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Abstract

In this work, we study the problem of part-
of-speech tagging for Tweets. In contrast
to newswire articles, Tweets are usually
informal and contain numerous out-of-
vocabulary words. Moreover, there is a
lack of large scale labeled datasets for
this domain. To tackle these challenges,
we propose a novel neural network to
make use of out-of-domain labeled data,
unlabeled in-domain data, and labeled in-
domain data. Inspired by adversarial
neural networks, the proposed method
tries to learn common features through
adversarial discriminator. In addition,
we hypothesize that domain-specific fea-
tures of target domain should be preserved
in some degree. Hence, the proposed
method adopts a sequence-to-sequence au-
toencoder to perform this task. Experi-
mental results on three different datasets
show that our method achieves better per-
formance than state-of-the-art methods.

1 Introduction

During the last decade, social media have become
extremely popular, on which billions of user-
generated contents are posted every day. Many
users have been writing about their thoughts and
lives on the go. The massive unstructured data
from social media provides valuable informa-
tion for a variety of applications such as stock
prediction (Bollen et al., 2011), public health
analysis (Wilson and Brownstein, 2009; Paul and
Dredze, 2011), real-time event detection (Sakaki
etal., 2010), and so on. The quality of these appli-
cations is highly impacted by the performance of
natural language processing tasks.
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Figure 1: An example of tagged Tweet, which
contains nonstandard orthography, emoticon, and
abbreviation. The tagset is defined similar as that
of PTB (Marcus et al., 1993).

Part-of-speech (POS) tagging is one of the most
important natural language processing tasks. It
has also been widely used in the social media
analysis systems (Ritter et al., 2012; Lamb et al.,
2013; Kiritchenko et al.,, 2014). Most state-
of-the-art POS tagging approaches are based on
supervised methods. Hence, they usually require
a large amount of annotated data to train models.
Many datasets have been constructed for POS
tagging task. Because newswire articles are
carefully edited, benchmarks usually use them for
annotation (Marcus et al., 1993). However, user-
generated contents on social media are usually
informal and contain many nonstandard lexical
items. Moreover, the difference in domains be-
tween training data and evaluation data may heav-
ily impact the performance of approaches based
on supervised methods (Caruana and Niculescu-
Mizil, 2006). Hence, most POS tagging meth-
ods cannot achieve the same performance as
reported on newswire domain when applied on
Twitter (Owoputi et al., 2013).

To perform the Twitter POS tagging task, some
approaches have been proposed to perform the
task. Gimpel et al. (2011) manually annotated
1,827 tweets and carefully studied various fea-
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tures. Ritter et al. (2011) also constructed a
labeled dataset, which contained 787 tweets, to
empirically evaluate the performance of super-
vised methods on Twitter. Owoputi et al. (2013)
incorporated word clusters into the feature sets
and further improved the performance. From
these works, we can observe that the size of the
training data was much smaller than the newswire
domain’s.

Besides the challenge of lack of training data,
the frequent use of out-of-vocabulary words also
makes this problem difficult to address. Social
media users often use informal ways of expressing
their ideas and often spell words phonetically
(e.g., “2mor” for “tomorrow”). In addition,
they also make extensive use of emoticons and
abbreviations (e.g., “:-)” for smiling emotion and
“LOL” for laughing out loud). Moreover, new
symbols, abbreviations, and words are constantly
being created. Figure 1 shows an example of
tagged Tweet.

To tackle the challenges posed by the lack of
training data and the out-of-vocabulary words, in
this paper, we propose a novel recurrent neu-
ral network, which we call Target Preserved
Adversarial Neural Network (TPANN) to per-
form the task. It can make use of a large
quantity of annotated data from other resource-
rich domains, unlabeled in-domain data, and a
small amount of labeled in-domain data. All of
these datasets can be easily obtained. To make
use of unlabeled data, motivated by the work
of Goodfellow et al. (2014) and Chen et al. (2016),
the proposed method extends the bi-directional
long short-term memory recurrent neural network
(bi-LSTM) with an adversarial predictor. To
overcome the defect that adversarial networks can
merely learn the common features, we propose to
use an autoencoder only acting on target dataset to
preserve its own specific features. For tackling the
out-of-vocabulary problem, the proposed method
also incorporates a character level convolutional
neutral network to leverage subword information.

The contributions of this work are as follows:

e We propose to incorporate large scale unla-
beled in-domain data, out-of-domain labeled
data, and in-domain labeled data for Twitter
part-of-speech tagging task.

e We introduce a novel recurrent neural net-
work, which can learn domain-invariant rep-

resentations through in-domain and out-of-
domain data and construct a cross domain
POS tagger through the learned represen-
tations. The proposed method also tries
to preserve the specific features of target
domain.

e Experimental results demonstrate that the
proposed method can lead to better perfor-
mance in most of cases on three different
datasets.

2 Approach

In this work, we propose a novel recurrent neural
network, Target Preserved Adversarial Neural
Network (TPANN), to learn common features
between resource-rich domain and target domain,
simultaneously to preserve target domain-specific
features. It extends the bi-directional LSTM
with adversarial network and autoencoder. The
architecture of TPANN is illustrated in Figure 2.
The model consists of four components: Feature
Extractor, POS Tagging Classifier, Domain Dis-
criminator and Target Domain Autoencoder. In
the following sections, we will detail each part of
the proposed architecture and training methods.

2.1 Feature Extractor

The feature extractor F adopts CNN to extract
character embedding features, which can tackle
the out-of-vocabulary word problem effectively.
To incorporate word embedding features, we
concatenate word embedding to character em-
bedding as the input of bi-LSTM on the next
layer. Utilizing a bi-LSTM to model sentences,
JF can extract sequential relations and context
information.

We denote the input sentence as x and the i-th
word as x;. x; € S(z) and x; € 7 (x) represent
input samples are from source domain and target
domain, respectively. We denote the parameters
of 7 as 0. Let V be the vocabulary of words,
and C be the vocabulary of characters. d is the
dimensionality of character embedding then Q €
R4 is the representation matrix of vocabulary.
We assume that word x; € V is made up of
a sequence of characters C' = [c,co,..., ¢,
where [ is the max length of word and every word
will be padded to this length. Then C' € R/
would be the inputs of CNN.

We apply a narrow convolution between C’ and
filter H € R?**, where k is the width of the filter.
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Figure 2: The general architecture of the proposed method.

After that we add a bias and apply nonlinearity to
obtain a feature map m* € R=*F*1  Specifically,
the j-th element of m’ is given by:

i*[j] = tanh((Ci[%,j : j + k — 1], H) + b), (1)

where C[x,j : j + k — 1] is the j-to-(j + k —
1)-th column of C’ and (A, B) = Tr(ABT) is
the Frobenius inner product. We then apply a
max-over-time pooling operation (Collobert et al.,
2011) over the feature map. CNN uses multiple
filters with varying widths to obtain the feature
vector ¢; for word x;. Then, the character-level
feature vector ¢; is concatenated to the word
embedding ; to form the input of bi-LSTM
on the next layer. The word embedding @ is
pretrained on 30 million tweets. Then, the hidden
states h of bi-LSTM turn into the features that will
be transfered to P, Q and R, i.e. F(x) = h.

2.2 POS Tagging Classifier and Domain
Discriminator

POS tagging classifier P and domain discrimi-
nator Q take F(x) as input. They are standard
feed-forward networks with a softmax layer for
classification. P predicts POS tagging label to
get classification capacity, and O discriminates
domain label to make F(z) domain-invariant.
The POS tagging classifier P maps the feature
vector F(x;) to its label. We denote the param-
eters of this mapping as 6,. The POS tagging

classifier is trained on N; samples from the source
domain with the cross entropy loss:

N

Liask = — Y _ yi *log g, )
=1

where y; is the one-hot vector of POS tagging
label corresponding to z; € S(z), ¢; is the
output of top softmax layer: y; = P(F(x;)).
During the training time, The parameters ¢, and
6, are optimized to minimize the classification
loss Lqsk- This ensures that P(F(z;)) can make
accurate prediction on the source domain.

Conversely, domain discriminator maps the
same hidden states h to the domain labels with
parameters #;. The domain discriminator aims to
discriminate the domain label with following loss
function:

Ns+Nt R R
=— Y {dilogdi+(1—d;)log(1-d;)},

i=1

3)
where d; is the ground truth domain label for sam-
ple i, d; is the output of top layer: d; = Q(F(x5)).
Ny means N; samples from the target domain. The
domain discriminator is trained towards a saddle
point of the loss function through minimizing
the loss over §; while maximizing the loss over
07 (Ganin et al., 2016). Optimizing 6 ensures
that the domain discriminator can’t discriminate

Etype
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the domain, i.e., the feature extractor finds the
common features between the two domains.

2.3 Target Domain Autoencoder

Through training adversarial networks, we can
obtain domain-invariant features hc.ommon, but
it will weaken some domain-specific features
which are useful for POS tagging classification.
Merely obtaining domain invariant features would
therefore limit the classification ability.

Our model tries to tackle this defect by intro-
ducing domain-specific autoencoder R, which at-
tempts to reconstruct target domain data. Inspired
by (Sutskever et al., 2014) but different from (Dai
and Le, 2015), we treat the feature extractor F as
encoder. In addition, we combine the last hidden
states of the forward LSTM and backward LSTM
in F as the initial state ho(dec) of the decoder
LSTM. Hence, we don’t need to reverse the order
of words of the input sentences and the model
avoids the difficulty of “establish communication”
between the input and the output (Sutskever et al.,
2014).

Similar to (Zhang et al., 2016), we use ho(dec)
and embedding vector of the previous word as
the inputs of the decoder, but in a computation-
ally more efficient manner by computing pre-
vious word representation. = We assume that
(Z1,- -+ ,Z7) is the output sequence. z; is the ¢-th
word representation: z; = M LP(h;), and M LP
is the multiple perceptron function. Hidden state

= LSTM([ho(dec) : zi—1], ht—1), where |- : -]
is the concatenation operation. We estimate the
conditional probability p(21, - - , 2°r|ho(dec)) as

follows:
p(21, -+, xp|ho(dec)) =
o 4)
[ lno(dec), 21, -+, 20-1),
t=1

where each p(z;|ho(dec), z1, -+, z—1) distribu-
tion is computed with softmax over all the words
in the vacabulary.

Our aim is to minimize the following loss
function with respect to parameters 6,.:

N
Eta'rget = - Z T * log -fiv (5)
where x; is the one-hot vector of ¢-th word. This
makes hg(dec) learn an undercomplete and most
salient sentence representation of target domain

data. When the adversarial networks try to
optimize the hidden representation to common
representation h.ommon, The target domain au-
toencoder counteracts a tendency of the adver-
sarial network to erase target domain features
by optimizing the common representation to be
informative on the target-domain data.

2.4 Training

Our model can be trained end-to-end with standard
back-propagation, which we will detail in this
section.

Our ultimate training goal is to minimize the
total loss function with parameters {0¢,6,,0,, 04}
as follows:

£t0tal = aﬁtask: + ﬂﬁtarget + 'YEtypea (6)

where «, (3, 7y are the weights to balance the effects
of P, R and Q.

For obtaining domain-invariant representation
hcommon, inspired by (Ganin and Lempitsky,
2015), we introduce a special gradient reversal
layer (GRL), which does nothing during forward
propagation, but negates the gradients if it receives
backward propagation, i.e. ¢g(F(z)) = F(z)
but Vg(F(xz)) = —AVF(z). We insert the
GRL between F and Q, which can run standard
Stochastic Gradient Descent with respect to ¢y and
4. The parameter —\ drives the parameters 0
not to amplify the dissimilarity of features when
minimize L¢pye. So by introducing a GRL, F can
drive its parameters ¢ to extract hidden represen-
tations that help the POS tagging classification and
hamper the domain discrimination.

In order to preserve target domain-specific
features, we only optimize the autoencoder on
target domain data for reconstruction tasks.

Through above procedures, the model can learn
the common features between domains, simulta-
neously preserve target domain-specific features.
Finally, we can update the parameters as follows:

R s s
0, =0, — ag;ask
0, =0, —u-p at(érget
0o =04~ p- ’yagg;pe,
(7)
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Dataset # Tokens

WSJ 1,173,766
UNL 1,177,746
RIT-Train 10,652

RIT-Twitter RIT-Dev 2,242
RIT-Test 2,291

NPSCHAT 44,997
ARK-Twitter | OCT27 26,594
DAILY547 7,707

Table 1: The statistics of the datasets used in our
experiments.

where p is the learning rate. Because the size of
the WSJ is more than 100 times that of the labeled
Twitter dataset, if we directly train the model with
the combined dataset, the final results are much
worse than those using two training steps. So, we
adopt adversarial training on WSJ and unlabeled
Twitter dataset at the first step, then use a small
number of in-domain labeled data to fine-tune the
parameters with a low learning rate.

3 Experiments

In this section, we will detail the datasets used for
experiments and experimental setup.

3.1 Datasets

The methods proposed in this work incorporate
out-of-domain labeled data from resource-rich
domains, large scale unlabeled in-domain data,
and a small number of labeled in-domain data.
The datasets used in this work are as follows:
Labeled out-of-domain data. We use a standard
benchmark dataset for adversarial POS tagging,
namely the Wall Street Journal (WSJ) data from
the Penn TreeBank v3 (Marcus et al., 1993),
sections 0-24 for the out-of-domain data.
Labeled in-domain data. For training and
evaluating POS tagging approaches, we compare
the proposed method with other approaches on
three benchmarks: RIT-Twitter (Ritter et al.,
2011), NPSCHAT (Forsyth, 2007), and ARK-
Twitter (Gimpel et al., 2011).
Unlabeled in-domain data. For training the
adversarial network, we need to use a dataset
that has large scale unlabeled tweets. Hence, in
this work, we construct large scale unlabeled data
(UNL), from Twitter using its APL.

The detailed data statistics of the datasets used
in this work are listed in Table 1.

3.2 Experimental Setup

We select both state-of-the-art and classic methods
for comparison, as follows:

o Stanford POS Tagger: Stanford POS Tag-
ger is a widely used tool for newswire
domains (Toutanova et al., 2003). In this
work, we train it using two different sets,
the WSJ (sections 0-18) and a WSJ, IRC,
and Twitter mixed corpus. We use Stanford-
WSJ and Stanford-MIX to represent them,
respectively.

o T-POS: T-Pos (Ritter et al., 2011) adopts the
Conditional Random Fields and clustering
algorithm to perform the task. It was trained
from a mixture of hand-annotated tweets and
existing POS-labeled data.

o GATE Tagger: GATE tagger (Derczynski
et al., 2013) is based on vote-constrained
bootstrapping with unlabeled data. It com-
bines cases where available taggers use dif-
ferent tagsets.

o ARK Tagger: ARK tagger (Owoputi et al.,
2013) is a system that reports the best accu-
racy on the RIT dataset. It uses unsupervised
word clustering and a variety of lexical
features.

e bi-LSTM: Bidirectional Long Short-Term
Memory (LSTM) networks have been widely
used in a variety of sequence labeling
tasks (Graves and Schmidhuber, 2005). In
this work, we evaluate it at character level,
word level, and combining them together.
bi-LSTM (word level) uses one layer of
bi-LSTM to extract word-level features
and adopts a random initialization method
to transform words to vectors. bi-LSTM
(character level) represents a method
that combines bi-LSTM and CNN-based
character embedding, a similar approach with
character-aware neural network described
in (Kim et al., 2015) to handle the out-of-
vocabulary words. bi-LSTM (word level
pretrain) architecture is the same as that of
bi-LSTM(word level) but adopts word2vec
tool (Mikolov et al., 2013) to vectorize.
bi-LSTM (combine) concatenates word to
character features.
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Methods RIT-Test RIT-Dev
Stanford-WSJ (Toutanova et al., 2003) 73.37% 83.29%
Stanford-MIX 83.14% 84.19%
T-POS (Ritter et al., 2011) 84.55% 84.83%
GATE Tagger (Derczynski et al., 2013) 88.69% 89.37%
ARK Tagger (Owoputi et al., 2013) 90.40% -
bi-LSTM (word level) 75.91% 76.94%
bi-LSTM (word level pretrain) 85.99% 86.93%
bi-LSTM (character level) 82.85% 84.30%
bi-LSTM (combine) 89.48% 89.30%
bi-LSTM (combine + WSJ) 83.54% 83.64%
bi-LSTM (combine + WSJ + adversarial) 83.76% 84.45%
bi-LSTM (combine + WSJ + fine-tune) 89.87% 90.23%
bi-LSTM (combine + WSJ + adversarial + fine-tune) 90.60% 90.73%
TPANN (combine + WSJ + adversarial + fine-tune + autoencoder) 90.92%  91.08 %

Table 2: Token level accuracies of different methods on RIT-Test and RIT-Dev. bi-LSTM(combine)
refers to combining word level with character level. bi-LSTM(combine + WSJ) refers to the model
trained on WSJ and tested on RIT. bi-LSTM(combine + WSJ + adversarial) refers to adversarial model
trained on 1.1 million tokens of labeled WSJ data and the same scale of unlabeled Twitter data, then
tested on RIT. Fine-tune means adding RIT-train data to fine-tune.

The hyper-parameters used for our model are as
follows. AdaGrad optimizer trained with cross-
entropy loss is used with 0.1 as the default learning
rate. The dimensionality of word embedding is set
to 200. The dimensionality for random initialized
character embedding is set to 25. We adopt a
bi-LSTM for encoding with each layer consisting
of 250 hidden neurons. We set three layers of
standard LSTM for decoding. Each LSTM layer
consists of 500 hidden neurons. Adam optimizer
trained with cross-entropy loss is used to fine-tune
with 0.0001 as the default learning rate. Fine-
tuning is run for 100 epochs using early stop.

4 Results and Discussion

In this section, we will report experimental results
and a detailed analysis of the results for the three
different datasets.

4.1 Evaluation on RIT-Twitter

The RIT-Twitter is split into training, development
and evaluation sets (RIT-Train, RIT-Dev, RIT-
Test). The splitting method is shown in (Der-
czynski et al., 2013), and the dataset statistics are
listed in Table 1. Table 2 shows the results of our
method and other approaches on the RIT-Twitter
dataset. RIT-Twitter uses the PTB tagset with
several Twitter-specific tags: retweets, @user-
names, hashtags, and urls. Since words in these

categories can be tagged almost perfectly using
simple regular expressions, similar to (Owoputi
et al., 2013), we use regular expressions to tags
these words appropriately for all systems.

From the results of the Stanford-WSJ, we can
observe that the newswire domain is different from
Twitter. Although the token-level accuracy of the
Stanford POS Tagger is higher than 97.0% on
the PTB dataset, its performance on Twitter drops
sharply to 73.37%. By incorporating some in-
domain labeled data for training, the accuracy of
Stanford POS Tagger can reach up to 83.14%.
Taking a variety of linguistic features and many
other resources into consideration, the T-POS,
GATE tagger, and ARK tagger can achieve better
performance.

The second part of Table 2 shows the results of
the bi-LSTM based methods, which are trained on
the RIT-Train dataset. According to the results of
word level, we can see that word2vec can provide
valuable information. The pre-trained word vec-
tors in bi-LSTM(word level pretrain) give almost
10% higher accuracy than bi-LSTM(word level).

Comparing the character-level bi-LSTM with
word-level bi-LSTM with random initialization,
we can observe that the character-level method can
achieve better performance than the word-level
method. bi-LSTM(combine) combines word with
character features, as described in Section 2.1,
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Figure 3: The visualization of bi-LSTM’s outputs of the extracted features. The left figure shows the
results when no adversary is performed. The right figure shows the results when the adversary procedure
is incorporated into training. Blue points correspond to the source PTB domain examples, and red points

correspond to the target Twitter domain.

which achieves the best results at 89.48% in the
bi-LSTM based baseline systems and shows that
the morphological features and pre-trained word
vectors are both useful for POS tagging.

The third part of Table 2 shows the results of
our methods incorporating out-of-domain labeled
data, in-domain unlabeled data, and in-domain la-
beled data. Putting everything together, our model
can achieve 90.92% on this dataset. Compared
with the architecture without an adversarial model,
our method is almost 1% better. It demonstrates
that adversarial networks can significantly help
with tasks of this nature. Through introducing
the autoencoder in target domain, we can preserve
domain-specific features for better performance.
Compared with the ARK tagger, which achieves
the previous best result on this dataset, our model
is also 0.52% better, the error reduction rate is
more than 5.5%.

To better understand why adversarial networks
can help transfer domains from newswire to
Twitter, in this work we also followed the
method Ganin and Lempitsky (2015) used
to visualize the outputs of LSTM with t-
SNE (Van Der Maaten, 2013). Figure 3 shows
the visualization results. From the figure, we
can see that the adversary in our method makes
the two distributions of features much more
similar, which means that the outputs of bi-LSTM
are domain-invariant. Hence, the PTB training
data can provide much more help than directly
combining PTB and RIT-Train together.

Methods Accuracy
Forsyth (2007) | 90.8%

ARK Tagger 93.4% £+ 0.3%
TPANN 94.1%

Table 3: Tagging accuracies on NPSChat Corpus.

4.2 Evaluation on NPSChat

IRC, which contains Internet relay room messages
from 2006, is a medium of online conversational
text. Its content is very similar to tweets. We
evaluate the proposed method on the NPSChat
corpus (Forsyth, 2007), a PTB-part-of-speech an-
notated dataset of IRC.

We compared our method with a tagger in the
same setup as experiments with (Forsyth, 2007).
The training part contains 90% of the data. The
testing part contains the other 10%. Table 3 shows
the results of the ARK Tagger and our method.
We used PTB, unlabeled Twitter, and the training
part of NPSChat to train our model. From the
results, we can see that our model achieved 94.1%
accuracy. This is significantly better than the
result Forsyth (2007) reported, which was 90.8%.
They trained their tagger with a mix of several
POS-annotated corpora (12K from Twitter, 40K
from IRC, and 50K from PTB). Our method also
outperforms state-of-the-art results 93.4%=+0.3%,
which was achieved by the ARK Tagger with
various external corpus and features, e.g., Brown
clustering, PTB, Freebase lists of celebrities, and
video games.
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Methods Accuracy
Gimpel et al. (2011) version 0.2 | 90.8%
ARK Tagger 93.2%
TPANN 92.8%

Table 4: Tagging accuracies on DAILY547.

4.3 Evaluation on ARK-Twitter

ARK-Twitter data contains an entire dataset con-
sisting of a number of tweets sampled from
one particular day (October 27, 2010) described
in (Gimpel et al., 2011). This part is used
for training. They also created another dataset,
which consists of 547 tweets, for evaluation
(DAILY547). This dataset consists of one random
English tweet from every day between January
1, 2011 and June 30, 2012. The distribution of
training data may be slightly different from the
testing data, for example a substantial fraction
of the messages in the training data are about
a basketball game. Since ARK-Twitter uses a
different tagset with PTB, we manually construct
a table to link tags for the two datasets.

Table 4 shows the results of different methods
on this dataset. From the results, we can see that
our method can achieve a better result than (Gim-
pel et al., 2011). However, the performance
of our method is worse than the ARK Tagger.
Through analyzing the errors, we find that 16.7%
errors occurr between nouns and proper nouns.
Since our method do not include any ontology
or knowledge, proper nouns can not be easily
detected. However, the ATK Tagge add a token-
level name list feature. The name list is useful
for proper nouns recognition, which fires on
names from many sources, such as Freebase
lists of celebrities, the Moby Words list of US
Locations, proper names from Mark Kantrowitz’s
name corpus and so on. So, our model is
also competitive when lacking of manual feature
knowledge.

5 Related Work

Part-of-Speech tagging is an important pre-
processing step and can provide valuable
information for various natural language
processing  tasks. In recent years, deep
learning algorithms have been successfully
used for POS tagging. A number of approaches
have been proposed and have achieved some
progress. Santos and Guimaraes (2015) proposed

using a character-based convolutional neural
network to perform the POS tagging problem.
Bi-LSTMs with word, character or unicode byte
embedding were also introduced to achieve the
POS tagging and named entity recognition tasks
(Plank et al., 2016; Chiu and Nichols, 2015; Ma
and Hovy, 2016). In this work, we study the
problem from a domain adaption perspective.
Inspired by these works, we also propose to
use character-level methods to handle out-of-
vocabulary words and bi-LSTMs to model the
sequence relations.

Adversarial networks were successfully used
for image generation (Goodfellow et al., 2014;
Dosovitskiy et al., 2015; Denton et al., 2015),
domain adaption (Tzeng et al., 2014; Ganin et al.,
2016), and semi-supervised learning (Denton
etal., 2016). The key idea of adversarial networks
for domain adaption is to construct invariant
features by optimizing the feature extractor as an
adversary against the domain classifier (Zhang
etal., 2017).

Sequence autoencoder reads the input sequence
into a vector and then tries to reconstruct it. Dai
and Le (2015) used the model on a number of
different tasks and verified its validity. Li et al.
(2015) introduced the model to hierarchically
build an embedding for a paragraph, showing that
the model was able to encode texts to preserve
syntactic, semantic, and discourse coherence.

In this work, we incorporate adversarial
networks with autoencoder to obtain domain-
invariant features and keep domain-specific
features. Our model is more suitable for target
domain tasks.

6 Conclusion

In this work, we propose a novel adversarial
neural network to address the POS tagging prob-
lem. Besides learning common representations
between source domain and target domain, it
can simultaneously preserve specific features of
target domain. The proposed method leverages
newswire resources and large scale in-domain
unlabeled data to help POS tagging classification
on Twitter, which has a few of labeled data. We
evaluate the proposed method and several state-of-
the-art methods on three different corpora. In most
of the cases, the proposed method can achieve
better performance than previous methods. Ex-
perimental results demonstrate that the proposed
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method can make full use of these resources,
which can be easily obtained.
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