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Abstract

The study on human-computer conversa-
tion systems is a hot research topic nowa-
days. One of the prevailing method-
s to build the system is using the gen-
erative Sequence-to-Sequence (Seq2Seq)
model through neural networks. Howev-
er, the standard Seq2Seq model is prone
to generate trivial responses. In this pa-
per, we aim to generate a more meaning-
ful and informative reply when answering
a given question. We propose an implicit
content-introducing method which incor-
porates additional information into the Se-
g2Seq model in a flexible way. Specifical-
ly, we fuse the general decoding and the
auxiliary cue word information through
our proposed hierarchical gated fusion u-
nit. Experiments on real-life data demon-
strate that our model consistently outper-
forms a set of competitive baselines in
terms of BLEU scores and human evalu-
ation.

1 Introduction

To establish a conversation system with adequate
artificial intelligence is a long-cherished goal for
researchers and practitioners. In particular, auto-
matic conversation systems in open domains are
attracting increasing attention due to its wide ap-
plications, such as virtual assistants and chatbot-
s. In open domains, researchers mainly focus on
data-driven approaches, since the diversity and un-
certainty make it impossible to prepare the inter-
action logic and domain knowledge. Basically,
there are two mainstream ways to build an open-
domain conversation system: 1) to search pre-
established database for candidate responses by
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query retrieval (Isbell et al., 2000; Wang et al.,
2013; Yan et al., 2016; Song et al., 2016), and 2) to
generate a new, tailored utterance given the user-
issued query (Shang et al., 2015; Vinyals and Le,
2015; Serban et al., 2016; Mou et al., 2016; Song
et al., 2016). In these studies, generation-based
conversation systems have shown impressive po-
tential. Especially, the Sequence-to-Sequence (Se-
g2Seq) model (Sutskever et al., 2014) based on
neural networks has been extensively used in prac-
tice; the idea is to encode a query as a vector and to
decode the vector into a reply. Inspired by (Mou
et al., 2016), we mainly focus on the generative
short-text conversation without context informa-
tion.

Despite this, the performance of Seq2Seq
generation-based conversation systems is far from
satisfactory because its generation process is not
controllable; it responses to a query according to
the pattern learned from the training corpus. As
a result, the system is likely to generate an un-
expected reply even with little semantics, e.g, “I
don’t know” and “Okay” due to the high frequency
of these patterns in training data (Li et al., 2016a;
Mou et al., 2016). To address this issue, Li et al.
(2016a) proposed to increase diversity in the Se-
g2Seq model so that more informative utterances
have a chance to stand out. Mou et al. (2016)
provided a content-introducing approach that gen-
erates a reply based on a predicted word. The
word is usually enlightening and drives the gen-
erated response to be more meaningful. However,
this method is to some extent rigid; it requires the
predicted word to explicitly occur in the generat-
ed utterance. As shown in Table 1, sometimes, it
is better to generate a semantic related sentence
based on the cue word rather than including it in
the reply directly.

As for such content-introducing method, there
are two aspects that need to be taken into consid-
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Query 1% R 9% 454F 2. *% (Don’t you think it is ugly?)
Cue Word | ¥ % (Aesthetics)

Reply ¥ & 7! (It's disgusting!)

Query S A K 42 (Let me use my ultimate power.)
Cue Word | #% & (Skill)

Reply #HHAL? (New skill?)

Table 1: The content-introducing conversation ex-
amples.

eration. 1) How to add the additional cue words
during the generation process? One of the pre-
vailing methods is modifying the neural cell with
various gating mechanisms (Wen et al., 2015a,b;
Xu et al., 2016). However, we need careful oper-
ation to ensure the neuron works as expected. 2)
How to display the cue words in replies? As men-
tioned above, the explicit content-introducing ap-
proach in (Mou et al., 2016) does not fit well with
all situations.

In this paper, we present an implicit content-
introducing method for generative conversation
systems, which incorporates cue words using our
proposed hierarchical gated fusion unit (HGFU) in
a flexible way. Our main contributions are as fol-
lows:

e We propose the cue word GRU, another neu-
ral cell, to deal with the auxiliary informa-
tion. Compared with other gating methods,
our cue word GRU is more flexible.

e We focus on the implicit content-introducing
method during generation: the information
of the cue word will be fused into the gen-
eration process but not necessarily occur ex-
plicitly. In this way, we change the “hard”
content-introducing method into a new “soft”
schema.

The rest of paper is organized as follows. We s-
tart by introducing the technical background. In
Section 3, we describe our proposed method. In
Section 4, we illustrate the experimental setup and
evaluations against a variety of baselines. Section
5 briefly reviews related work. Finally, we con-
clude our paper in Section 6.

2 Technical Background

2.1 Seq2Seq Model and Attention
Mechanism

Seq2Seq model was first introduced in statistical
machine translation; the idea is to encode a source

sentence as a vector by a recurrent neural network
(RNN) and to decode the vector to a target sen-
tence by another RNN. Now, the conversational
generation is treated as a monolingual translation
task (Ritter et al., 2011; Shang et al., 2015). Given
aquery @ = (z1, ..., z,), the encoder represents it
as a context vector C' and then the decoder gener-
ates a response R = (y1, ..., Ym) Word by word by
maximizing the generation probability of R con-
ditioned on Q. The objective function of Seq2Seq
can be written as:

p(yla "')ym‘xl) 73371)

L (1
—p(u1|C) [ [ (el C s 1)

t=2

To be specific, the encoder RNN calculates the
context vector by:

hy = f(xn ht—l); C=hr ()

where h; is the hidden state of encoder RNN
at time ¢ and f is a non-linear transformation
which can be a long-short term memory unit (L-
STM) (Hochreiter and Schmidhuber, 1997) or a
gated recurrent unit (GRU) (Cho et al., 2014). In
this work, we implement f using GRU.

The decoder RNN generates each reply word
conditioned on the context vector C'. The prob-
ability distribution p; of candidate words at every
time step ¢ is calculated as:

st = f(Yi—1,5t-1,C); py = softmax(s¢, ys—1)
3)
where s; is the hidden state of decoder RNN at
time ¢ and y;_; is the generated word in the reply
attime ¢ — 1.

Attention mechanisms (Bahdanau et al., 2014)
have been proved effective to improve the gener-
ation quality. In Seq2Seq with attention, each y;
corresponds to a context vector Cj; it is weighted
average of all hidden states of the encoder. For-
mally, C; is defined as C; = Z;‘«le a;;hj, where
«j; is given by:

_ exp(ei;)
Zg:l exp(eir)

where 7 is usually implemented as a multi-layer
perceptron (MLP) with tanh as an activation func-
tion.

a;j seij =n(si—1,hy)  (4)
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Figure 1: The architecture of our system. Based
on the constructed corpus, we train our implicit
content-introducing conversation system. Given a
user-issued query, we first predict the cue word.
Then, we incorporate the cue word into decoding
process to generate a meaningful response.

2.2 Pointwise Mutual Information

Pointwise mutual information (PMI) (Church and
Hanks, 1990) is a measure of association ratio
based on the information theoretic concept of mu-
tual information. Given a pair of outcomes = and
y belonging to discrete random variables X and
Y, the PMI quantifies the discrepancy between
the probability of their coincidence based on their
joint distribution and their individual distributions.
Mathematically:

PMI(z,y) = log = log L
p(x

This quantity is zero if z and y are independent,
positive if they are positively correlated, and neg-
ative if they are negatively correlated.

3 Implicit Content-Introducing
Conversation System

Figure 1 provides an overview of our system archi-
tecture. We crawl conversational data from social
media which are publicly available. After filtering
and cleaning procedures, we establish the conver-
sational parallel dataset, which consists of a large
number of aligned (query — reply) pairs. Based
on the entire set, we first predict the cue word for
the given query in Subsection 3.1. Next, we pro-
pose the new implicit content-introducing process,
which explores when to incorporate the predicted
cue word in Subsection 3.2 and how to apply such
information in Subsection 3.3.

Figure 2: The information fusion patterns. The
local information initialization is presented by the
blue arrowhead and the global information incep-
tion includes both the blue arrowhead and the
green arrowhead.

3.1 Cue Word Prediction

In computational linguistics, PMI has been used
for finding collocations and associations between
words. As mentioned in Mou et al. (2016), it is
an appropriate statistic for cue words prediction,
which is also adopted in this paper to predict a cue
word C,, for the given query. Formally, given a
query word wy and a reply word w;., the PMI is
computed as:

p(wqlwr)
PMI(w,, w,) = log (6)
(g, wr) = log = )
Then, we choose the cue word C, with

highest PMI score against the query words
Wqn during the prediction, ie., Cy =
PMI(wq1, ..., wgn, w;), where

PMI(wq, ..., W
p(wg
ZPMI Wi, W)

Z log
@)

The approximation is based on the indepen-
dence assumptions of both the prior distribu-
tion p(wy;) and posterior distributions p(wg; |wy.).
Even the two assumptions may not be true, we use
them in a pragmatic way so that the word-level P-
MI is additive for a whole utterance. PMI penal-
izes a common word by dividing its prior proba-
bility; hence, it prefers a word which is most “mu-
tually informative” with the query.

Wqly -y
argmax,,

Waqn, Wy) ~ log

qu \ wr

3.2 Information Fusion Patterns

To implant the specific information in conversa-
tion system, we consider two types of information
fusion patterns, namely 1) Local information ini-
tialization 2) Global information inception.

Local information initialization. In the local
pattern, we fuse the cue word C,, as the auxiliary
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Figure 3: The structure of a HGFU. The bottom of
two GRUs deal with corresponding input source,
i.e., the last generated word y;_1 and the cue word
C. After that, fusion unit combines the output of
two GRUs to compute current hidden state h;.

information only in the beginning of decoding. We
describe this kind of pattern by the blue arrowhead
in Figure 2. Recurrent neural networks(RINNs)
such as gated recurrent units (GRUs) have the a-
bility to keep the information from the beginning
to the end to some extent. Therefore, the cue word
added on the first step of the neural networks can
still influence the generation of the later steps.
Global information inception. However, we
observe that, although the network is capable of
deciding what to keep in the cell state to affect the
later generation, the influence of the added infor-
mation in the beginning of decoding is becoming
weaker and weaker over time. Therefore, to pro-
vide the model a broader and more flexible space
for learning, we propose a global information in-
ception pattern, which fuses the cue word C, as
the auxiliary information at every step of decod-
ing. This process is presented by both the blue
arrowhead and the green arrowheads in Figure 2.

3.3 Hierarchical Gated Fusion Unit

In this subsection, we propose our Hierarchical
Gated Fusion Unit (HGFU), which incorporates
cue words into the generation process and relaxes
the constraint from the “hard” content-introducing
method into a new “soft” schema. Figure 3 pro-
vides an overview of the structure of a HGFU. As

seen, the framework consists of three components:
the standard GRU, the cue word GRU, and the fu-
sion unit. Among them, standard GRU and cue
word GRU take the last generated word y;_; and
cue word (', respectively as the decoder GRU’s
input; the fusion unit combines the hidden states
of both GRUs to predict the next word y;. In the
following, we will illustrate these components in
detail.

3.3.1 Standard GRU

We adopt the standard gated recurrent unit (GRU)
with the attention mechanism at the decoder part.
Let h;_1 be the last hidden state, ;1 be the em-
bedding of the last generated word, and C; be the
current attention-based context. The current hid-
den state of the general decoding, h,, is defined
as:

ry = c(Wryi—1 + Uphi—1 + U Cy + by)
Ry = O-(Wzytfl + Uzhtfl + UCZC't + bz)

hy = tanh(Wyys—1 + Up(ry 0 hy—1) + Uep,C + bp)

hy = (1 —zy)ohi_1+ zy0hy

(®)
where W’s € R¥™*E and U’s € R¥*m*dim gre
weight matrices; b’s € R%™ are bias terms; F
denotes the word embedding dimensionality and
dim denotes the number of hidden state units.
This general decoding process is presented by the
“Standard GRU” in Figure 3.

3.3.2 Cue word GRU

To generate more meaningful and informative
replies, we introduce cue words as the additional
information during generation. Naturally, the key
point lies in how to incorporate such information.
One of the prevailing methods is modifying the
neural cell by various gating mechanisms. How-
ever, these approaches are designed specially for
a specific scenario, and not effective as expected
when they are employed to other tasks. To tackle
this issue, we propose the cue word GRU, another
independent neural cell, to deal with the auxiliary
information. Since this neural cell can be replaced
easily by other units, it greatly improves the flexi-
bility and reusability.

Given the last hidden state h;_; , the additional
cue word (', and the current attention-based con-
text C}, the new hidden state of the auxiliary de-
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coding h,, is computed by following equations:

Tw = 0<Wrcw +Urhi—1 + UsytCy + br)
Zw = U<chw + Uzht—l + Ucth + bz)

hy = tanh(Wwa + Uh(’l”w o ht—l) + U Cr + bh)

hy = (1_Zw)oht71+zwohw

9)
where W’s and U’s are weights and b’s are bias
terms like those in the standard GRU. Note that the
standard GRU does not share parameter matrixes
with the cue word GRU. The “Cue word GRU” in
Figure 3 describes the auxiliary decoding process.

3.3.3 Fusion unit

To combine both the general decoding information
and the auxiliary decoding information, we apply
the fusion unit (Arevalo et al., 2017) integrating
the hidden states of both standard GRU, i.e., h,,
and the cue word GRU, i.e., hy, to compute the
current hidden state h;. The equations are as fol-
lows:

h, = tanh(W1h,)
h,, = tanh(Wshy)

w

he=kohy+(1—k)oh
9:{WlaW27Wk’}

(10)

with 0 the parameters to be learned. From the e-
quations above we can see that, the gate neuron k
controls the contribution of the information calcu-
lated from A, and h,, to the overall output of the
unit.

3.4 Model Training

When training on the aligned corpus, we random-
ly sample a noun in the reply as the cue word. The
objective function was the cross entropy error be-
tween the generated word distribution p; and the
actual word distribution y; in the training corpus.

4 Experiments

In this section, we compare our method with the-
state-of-art response generation models based on a
huge conversation resource. The objectives of our
experiments are to 1) evaluate the effectiveness of
our proposed HGFU model, and 2) explore how
cue words affect the process of reply generation.

1
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Figure 4: Heat map and the k gate openness. Bot-
tom: The correlation between the generated reply
words and the cue word. Top: The openness of k
gate in fusion unit.

4.1 Experimental setup

We evaluated our model on a massive Chi-
nese dataset of human conversation crawled from
the Baidu Tieba' forum. There are 500,000
(query — reply) pairs for training, 2,000 for val-
idation, and another unseen 27,871 samples for
testing. In total, we kept about 63,000 distinct
words.

In our experiments, the encoder, the standard
decoder and the cue word decoder have 1,000 hid-
den units; the word embedding dimensionality is
610 which were initialized randomly and learned
during training. We applied AdaDelta with a mini-
batch size of 80 for optimization. These values
were mostly chosen empirically. In order to pre-
vent overfitting, early stopping was implemented
using a held-out validation set.

4.2 Comparison Methods

In this paper, we conduct extensive experiments
to compare our proposed method against sever-
al representative baselines. All the methods ac-
tually are implemented in two ways to utilize the
cue word, which are local information initializa-
tion and global information inception.

rGRU: Through a specially designed Recal-
I gate (Xu et al., 2016), domain knowledge was
transformed into the extra global memory of a
deep neural network.

SCGRU: In SCGRU (Wen et al., 2015b), an ad-
ditional control cell was introduced to gate the dia-

"http://tieba.baidu.com
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Query PFAETIHTRBEAGRBA LR ER (L)
(Cue word) | The teacher took a photo of me; it was really ugly | Related Criterion Labels
and people laughed at me. (Photogenic)
Replyl 1 69 B R © Whose photo? Logic Consistency | Unsuitable
Reply2 1+ 4 B3 4% 34 892 When did he took the photo? Implicit Relevance | Neutral
Reply3 .46 . Give you a hug. Implicit Relevance | Neutral
Reply4 K4 BAA £ E LG9 My photos are also ugly! —_— Suitable

Table 2: An example query, corresponding cue word in bold and its candidate replies with human anno-
tation. The query states that people laughed at the author’s photo, it is unsuitable to ask the ownership
of this photo in Replyl. Generally, Reply2 and Reply3 apply to this scenario, but they do not reflec-
t semantic relevance with the cue word. Reply4 talks about the respondent’s situation and related to

“Photogenic”, thus it is a suitable response.

logue act (DA) features during the generation pro-
cess.

SLGD: We implemented the Stochastic
Language Generation in Dialogue (SLGD)
method (Wen et al., 2015a), which added ad-
ditional features in each gate of the neural
cell.

FGRU: To explore more fusion strategies, intu-
itively, we fused the cue word and hidden states by
vector concatenation during the decoding process.

Note that rGRU and SCGRU incorporate addi-
tional information by gating mechanisms, while
SLGD and FGRU fuse the information into each
gate of the neural cell directly.

4.3 Experiment Evaluation

Objective metrics. To evaluate the performance
of different methods for the conversation gener-
ation task, we leverage BLEU (Papineni et al.,
2002) as the automatic evaluation metric, which
is originally designed for machine translation and
evaluates the output by using n-gram matching
between the output and the reference. Here, we
use BLEU-1, BLEU-2 and BLEU-3 in our experi-
ments.

Subjective metrics. Since automatic metric-
s may not consistently agree with human percep-
tion (Stent et al., 2005), human testing is essential
to assess subjective quality. Hence, we randomly
sampled 150 queries in the test set, then we invited
five annotators to offer a judgment. For fairness,
all of our human evaluation was conducted in a
random, blind fashion, i.e., replies obtained from
the five evaluated models are pooled and random-
ly permuted for each annotator. Three levels are
assigned to a reply with scores from 0 to 2: 0 =

Method BLEU-1 | BLEU-2 | BLEU-3 | Human score

rGRU 1.087 0.419 0.249
SCGRU 2.135 0.622 0.255
Local SLGD 1.678 0.508 0.209
FGRU 2.262 0.598 0.208
HGFU 1.861 0.545 0.209

rGRU 1.793 0.676 0.277 0.542

SCGRU 3.637 0.981 0.369 0.73

Global | SLGD 4.146 1.059 0.367 0.71

FGRU 4.197 1.013 0.282 0.677

HGFU 4.893 1.225 0.393 0.942

Table 4: Performance of evaluated methods.

Unsuitable reply, 2 = Suitable reply, and 1 = Neu-
tral reply.

To make the annotation task operable, the suit-
ability of the generated reply is judged not only
based on Grammar and Fluency, Logic Consis-
tency and Semantic Relevance following (Shang
et al., 2015), but also Implicit Relevance, i.e., the
generated reply should be semantically relevant to
the predicted cue word, no matter the cue word
explicitly appears in the reply or not. If any of the
first three criteria is contradicted, the reply should
be labeled as “Unsuitable”. Only the replies con-
forming to all requirements are labeled as “Suit-
able”. Table 2 shows an example of the annotation
results of a query and its replies. The first reply is
labeled as “Unsuitable” because of the logic con-
sistency. Reply2 and Reply3 are not semantically
related to the cue word, and is therefore annotated
as “Neutral”.

4.4 Overall Performance

The overall results against all baseline methods
are listed in Table 4. Our proposed HGFU mod-
el in global schema obviously shows better per-
formance than the baseline methods; it obtains the
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Chinese Sentence English Tranlation
Query | HHHL o (5 %) What a nice written! (Appreciation)
Reply | #{#t5 %1 4 4=k Thanks for your appreciation! Love you!
Query | TR EFHEKET . (R) Still cannot calm down. (Heart)
Reply | M/ & A 7% 699 Your heart must be broken.
Query | RAEEZR—2. (&) I am going to cry for a while. (Tissue)
Reply | #Z M ! Offer you a tissue!
Query | Zm RN F AR LA LD AD? (L) | Didn’t you say that he was Nowitzki'? (Say)
Reply | #id=3? F4 &AL M 2 Did I say it? I don’t seem to say it!?

Table 3: The explicit introducing-content cases of our HGFU model. The predicted cue word in bold
explicitly occurs in the generated reply. Nowitzkil is a NBA basketball player.

highest BLEU scores as well as the highest human
score.

In terms of automatic evaluations, the global-
based methods perform much better than a set of
local-based methods, which demonstrates the ef-
fectiveness of global information inception. As
mentioned above, the global schema provides the
model a broader and more flexible space for learn-
ing, which is benefit for information fusion. When
it comes to human scores (For the sake of con-
venience, we only conducted human evaluation in
global schema), there are similar conclusions to
BLEU results.

From Table 4, we can see that the performance
of rGRU is not as good as the other systems, while
SCGRU outperforms the others in the local pattern
and shows comparative performance in the glob-
al schema. These two methods both augment the
standard neural network with specially designed
gate to control the cue word, but the results vary
greatly. It is the limitation of gating mechanism-
s that is lacking in adaptiveness. Besides, SLGD
adding cue word term in each gate of the neural
cell has the similar result as FGRU method, which
concatenates cue word with hidden state. Basical-
ly, our proposed HGFU has a significant improve-
ment against the baseline systems. The most prob-
able credits come from the cue word GRU: we ap-
ply the extra GRU unit to control the auxiliary in-
formation instead of fusion in the standard GRU,
which is more flexible.

Till now, we have elaborated the overall per-
formance of all methods. Next we will come to
a closer look at some representative cases of our
HGFU model for further analysis and discussions.

4.5 Analysis and Case Studies

Given a query and the cue word, our HGFU model
generates a meaningful and informative response.
In Table 3, the predicted cue word occurs in the
generated response and we treat this kind of gen-
eration as the explicit introducing-content. How-
ever, we do not strictly restrict tothis. As shown in
Table 5,our HGFUmodel also generates the replies
without containing the cue word, while the re-
sponsesare still somehow related to the cue word
and the query. This reflects our expectation: the
information of the cue word will be fused into the
generation process but not necessarily occur ex-
plicitly. It provesthe characteristics of our pro-
posed new “soft” schema, whichare more flexible,
extensible, and controllable.

We further analyze these explicit cases using a
heat map as shown in Figure 4. We use various
shades of blue to present the extent of correla-
tion between the cue word and the generated re-
ply. The darker the blue is, the higher correlation
they have. For the added information in the reply
(Here is exactly the cue word in darkblue), its po-
sition and occurrence times are not fixed, which
are autonomously controlled by our model.

Besides, the rectangular pulse is also a signif-
icant presentation of this correlation, which indi-
cates how the k gate in fusion unit balance the in-
fluence of h, and h,,. When in the high level of
the rectangular pulse, k& “opens” the switch of h,,
to generate the current word; when in the low lev-
el, the fusion unit mainly takes h,, for generation.
We observe that the switch corresponds with the
heat map: the generated word is more correlated
with the cue word when the switch is open.
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Chinese Sentence English Tranlation

Query | /£ # 1% & B X # — 4~ 7F % & | I saw such a comment in the microblog which can-
BRTATERRK . (AR not be refused completely. (View)

Reply | # A&7 TRAT | As an outsider, I am not convinced!

Query | E2ARARTRT? (£E) Why is it raining suddenly? (Grievance)

Reply | #F4%5 & o So sad.

Query | #& K i 3k & % # T 48 X £ | This photo of Taemin' was also taken as a desktop
@ . (%) for a long while. (Screenshot)

Reply | 4t #5? As the lockscreen?

Query | REHEKHHE ! (1 F) Make acquaintance and seek chances for further re-

lations! (Freshman)
Reply | Fl#f A RikiR o I am also the new! Nice to meet you.

Table 5: The implicit introducing-content cases of our HGFU model. The cue word in bold is not
contained in the reply, while the response is still related to the cue word. T'aemin' is a Korean singer.

5 Related work

5.1 Conversation Systems

Automatic human-computer conversation has at-
tractedincreasing attention over the past few years.
At the very beginning, people start the research
using hand-crafted rules and templates (Walker
et al., 2001; Misu and Kawahara, 2007; Williams
et al., 2013). These approaches require no da-
ta or little data for trainingbuthuge manual ef-
fort to build the model, which is very time-
consuming. For now, buildinga conversation sys-
temmainly falls into two categories: retrieval-
based and generation-based. As information re-
trieval techniques are developing fast, Leuski et al.
(2009) build systems to select the most suit-
able response from the query-reply pairs using
a statistical language model in cross-lingual in-
formation retrieval. Yan et al. (2016) propose
a retrieval-based conversation system with the
deep learning-to-respond schema through a deep
neural network framework driven by web data.
Recently, generation-based conversation system-
s have shownimpressive potential. Shang et al.
(2015) generate replies for short-text conversation
by Seq2Seq-basedneural networks with local and
global attentions.

5.2 Content Introducing

In vertical domains, Wen et al. (2015b) apply an
additional control cell to gate the dialogue ac-
t (DA) features during the generation process to
ensure the generated repliesexpressthe intended
meaning. Also, the Stochastic Language Gener-
ation in Dialogue method (Wen et al., 2015a) adds
additional features in each gate of the neural cel-

I. Xu et al. (2016) introduce a new trainable gate
to recall the global domain memory to enhance the
ability of modeling the sequence semantics. Dif-
ferent from the above work, our paper addresses
the problem of content introducing in the open-
domain generative conversation systems.

In open domains, Xing et al. (2016) incorpo-
rate topic information into Seq2Seq framework to
generate informative and interesting responses. To
provide informative clues for content introducing,
Li et al. (2016b) detect entities from previous ut-
terances and search for more related entities in
a large knowledge graph. A very recent study
similar to ours is Mou et al. (2016), where the
predicted word explicitly occurs in the generated
utterance. Unlike the existing work, we explore
an implicit content-introducing method for neural
conversation systems, which utilizes the addition-
al cue word in a “soft” manner to generate a more
meaningful response given a user-issued query.

6 Conclusion

In this paper, we explore an implicit content-
introducing method for generative short-text con-
versation system. Given a user-issued query, our
proposed HGFU incorporates an additional cue
word in a “soft” manner to generate a more mean-
ingful response. The HGFU model consists of
three components: the standard GRU, the cue
word GRU and the fusion unit. The standard GRU
operates a general decoding process, and the cue
word GRU imitates this process but treats the pre-
dicted cue word as the current input. As for the fu-
sion unit, it combines both the hidden states of the
standard GRU and the cue word GRU to generate

2197



the current output word. The experimental results
demonstrate the effectiveness of our approach.
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