMT System

Set-up We evaluate this approach on a French
to English translation task. Two parallel French-
English corpora are used: (1) MultiUN (Eisele and
Chen, 2010), which is extracted from the United
Nations website, and can be considered to be for-
mal text; (2) OpenSubtitles2016 (Lison and Tiede-
mann, 2016), which is extracted from movie and
TV subtitles, covers a wider spectrum of styles,
but overall tends to be informal since it primarily
contains conversations. Each parallel corpus was
split into a training set (100M English tokens), a
tuning set (2.5K segments) and a test set (5K seg-
ments). Two corpora are then concatenated, such
that training, tuning and test sets all contained a
diversity of styles.
Moses (Koehn et al., 2007) is used to build

our phrase-based MT system. We followed the
standard training pipeline with default param-
eters.3 Word alignments were generated us-
ing fast align (Dyer et al., 2013), and sym-
metrized using the grow-diag-final-and heuris-
tic. We used 4-gram language models, trained
using KenLM (Heafield, 2011). Model weights
were tuned using batch MIRA (Cherry and Foster,
2012).

We used constant size n=1000 for n-best lists
in all experiments. The re-ranking is a log-linear
model trained using batch MIRA. 4 We report re-
sults averaged over 5 random tuning re-starts to
compensate for tuning noise (Clark et al., 2011).

FSMT In order to evaluate the impact of dif-
ferent input formality (e.g. low/neutral/high) on
translation quality, ideally, we would like to have
three human reference translations with different

3http://www.statmt.org/moses/?n=Moses.
Baseline

4https://github.com/moses-smt/
mosesdecoder/tree/master/scripts/
nbest-rescore
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Desired Informal Neutral Formal
formality test set test set test set

None (baseline) 39.74 40.17 47.97
low 40.27 39.65 47.76

neutral 38.70 40.46 47.84
high 37.58 39.53 47.97

Table 2: Translation quality (BLEU scores) on in-
formal/neutral/formal sentence sets given different
desired formality levels (-0.4, 0.0, 0.4). Best re-
sults with statistical significance are highlighted.

formality for each source sentence. Since such ref-
erences are not available, we construct three sets of
test data where instances are divided according to
the formality level of the available reference trans-
lation. The formality distribution in the tuning set
shows that 97% reference translations fall into the
range of [−0.6, 0.6]. We therefore set three for-
mality bins – informal [−1,−0.2), neutral formal-
ity [−0.2, 0.2], and formal (0.2, 1] – and split the
test set into these bins. We use DENSIFIER-LSA
and training setting described above to translate
the entire test set three times, with three different
formality levels: low (-0.4), neutral (0) and high
(0.4).

4.1 Automatic Evaluation

We first report standard automatic evaluation re-
sults using the BLEU score to compare FSMT out-
put given different desired formality level on each
bins (See Table 2).

The best BLEU scores for each formality level
are obtained when the level of formality given as
input to the MT system matches the nature of the
text being translated, as can be seen in the scores
along the diagonal in Table 2. Comparing with
the baseline system, which produces the top trans-
lation from each n-best list, translation quality
improves by +0.5 BLEU on informal text, +0.3
BLEU on neutral text, and remains constant on
formal text. The impact increases with the dis-
tance to formal language increases. This can be
explained by the fact that more formal sentences
tend to be longer, and the impact of alternate lex-
ical choice for a small number of words per sen-
tence is smaller in longer sentences. In addition,
the formal sentences are mostly drawn from UN
data which is sufficiently different from the other
genres in the heterogeneous training corpus that
the informal examples do not affect baseline per-

formance on formal data.

4.2 Human Assessment

Automatic evaluation is limited to comparing out-
put to a single reference: lower BLEU scores
conflate translation errors and stylistic mismatch.
Therefore, we conduct a human study of the for-
mality vs. the quality.

We conducted a manual evaluation of the out-
put of our FSMT system taking low/high formality
levels (-0.4/0.4) as parameters. 42 translation pairs
were randomly selected and were annotated by 15
volunteers. For each pair of segments, the volun-
teers were asked to select the segment that would
be more appropriate in a formal setting (e.g., a job
interview) than in a casual setting (e.g., chatting
with friends). A default option of “neither of them
is more formal or hard to say” was also available.

By majority voting, 20 pairs were annotated as
“N”, indicating the two translations has no dis-
tinctions w.r.t. formality. For example, “A: how
can they do this” vs. “B: how can they do that”.
Given that the translations were restricted to the n-
best list, not all sentences could be translated into
stylistically different language.

Of the remaining 21 pairs where annotators
judged one output more formal than the other, in
all but one case the translation produced by our
FSMT system with high formality level parameter
was judged to be more formal. Overall this indi-
cates that our formality scoring and ranking pro-
cedure are effective.

To determine whether re-ranking based on for-
mality might have a detrimental effect on quality,
we also had annotators rate the fluency and ade-
quacy of the segments. Inspired by Graham et al.
(2013), annotators were first asked to assess flu-
ency without a reference and separately adequacy
with a reference. Both assessments used a sliding
scale. Each segment was evaluated by an average
of 7 annotators. After rescaling the ratings into
the [0, 1] range, we observed a 0.75 level of flu-
ency for informal translations and 0.70 for formal
ones. This slight difference fits our expectation
that more casual language may feel more fluent
while more formal language may feel more stilted.
The adequacy ratings were 0.65 and 0.64 for infor-
mal and translations respectively, indicating that
adjusting the level of formality had minimal effect
on the adequacy of the result.

Some examples are listed in Table 3. Occa-
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` Examples Comments
-0.4 ... and then he ran away . –
0.4 ... and then he escaped . annotated as more formal

-0.4 anybody hurt ? –
0.4 is someone wounded ? annotated as more formal

-0.4 he shot himself in the middle of it . –
0.4 he committed suicide in the middle of it . annotated as more formal

-0.4 to move things forward . –
0.4 in order to move the process forward. annotated as more formal

-0.4 how do you do ? annotated as more formal
0.4 how are you? –

-0.4 oh , val , you should get the phone . missing words
0.4 oh , val , you should have the phone (of pete) . –

-0.4 i believe you’ve solved the case , lieutenant . additive words
0.4 you solved the case , lieutenant . –

REF right by checkout .
-0.4 right next to the body . incorrect word choice
0.4 right next to the fund . incorrect word choice

Table 3: Examples of variant translations to the same French source segment using low/high output
formality levels (-0.4/0.4) as parameters. In general the variations lie on the direction of formality as
expected, but occasionally translation errors occur.

sionally, the n-best list had no translation hy-
potheses with diverse formality, so the FSMT sys-
tem dropped necessary words, appended inessen-
tial words, or selected improper or even incorrect
words to fit the target formality level. In the case
of ’how do you do’, the translation that was meant
to be more casual was rated more formal. Because
the system measures formality on the lexical level,
it was not able to recognize this idiomatically for-
mal phrase made up of words that are not inher-
ently formal. Despite these issues, most of the out-
put were formality-variant translations of the same
French source segment, as expected.

5 Conclusion

We presented a framework for formality-sensitive
machine translation, where a system produces
translations at a desired formality level. Our evalu-
ation shows the effectiveness of this system in con-
trolling language formality without loss in transla-
tion quality.
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