
Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing, pages 2157–2169
Copenhagen, Denmark, September 7–11, 2017. c©2017 Association for Computational Linguistics

Adversarial Learning for Neural Dialogue Generation

Jiwei Li1, Will Monroe1, Tianlin Shi1, Sébastien Jean2, Alan Ritter3 and Dan Jurafsky1

1Stanford University, Stanford, CA, USA
2New York University, NY, USA
3Ohio State University, OH, USA

jiweil,wmonroe4,tianlins,jurafsky@stanford.edu
sebastien@cs.nyu.edu
ritter.1492@osu.edu

Abstract

In this paper, drawing intuition from the
Turing test, we propose using adversar-
ial training for open-domain dialogue gen-
eration: the system is trained to pro-
duce sequences that are indistinguish-
able from human-generated dialogue ut-
terances. We cast the task as a rein-
forcement learning (RL) problem where
we jointly train two systems, a generative
model to produce response sequences, and
a discriminator—analagous to the human
evaluator in the Turing test— to distinguish
between the human-generated dialogues
and the machine-generated ones. The out-
puts from the discriminator are then used
as rewards for the generative model, push-
ing the system to generate dialogues that
mostly resemble human dialogues.

In addition to adversarial training we de-
scribe a model for adversarial evaluation
that uses success in fooling an adversary as
a dialogue evaluation metric, while avoid-
ing a number of potential pitfalls. Ex-
perimental results on several metrics, in-
cluding adversarial evaluation, demonstrate
that the adversarially-trained system gener-
ates higher-quality responses than previous
baselines.

1 Introduction

Open domain dialogue generation (Ritter et al.,
2011; Sordoni et al., 2015; Xu et al., 2016; Wen
et al., 2016; Li et al., 2016b; Serban et al., 2016c,
2017) aims at generating meaningful and coher-
ent dialogue responses given the dialogue history.
Prior systems, e.g., phrase-based machine trans-
lation systems (Ritter et al., 2011; Sordoni et al.,
2015) or end-to-end neural systems (Shang et al.,

2015; Vinyals and Le, 2015; Li et al., 2016a; Yao
et al., 2015; Luan et al., 2016) approximate such a
goal by predicting the next dialogue utterance given
the dialogue history using the maximum likelihood
estimation (MLE) objective. Despite its success,
this over-simplified training objective leads to prob-
lems: responses are dull, generic (Sordoni et al.,
2015; Serban et al., 2016a; Li et al., 2016a), repeti-
tive, and short-sighted (Li et al., 2016d).

Solutions to these problems require answering
a few fundamental questions: what are the cru-
cial aspects that characterize an ideal conversation,
how can we quantitatively measure them, and how
can we incorporate them into a machine learning
system? For example, Li et al. (2016d) manually
define three ideal dialogue properties (ease of an-
swering, informativeness and coherence) and use
a reinforcement-learning framework to train the
model to generate highly rewarded responses. Yu
et al. (2016b) use keyword retrieval confidence as
a reward. However, it is widely acknowledged that
manually defined reward functions can’t possibly
cover all crucial aspects and can lead to suboptimal
generated utterances.

A good dialogue model should generate utter-
ances indistinguishable from human dialogues.
Such a goal suggests a training objective resem-
bling the idea of the Turing test (Turing, 1950).
We borrow the idea of adversarial training (Good-
fellow et al., 2014; Denton et al., 2015) in com-
puter vision, in which we jointly train two mod-
els, a generator (a neural SEQ2SEQ model) that
defines the probability of generating a dialogue se-
quence, and a discriminator that labels dialogues
as human-generated or machine-generated. This
discriminator is analogous to the evaluator in the
Turing test. We cast the task as a reinforcement
learning problem, in which the quality of machine-
generated utterances is measured by its ability to
fool the discriminator into believing that it is a

2157

human-generated one. The output from the dis-
criminator is used as a reward to the generator,
pushing it to generate utterances indistinguishable
from human-generated dialogues.

The idea of a Turing test—employing an evalu-
ator to distinguish machine-generated texts from
human-generated ones—can be applied not only
to training but also testing, where it goes by the
name of adversarial evaluation. Adversarial evalua-
tion was first employed in Bowman et al. (2016) to
evaluate sentence generation quality, and prelimi-
narily studied for dialogue generation by Kannan
and Vinyals (2016). In this paper, we discuss poten-
tial pitfalls of adversarial evaluations and necessary
steps to avoid them and make evaluation reliable.

Experimental results demonstrate that our ap-
proach produces more interactive, interesting, and
non-repetitive responses than standard SEQ2SEQ

models trained using the MLE objective function.

2 Related Work

Dialogue generation Response generation for
dialogue can be viewed as a source-to-target trans-
duction problem. Ritter et al. (2011) frame the gen-
eration problem as a machine translation problem.
Sordoni et al. (2015) improved Ritter et al.’s sys-
tem by rescoring the outputs of a phrasal MT-based
conversation system with a neural model incorpo-
rating prior context. Recent progress in SEQ2SEQ

models have inspired several efforts (Vinyals and
Le, 2015; Serban et al., 2016a,d; Luan et al., 2016)
to build end-to-end conversational systems that first
apply an encoder to map a message to a distributed
vector representing its meaning and then generate
a response from the vector.

Our work adapts the encoder-decoder model to
RL training, and can thus be viewed as an exten-
sion of Li et al. (2016d), but with more general
RL rewards. Li et al. (2016d) simulate dialogues
between two virtual agents, using policy gradient
methods to reward sequences that display three
useful conversational properties: informativity, co-
herence, and ease of answering. Our work is also
related to recent efforts to integrate the SEQ2SEQ

and reinforcement learning paradigms, drawing on
the advantages of both (Wen et al., 2016). For
example, Su et al. (2016) combine reinforcement
learning with neural generation on tasks with real
users. Asghar et al. (2016) train an end-to-end RL
dialogue model using human users.

Dialogue quality is traditionally evaluated (Sor-
doni et al., 2015, e.g.) using word-overlap metrics

such as BLEU and METEOR scores used for ma-
chine translation. Some recent work (Liu et al.,
2016) has started to look at more flexible and reli-
able evaluation metrics such as human-rating pre-
diction (Lowe et al., 2017) and next utterance clas-
sification (Lowe et al., 2016).

Adversarial networks The idea of generative
adversarial networks has enjoyed great success in
computer vision (Radford et al., 2015; Chen et al.,
2016a; Salimans et al., 2016). Training is formal-
ized as a game in which the generative model is
trained to generate outputs to fool the discrimina-
tor; the technique has been successfully applied to
image generation.

However, to the best of our knowledge, this idea
has not achieved comparable success in NLP. This
is due to the fact that unlike in vision, text gener-
ation is discrete, which makes the error outputted
from the discriminator hard to backpropagate to
the generator. Some recent work has begun to ad-
dress this issue: Lamb et al. (2016) propose provid-
ing the discriminator with the intermediate hidden
vectors of the generator rather than its sequence
outputs. Such a strategy makes the system differen-
tiable and achieves promising results in tasks like
character-level language modeling and handwriting
generation. Yu et al. (2016a) use policy gradient
reinforcement learning to backpropagate the error
from the discriminator, showing improvement in
multiple generation tasks such as poem generation,
speech language generation and music generation.
Outside of sequence generation, Chen et al. (2016b)
apply the idea of adversarial training to sentiment
analysis and Zhang et al. (2017) apply the idea to
domain adaptation tasks.

Our work is distantly related to recent work that
formalizes sequence generation as an action-taking
problem in reinforcement learning. Ranzato et al.
(2016) train RNN decoders in a SEQ2SEQ model
using policy gradient to obtain competitive ma-
chine translation results. Bahdanau et al. (2017)
take this a step further by training an actor-critic
RL model for machine translation. Also related is
recent work (Shen et al., 2016; Wiseman and Rush,
2016) to address the issues of exposure bias and
loss-evaluation mismatch in neural translation.

3 Adversarial Training for Dialogue
Generation

In this section, we describe in detail the compo-
nents of the proposed adversarial reinforcement

2158

learning model. The problem can be framed as fol-
lows: given a dialogue history x consisting of a se-
quence of dialogue utterances,1 the model needs to
generate a response y = {y1, y2, ..., yT }. We view
the process of sentence generation as a sequence of
actions that are taken according to a policy defined
by an encoder-decoder recurrent neural network.

3.1 Adversarial REINFORCE
The adversarial REINFORCE algorithm consists
of two components: a generative model G and a
discriminative model D.

Generative model The generative model G de-
fines the policy that generates a response y given
dialogue history x. It takes a form similar to
SEQ2SEQ models, which first map the source input
to a vector representation using a recurrent net and
then compute the probability of generating each
token in the target using a softmax function.

Discriminative model The discriminative model
D is a binary classifier that takes as input a se-
quence of dialogue utterances {x, y} and outputs
a label indicating whether the input is generated
by humans or machines. The input dialogue is
encoded into a vector representation using a hi-
erarchical encoder (Li et al., 2015; Serban et al.,
2016b),2 which is then fed to a 2-class softmax
function, returning the probability of the input dia-
logue episode being a machine-generated dialogue
(denoted Q−({x, y})) or a human-generated dia-
logue (denoted Q+({x, y})).
Policy Gradient Training The key idea of the
system is to encourage the generator to generate
utterances that are indistinguishable from human
generated dialogues. We use policy gradient meth-
ods to achieve such a goal, in which the score
of current utterances being human-generated ones
assigned by the discriminator (i.e., Q+({x, y}))
is used as a reward for the generator, which is
trained to maximize the expected reward of gener-
ated utterance(s) using the REINFORCE algorithm
(Williams, 1992):

J(θ) = Ey∼p(y|x)(Q+({x, y})|θ) (1)

1We approximate the dialogue history using the concate-
nation of two preceding utterances. We found that using more
than 2 context utterances yields very tiny performance im-
provements for SEQ2SEQ models.

2To be specific, each utterance p or q is mapped to a vector
representation hp or hq using LSTM (Hochreiter and Schmid-
huber, 1997). Another LSTM is put on sentence level, map-
ping the context dialogue sequence to a single representation.

Given the input dialogue history x, the bot gener-
ates a dialogue utterance y by sampling from the
policy. The concatenation of the generated utter-
ance y and the input x is fed to the discriminator.
The gradient of (1) is approximated using the like-
lihood ratio trick (Williams, 1992; Glynn, 1990;
Aleksandrov et al., 1968):

∇J(θ) ≈ [Q+({x, y})− b({x, y})]
∇ log π(y|x)

= [Q+({x, y})− b({x, y})]
∇

∑
t

log p(yt|x, y1:t−1) (2)

where π denotes the probability of the generated
responses. b({x, y}) denotes the baseline value to
reduce the variance of the estimate while keeping
it unbiased.3 The discriminator is simultaneously
updated with the human generated dialogue that
contains dialogue history x as a positive example
and the machine-generated dialogue as a negative
example.

3.2 Reward for Every Generation Step
(REGS)

The REINFORCE algorithm described has the dis-
advantage that the expectation of the reward is ap-
proximated by only one sample, and the reward
associated with this sample (i.e., [Q+({x, y}) −
b({x, y})] in Eq(2)) is used for all actions (the gen-
eration of each token) in the generated sequence.
Suppose, for example, the input history is what’s
your name, the human-generated response is I am
John, and the machine-generated response is I don’t
know. The vanilla REINFORCE model assigns
the same negative reward to all tokens within the
human-generated response (i.e., I, don’t, know),
whereas proper credit assignment in training would
give separate rewards, most likely a neutral reward
for the token I, and negative rewards to don’t and
know. We call this reward for every generation
step, abbreviated REGS.

Rewards for intermediate steps or partially de-
coded sequences are thus necessary. Unfortunately,
the discriminator is trained to assign scores to fully

3 Like Ranzato et al. (2016), we train another neural net-
work model (the critic) to estimate the value (or future reward)
of current state (i.e., the dialogue history) under the current
policy π. The critic network takes as input the dialogue history,
transforms it to a vector representation using a hierarchical
network and maps the representation to a scalar. The network
is optimized based on the mean squared loss between the
estimated reward and the real reward.

2159

generated sequences, but not partially decoded
ones. We propose two strategies for computing in-
termediate step rewards by (1) using Monte Carlo
(MC) search and (2) training a discriminator that
is able to assign rewards to partially decoded se-
quences.

In (1) Monte Carlo search, given a partially de-
coded sP , the model keeps sampling tokens from
the distribution until the decoding finishes. Such
a process is repeated N (set to 5) times and the N
generated sequences will share a common prefix
sP . These N sequences are fed to the discrimi-
nator, the average score of which is used as a re-
ward for the sP . A similar strategy is adopted in
Yu et al. (2016a). The downside of MC is that it
requires repeating the sampling process for each
prefix of each sequence and is thus significantly
time-consuming.4

In (2), we directly train a discriminator that is
able to assign rewards to both fully and partially
decoded sequences. We break the generated se-
quences into partial sequences, namely {y+

1:t}
NY +

t=1

and {y−1:t}
NY−
t=1 and use all instances in {y+

1:t}
NY +

t=1

as positive examples and instances {y−1:t}
NY−
t=1 as

negative examples. The problem with such a strat-
egy is that earlier actions in a sequence are shared
among multiple training examples for the discrimi-
nator (for example, token y+

1 is contained in all par-
tially generated sequences, which results in overfit-
ting. To mitigate this problem, we adopt a strategy
similar to when training value networks in AlphaGo
(Silver et al., 2016), in which for each collection of
subsequences of Y , we randomly sample only one
example from {y+

1:t}
NY +

t=1 and one example from
{y−1:t}

NY−
t=1 , which are treated as positive and neg-

ative examples to update the discriminator. Com-
pared with the Monte Carlo search model, this strat-
egy is significantly more time-effective, but comes
with the weakness that the discriminator becomes
less accurate after partially decoded sequences are
added in as training examples. We find that the MC
model performs better when training time is less of
an issue.

For each partially-generated sequence Yt =
y1:t, the discriminator gives a classification score

4Consider one target sequence with length 20, we need to
sample 5*20=100 full sequences to get rewards for all inter-
mediate steps. Training one batch with 128 examples roughly
takes roughly 1 min on a single GPU, which is computation-
ally intractable considering the size of the dialogue data we
have. We thus parallelize the sampling processes, distributing
jobs across 8 GPUs.

Q+(x, Yt). We compute the baseline b(x, Yt) us-
ing a similar model to the vanilla REINFORCE
model. This yields the following gradient to update
the generator:

∇J(θ) ≈
∑

t

(Q+(x, Yt)− b(x, Yt))

∇ log p(yt|x, Y1:t−1) (3)

Comparing (3) with (2), we can see that the val-
ues for rewards and baselines are different among
generated tokens in the same response.

Teacher Forcing Practically, we find that updat-
ing the generative model only using Eq. 1 leads
to unstable training for both vanilla Reinforce
and REGS, with the perplexity value skyrocket-
ing after training the model for a few hours (even
when the generator is initialized using a pre-trained
SEQ2SEQ model). The reason this happens is that
the generative model can only be indirectly exposed
to the gold-standard target sequences through the
reward passed back from the discriminator, and
this reward is used to promote or discourage its
(the generator’s) own generated sequences. Such a
training strategy is fragile: once the generator (acci-
dentally) deteriorates in some training batches and
the discriminator consequently does an extremely
good job in recognizing sequences from the gener-
ator, the generator immediately gets lost. It knows
that its generated sequences are bad based on the
rewards outputted from the discriminator, but it
does not know what sequences are good and how
to push itself to generate these good sequences (the
odds of generating a good response from random
sampling are minute, due to the vast size of the
space of possible sequences). Loss of the reward
signal leads to a breakdown in the training process.

To alleviate this issue and give the generator
more direct access to the gold-standard targets, we
propose also feeding human generated responses to
the generator for model updates. The most straight-
forward strategy is for the discriminator to auto-
matically assign a reward of 1 (or other positive
values) to the human generated responses and for
the generator to use this reward to update itself on
human generated examples. This can be seen as
having a teacher intervene with the generator some
fraction of the time and force it to generate the
true responses, an approach that is similar to the
professor-forcing algorithm of Lamb et al. (2016).

A closer look reveals that this modification is the
same as the standard training of SEQ2SEQ mod-

2160

For number of training iterations do
. For i=1,D-steps do
. Sample (X,Y) from real data
. Sample Ŷ ∼ G(·|X)
. Update D using (X,Y) as positive examples and
(X, Ŷ) as negative examples.
. End
.
. For i=1,G-steps do
. Sample (X,Y) from real data
. Sample Ŷ ∼ G(·|X)

. Compute Reward r for (X, Ŷ) using D.

. Update G on (X, Ŷ) using reward r

. Teacher-Forcing: Update G on (X,Y)

. End
End

Figure 1: A brief review of the proposed adversarial
reinforcement algorithm for training the generator
G and discriminator D. The reward r from the
discriminator D can be computed using different
strategies according to whether using REINFORCE
or REGS. The update of the generator G on (X, Ŷ)
can be done by either using Eq.2 or Eq.3. D-steps
is set to 5 and G-steps is set to 1.

els, making the final training alternately update
the SEQ2SEQ model using the adversarial objec-
tive and the MLE objective. One can think of the
professor-forcing model as a regularizer to regu-
late the generator once it starts deviating from the
training dataset.

We also propose another workaround, in which
the discriminator first assigns a reward to a human
generated example using its own model, and the
generator then updates itself using this reward on
the human generated example only if the reward
is larger than the baseline value. Such a strategy
has the advantage that different weights for model
updates are assigned to different human generated
examples (in the form of different reward values
produced by the generator) and that human gen-
erated examples are always associated with non-
negative weights.

A sketch of the proposed model is shown in
Figure 1.

3.3 Training Details

We first pre-train the generative model by predict-
ing target sequences given the dialogue history.
We trained a SEQ2SEQ model (Sutskever et al.,
2014) with an attention mechanism (Bahdanau
et al., 2015; Luong et al., 2015) on the OpenSubti-
tles dataset. We followed protocols recommended

by Sutskever et al. (2014), such as gradient clip-
ping, mini-batch and learning rate decay. We also
pre-train the discriminator. To generate negative
examples, we decode part of the training data. Half
of the negative examples are generated using beam-
search with mutual information reranking as de-
scribed in Li et al. (2016a), and the other half is
generated from sampling.

For data processing, model training and decod-
ing (both the proposed adversarial training model
and the standard SEQ2SEQ models), we employ
a few strategies that improve response quality, in-
cluding: (2) Remove training examples with length
of responses shorter than a threshold (set to 5). We
find that this significantly improves the general re-
sponse quality.5 (2) Instead of using the same learn-
ing rate for all examples, using a weighted learning
rate that considers the average tf-idf score for to-
kens within the response. Such a strategy decreases
the influence from dull and generic utterances.6 (3)
Penalizing intra-sibling ranking when doing beam
search decoding to promote N-best list diversity as
described in Li et al. (2016c). (4) Penalizing word
types (stop words excluded) that have already been
generated. Such a strategy dramatically decreases
the rate of repetitive responses such as no. no. no.
no. no. or contradictory responses such as I don’t
like oranges but i like oranges.

4 Adversarial Evaluation

In this section, we discuss strategies for success-
ful adversarial evaluation. Note that the proposed
adversarial training and adversarial evaluation are
separate procedures. They are independent of each
other and share no common parameters.

The idea of adversarial evaluation, first proposed
by Bowman et al. (2016), is to train a discriminant
function to separate generated and true sentences,
in an attempt to evaluate the model’s sentence gen-
eration capability. The idea has been preliminarily
studied by Kannan and Vinyals (2016) in the con-
text of dialogue generation. Adversarial evaluation
also resembles the idea of the Turing test, which

5To compensate for the loss of short responses, one can
train a separate model using short sequences.

6We treat each sentence as a document. Stop words are
removed. Learning rates are normalized within one batch.
For example, suppose t1, t2, ..., ti, ... ,tN denote the tf-idf
scores for sentences within current batch and lr denotes the
original learning rate. The learning rate for sentence with
index i is N · lr · ti∑

i′ ti′
. To avoid exploding learning rates

for sequences with extremely rare words, the tf-idf score of a
sentence is capped at L times the minimum tf-idf score in the
current batch. L is empirically chosen and is set to 3.

2161

requires a human evaluator to distinguish machine-
generated texts from human-generated ones. Since
it is time-consuming and costly to ask a human to
talk to a model and give judgements, we train a
machine evaluator in place of the human evaluator
to distinguish the human dialogues and machine
dialogues, and we use it to measure the general
quality of the generated responses.

Adversarial evaluation involves both training and
testing. At training time, the evaluator is trained
to label dialogues as machine-generated (negative)
or human-generated (positive). At test time, the
trained evaluator is evaluated on a held-out dataset.
If the human-generated dialogues and machine-
generated ones are indistinguishable, the model
will achieve 50 percent accuracy at test time.

4.1 Adversarial Success

We define Adversarial Success (AdverSuc for short)
to be the fraction of instances in which a model is
capable of fooling the evaluator. AdverSuc is the
difference between 1 and the accuracy achieved
by the evaluator. Higher values of AdverSuc for a
dialogue generation model are better.

4.2 Testing the Evaluator’s Ability

One caveat with the adversarial evaluation methods
is that they are model-dependent. We approximate
the human evaluator in the Turing test with an au-
tomatic evaluator and assume that the evaluator is
perfect: low accuracy of the discriminator should
indicate high quality of the responses, since we
interpret this to mean the generated responses are
indistinguishable from the human ones. Unfor-
tunately, there is another factor that can lead to
low discriminative accuracy: a poor discriminative
model. Consider a discriminator that always gives
random labels or always gives the same label. Such
an evaluator always yields a high AdverSuc value
of 0.5. Bowman et al. (2016) propose two different
discriminator models separately using unigram fea-
tures and neural features. It is hard to tell which
feature set is more reliable. The standard strategy
of testing the model on a held-out development set
is not suited to this case, since a model that overfits
the development set is necessarily superior.

To deal with this issue, we propose setting up a
few manually-invented situations to test the ability
of the automatic evaluator. This is akin to setting
up examinations to test the ability of the human
evaluator in the Turing test. We report not only the
AdverSuc values, but also the scores that the evalu-

ator achieves in these manually-designed test cases,
indicating how much we can trust the reported Ad-
verSuc. We develop scenarios in which we know
in advance how a perfect evaluator should behave,
and then compare AdverSuc from a discriminative
model with the gold-standard AdverSuc. Scenarios
we design include:
• We use human-generated dialogues as both

positive examples and negative examples. A
perfect evaluator should give an AdverSuc
of 0.5 (accuracy 50%), which is the gold-
standard result.
• We use machine-generated dialogues as both

positive examples and negative examples. A
perfect evaluator should give an AdverSuc of
0.5 (accuracy 50%).
• We use original human-generated dialogues

as positive examples and dialogues consisting
of random utterances as negative examples. A
perfect evaluator should give an AdverSuc of
0 (accuracy 100%).
• We use original human-generated dialogues

as positive examples and dialogues with re-
sponses replaced by the utterances immedi-
ately following the true responses. A perfect
evaluation should give an AdverSuc of 0 (ac-
curacy 100%).

The evaluator reliability error (ERE) is the average
deviation of an evaluator’s adversarial error from
the gold-standard error in the above tasks, with
equal weight for each task. The smaller the error,
the more reliable the evaluator is.

4.3 Machine-vs-Random Accuracy

Evaluator reliability error uses scenarios con-
structed from human-generated dialogues to assess
feature or hyper-parameter choice for the evaluator.
Unfortunately, no machine-generated responses are
involved in the ERE metric. The following exam-
ple illustrates the serious weakness resulting from
this strategy: as will be shown in the experiment
section, when inputs are decoded using greedy or
beam search models, most generation systems to
date yield an adversarial success less than 10 per-
cent (evaluator accuracy 90 percent). But when
using sampling for decoding, the adversarial suc-
cess skyrockets to around 40 percent,7 only 10
percent less than what’s needed to pass the Turing
test. A close look at the decoded sequences using
sampling tells a different story: the responses from

7Similar results are also reported in Kannan and Vinyals
(2016).

2162

Input tell me ... how long have you had this falling sickness ?
Vanilla-MLE i ’m not a doctor .
Vanilla-Sample well everything you did was totally untrue .
REINFORCE i don ’t know how long it ’s been .
REGS Monte Carlo A few months, I guess .

Input so i had the doctors test sammy ’s response to conditioning .
Vanilla-MLE sammy wrote the test sammy wrote the test .
Vanilla-Sample objects pick objects up objects objects objects objects objects
REINFORCE i ’m not sure that ’s relevant .
REGS Monte Carlo so he took the pills .

Input what are you going to do ?
Vanilla-MLE i ’m going to the movies .
Vanilla-Sample get him outta here first !
REINFORCE i ’m going to get you .
REGS Monte Carlo i ’m going to get you a new car .

Input they fear your power your intellect .
Vanilla-MLE you ’re the only one who knows what ’s going on .
Vanilla-Sample when they are conquered and you surrender they will control all of us .
REINFORCE i ’m afraid i ’m not ready yet .
REGS Monte Carlo i ’m not afraid of your power .

Table 1: Sampled responses from different models. More in Appendix Tables 5 and 6.

sampling are sometimes incoherent, irrelevant or
even ungrammatical.

We thus propose an additional sanity check, in
which we report the accuracy of distinguishing be-
tween machine-generated responses and randomly
sampled responses (machine-vs-random for short).
This resembles the N-choose-1 metric described
in Shao et al. (2017). Higher accuracy indicates
that the generated responses are distinguishable
from randomly sampled human responses, indicat-
ing that the generative model is not fooling the
generator simply by introducing randomness. As
we will show in Sec. 5, using sampling results in
high AdverSuc values but low machine-vs-random
accuracy.

5 Experimental Results

In this section, we detail experimental results on
adversarial success and human evaluation.

Setting ERE
SVM+Unigram 0.232
Concat Neural 0.209

Hierarchical Neural 0.193
SVM+Neural+multil-features 0.152

Table 2: ERE scores obtained by different models.

5.1 Adversarial Evaluation
ERE We first test adversarial evaluation models
with different feature sets and model architectures
for reliability, as measured by evaluator reliability
error (ERE). We explore the following models: (1)
SVM+Unigram: SVM using unigram features.8 A

8Trained using the SVM-Light package (Joachims, 2002).

multi-utterance dialogue (i.e., input messages and
responses) is transformed to a unigram represen-
tation; (2) Concat Neural: a neural classification
model with a softmax function that takes as input
the concatenation of representations of constituent
dialogues sentences; (3) Hierarchical Neural: a
hierarchical encoder with a structure similar to the
discriminator used in the reinforcement; and (4)
SVM+Neural+multi-lex-features: a SVM model
that uses the following features: unigrams, neural
representations of dialogues obtained by the neural
model trained using strategy (3),9 the forward like-
lihood log p(t|s) and backward likelihood p(s|t).

ERE scores obtained by different models are re-
ported in Table 2. As can be seen, the hierarchical
neural evaluator (model 3) is more reliable than
simply concatenating the sentence-level represen-
tations (model 2). Using the combination of neural
features and lexicalized features yields the most
reliable evaluator. For the rest of this section, we
report results obtained by the Hierarchical Neu-
ral setting due to its end-to-end nature, despite its
inferiority to SVM+Neural+multil-features.

Table 3 presents AdverSuc values for different
models, along with machine-vs-random accuracy
described in Section 4.3. Higher values of Adver-
Suc and machine-vs-random are better.

Baselines we consider include standard
SEQ2SEQ models using greedy decoding (MLE-
greedy), beam-search (MLE+BS) and sampling, as
well as the mutual information reranking model of
Li et al. (2016a) with two algorithmic variations:
(1) MMI+p(t|s), in which a large N-best list is first

9The representation before the softmax layer.

2163

Model AdverSuc machine-vs-random
MLE-BS 0.037 0.942

MLE-Greedy 0.049 0.945
MMI+p(t|s) 0.073 0.953
MMI-p(t) 0.090 0.880
Sampling 0.372 0.679

Adver-Reinforce 0.080 0.945
Adver-REGS 0.098 0.952

Table 3: AdverSuc and machine-vs-random scores
achieved by different training/decoding strategies.

generated using a pre-trained SEQ2SEQ model and
then reranked by the backward probability p(s|t)
and (2) MMI−p(t), in which language model
probability is penalized during decoding.

Results are shown in Table 3. What first stands
out is decoding using sampling (as discussed in Sec-
tion 4.3), achieving a significantly higher AdverSuc
number than all the rest models. However, this does
not indicate the superiority of the sampling decod-
ing model, since the machine-vs-random accuracy
is at the same time significantly lower. This means
that sampled responses based on SEQ2SEQ mod-
els are not only hard for an evaluator to distinguish
from real human responses, but also from randomly
sampled responses. A similar, though much less
extreme, effect is observed for MMI−p(t), which
has an AdverSuc value slightly higher than Adver-
Reinforce, but a significantly lower machine-vs-
random score.

By comparing different baselines, we find that
MMI+p(t|s) is better than MLE-greedy, which is in
turn better than MLE+BS. This result is in line with
human-evaluation results from Li et al. (2016a).
The two proposed adversarial algorithms achieve
better performance than the baselines. We expect
this to be the case, since the adversarial algorithms
are trained on an objective function more similar
to the evaluation metric (i.e., adversarial success).
REGS performs slightly better than the vanilla RE-
INFORCE algorithm.

5.2 Human Evaluation

For human evaluation, we follow protocols de-
fined in Li et al. (2016d), employing crowdsourced
judges to evaluate a random sample of 200 items.
We present both an input message and the gener-
ated outputs to 3 judges and ask them to decide
which of the two outputs is better (single-turn gen-
eral quality). Ties are permitted. Identical strings
are assigned the same score. We also present the
judges with multi-turn conversations simulated be-
tween the two agents. Each conversation consists

Setting adver-win adver-lose tie
single-turn 0.62 0.18 0.20
multi-turn 0.72 0.10 0.18

Table 4: The gain from the proposed adversarial
model over the mutual information system based
on pairwise human judgments.

of 3 turns. Results are presented in Table 4. We
observe a significant quality improvement on both
single-turn quality and multi-turn quality from the
proposed adversarial model. It is worth noting that
the reinforcement learning system described in Li
et al. (2016d), which simulates conversations be-
tween two bots and is trained based on manually
designed reward functions, only improves multi-
turn dialogue quality, while the model described
in this paper improves both single-turn and multi-
turn dialogue generation quality. This confirms that
the reward adopted in adversarial training is more
general, natural and effective in training dialogue
systems.

6 Conclusion and Future Work

In this paper, drawing intuitions from the Turing
test, we propose using an adversarial training ap-
proach for response generation. We cast the model
in the framework of reinforcement learning and
train a generator based on the signal from a dis-
criminator to generate response sequences indis-
tinguishable from human-generated dialogues. We
observe clear performance improvements on multi-
ple metrics from the adversarial training strategy.

The adversarial training model should theo-
retically benefit a variety of generation tasks in
NLP. Unfortunately, in preliminary experiments
applying the same training paradigm to machine
translation, we did not observe a clear performance
boost. We conjecture that this is because the
adversarial training strategy is more beneficial to
tasks in which there is a big discrepancy between
the distributions of the generated sequences and
the reference target sequences. In other words, the
adversarial approach is more beneficial on tasks in
which entropy of the targets is high. Exploring this
relationship further is a focus of our future work.

Acknowledgements The authors thank Michel
Galley, Bill Dolan, Chris Brockett, Jianfeng Gao
and other members of the NLP group at Mi-

2164

crosoft Research, as well as Sumit Chopra and
Marc’Aurelio Ranzato from Facebook AI Research
for helpful discussions and comments. Jiwei Li is
supported by a Facebook Fellowship, which we
gratefully acknowledge. This work is also partially
supported by the NSF under award IIS-1514268,
and the DARPA Communicating with Comput-
ers (CwC) program under ARO prime contract no.
W911NF- 15-1-0462, IIS-1464128. Any opinions,
findings, and conclusions or recommendations ex-
pressed in this material are those of the authors and
do not necessarily reflect the views of DARPA, the
NSF, or Facebook.

References
V. M. Aleksandrov, V. I. Sysoyev, and V. V. Shemeneva.

1968. Stochastic optimization. Engineering Cyber-
netics 5:11–16.

Nabiha Asghar, Pasca Poupart, Jiang Xin, and Hang Li.
2016. Online sequence-to-sequence reinforcement
learning for open-domain conversational agents.
arXiv preprint arXiv:1612.03929 .

Dzmitry Bahdanau, Philemon Brakel, Kelvin Xu,
Anirudh Goyal, Ryan Lowe, Joelle Pineau, Aaron
Courville, and Yoshua Bengio. 2017. An actor-critic
algorithm for sequence prediction. ICLR .

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. 2015. Neural machine translation by jointly
learning to align and translate. In Proc. of ICLR.

Samuel R Bowman, Luke Vilnis, Oriol Vinyals, An-
drew M Dai, Rafal Jozefowicz, and Samy Ben-
gio. 2016. Generating sentences from a continuous
space. CoNLL .

Xi Chen, Yan Duan, Rein Houthooft, John Schulman,
Ilya Sutskever, and Pieter Abbeel. 2016a. Info-
gan: Interpretable representation learning by infor-
mation maximizing generative adversarial nets. In
Advances In Neural Information Processing Systems.
pages 2172–2180.

Xilun Chen, Ben Athiwaratkun, Yu Sun, Kilian Wein-
berger, and Claire Cardie. 2016b. Adversarial deep
averaging networks for cross-lingual sentiment clas-
sification. arXiv preprint arXiv:1606.01614 .

Emily L Denton, Soumith Chintala, Rob Fergus, et al.
2015. Deep generative image models using a?
laplacian pyramid of adversarial networks. In Ad-
vances in neural information processing systems.
pages 1486–1494.

Peter W Glynn. 1990. Likelihood ratio gradient estima-
tion for stochastic systems. Communications of the
ACM 33(10):75–84.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza,
Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron
Courville, and Yoshua Bengio. 2014. Generative ad-
versarial nets. In Advances in Neural Information
Processing Systems. pages 2672–2680.

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long
short-term memory. Neural computation 9(8):1735–
1780.

Thorsten Joachims. 2002. Learning to classify text us-
ing support vector machines: Methods, theory and
algorithms. Kluwer Academic Publishers.

Anjuli Kannan and Oriol Vinyals. 2016. Adversarial
evaluation of dialogue models. In NIPS 2016 Work-
shop on Adversarial Training.

Alex Lamb, Anirudh Goyal, Ying Zhang, Saizheng
Zhang, Aaron Courville, and Yoshua Bengio. 2016.
Professor forcing: A new algorithm for training re-
current networks. In Advances In Neural Informa-
tion Processing Systems. pages 4601–4609.

Jiwei Li, Michel Galley, Chris Brockett, Jianfeng Gao,
and Bill Dolan. 2016a. A diversity-promoting ob-
jective function for neural conversation models. In
Proc. of NAACL-HLT .

Jiwei Li, Michel Galley, Chris Brockett, Georgios Sp-
ithourakis, Jianfeng Gao, and Bill Dolan. 2016b. A
persona-based neural conversation model. In Pro-
ceedings of the 54th Annual Meeting of the Asso-
ciation for Computational Linguistics (Volume 1:
Long Papers). Berlin, Germany, pages 994–1003.
http://www.aclweb.org/anthology/P16-1094.

Jiwei Li, Minh-Thang Luong, and Dan Jurafsky. 2015.
A hierarchical neural autoencoder for paragraphs
and documents. ACL .

Jiwei Li, Will Monroe, and Dan Jurafsky. 2016c. A
simple, fast diverse decoding algorithm for neural
generation. arXiv preprint arXiv:1611.08562 .

Jiwei Li, Will Monroe, Alan Ritter, and Dan Jurafsky.
2016d. Deep reinforcement learning for dialogue
generation. EMNLP .

Chia-Wei Liu, Ryan Lowe, Iulian V Serban, Michael
Noseworthy, Laurent Charlin, and Joelle Pineau.
2016. How NOT to evaluate your dialogue system:
An empirical study of unsupervised evaluation met-
rics for dialogue response generation. EMNLP .

Ryan Lowe, Michael Noseworthy, Iulian Serban, Nico-
las Angelard-Gontier, Yoshua Bengio, and Joelle
Pineau. 2017. Towards an automatic turing test:
Learning to evaluate dialogue responses. ACL .

Ryan Lowe, Iulian V Serban, Mike Noseworthy, Lau-
rent Charlin, and Joelle Pineau. 2016. On the evalu-
ation of dialogue systems with next utterance classi-
fication. SIGDIAL .

2165

Yi Luan, Yangfeng Ji, and Mari Ostendorf. 2016.
LSTM based conversation models. arXiv preprint
arXiv:1603.09457 .

Minh-Thang Luong, Hieu Pham, and Christopher D
Manning. 2015. Effective approaches to attention-
based neural machine translation. ACL .

Alec Radford, Luke Metz, and Soumith Chintala. 2015.
Unsupervised representation learning with deep con-
volutional generative adversarial networks. arXiv
preprint arXiv:1511.06434 .

Marc’Aurelio Ranzato, Sumit Chopra, Michael Auli,
and Wojciech Zaremba. 2016. Sequence level train-
ing with recurrent neural networks. ICLR .

Alan Ritter, Colin Cherry, and William B Dolan. 2011.
Data-driven response generation in social media. In
Proceedings of EMNLP 2011. pages 583–593.

Tim Salimans, Ian Goodfellow, Wojciech Zaremba,
Vicki Cheung, Alec Radford, and Xi Chen. 2016.
Improved techniques for training gans. In Advances
in Neural Information Processing Systems. pages
2226–2234.

Iulian V Serban, Alessandro Sordoni, Yoshua Bengio,
Aaron Courville, and Joelle Pineau. 2016a. Build-
ing end-to-end dialogue systems using generative hi-
erarchical neural network models. In Proceedings of
AAAI.

Iulian V Serban, Alessandro Sordoni, Yoshua Bengio,
Aaron Courville, and Joelle Pineau. 2016b. Build-
ing end-to-end dialogue systems using generative hi-
erarchical neural network models. In Proceedings of
the 30th AAAI Conference on Artificial Intelligence
(AAAI-16).

Iulian Vlad Serban, Tim Klinger, Gerald Tesauro,
Kartik Talamadupula, Bowen Zhou, Yoshua Ben-
gio, and Aaron Courville. 2016c. Multiresolu-
tion recurrent neural networks: An application
to dialogue response generation. arXiv preprint
arXiv:1606.00776 .

Iulian Vlad Serban, Ryan Lowe, Laurent Charlin, and
Joelle Pineau. 2016d. Generative deep neural net-
works for dialogue: A short review .

Iulian Vlad Serban, Alessandro Sordoni, Ryan Lowe,
Laurent Charlin, Joelle Pineau, Aaron Courville,
and Yoshua Bengio. 2017. A hierarchical latent
variable encoder-decoder model for generating dia-
logues. AAAI .

Lifeng Shang, Zhengdong Lu, and Hang Li. 2015. Neu-
ral responding machine for short-text conversation.
In Proceedings of ACL-IJCNLP. pages 1577–1586.

Louis Shao, Stephan Gouws, Denny Britz, Anna
Goldie, Brian Strope, and Ray Kurzweil. 2017. Gen-
erating long and diverse responses with neural con-
versational models. ICLR .

Shiqi Shen, Yong Cheng, Zhongjun He, Wei He, Hua
Wu, Maosong Sun, and Yang Liu. 2016. Minimum
risk training for neural machine translation. ACL .

David Silver, Aja Huang, Chris J Maddison, Arthur
Guez, Laurent Sifre, George Van Den Driessche, Ju-
lian Schrittwieser, Ioannis Antonoglou, Veda Pan-
neershelvam, Marc Lanctot, et al. 2016. Mastering
the game of Go with deep neural networks and tree
search. Nature 529(7587):484–489.

Alessandro Sordoni, Michel Galley, Michael Auli,
Chris Brockett, Yangfeng Ji, Meg Mitchell, Jian-
Yun Nie, Jianfeng Gao, and Bill Dolan. 2015. A
neural network approach to context-sensitive gener-
ation of conversational responses. In Proceedings of
NAACL-HLT .

Pei-Hao Su, Milica Gasic, Nikola Mrksic, Lina Rojas-
Barahona, Stefan Ultes, David Vandyke, Tsung-
Hsien Wen, and Steve Young. 2016. Continuously
learning neural dialogue management. arxiv .

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. 2014.
Sequence to sequence learning with neural networks.
In Advances in neural information processing sys-
tems. pages 3104–3112.

Alan M Turing. 1950. Computing machinery and intel-
ligence. Mind 59(236):433–460.

Oriol Vinyals and Quoc Le. 2015. A neural conversa-
tional model. In Proceedings of ICML Deep Learn-
ing Workshop.

Tsung-Hsien Wen, Milica Gasic, Nikola Mrksic,
Lina M Rojas-Barahona, Pei-Hao Su, Stefan Ultes,
David Vandyke, and Steve Young. 2016. A network-
based end-to-end trainable task-oriented dialogue
system. arXiv preprint arXiv:1604.04562 .

Ronald J Williams. 1992. Simple statistical gradient-
following algorithms for connectionist reinforce-
ment learning. Machine learning 8(3-4):229–256.

Sam Wiseman and Alexander M Rush. 2016.
Sequence-to-sequence learning as beam-search
optimization. ACL .

Zhen Xu, Bingquan Liu, Baoxun Wang, Chengjie
Sun, and Xiaolong Wang. 2016. Incorporating
loose-structured knowledge into LSTM with recall
gate for conversation modeling. arXiv preprint
arXiv:1605.05110 .

Kaisheng Yao, Geoffrey Zweig, and Baolin Peng. 2015.
Attention with intention for a neural network conver-
sation model. In NIPS workshop on Machine Learn-
ing for Spoken Language Understanding and Inter-
action.

Lantao Yu, Weinan Zhang, Jun Wang, and Yong
Yu. 2016a. Seqgan: sequence generative adver-
sarial nets with policy gradient. arXiv preprint
arXiv:1609.05473 .

2166

Zhou Yu, Ziyu Xu, Alan W Black, and Alex I Rud-
nicky. 2016b. Strategy and policy learning for non-
task-oriented conversational systems. In 17th An-
nual Meeting of the Special Interest Group on Dis-
course and Dialogue. page 404.

Yuan Zhang, Regina Barzilay, and Tommi Jaakkola.
2017. Aspect-augmented adversarial net-
works for domain adaptation. arXiv preprint
arXiv:1701.00188 .

2167

Input maybe his eyes were too big for his stomach .
Vanilla-MLE he ’s got a big mouth .
Vanilla-Sample i ’m sure he ’s unhappy with the fact .
Reinforce he ’s a little bit of a pain .
MC i don ’t think so .
Input they didn ’t have much success with this problem commander .
Vanilla-MLE they ’re not the only ones who have been in the system .
Vanilla-Sample it ’s the new priority only .
Reinforce they ’re not the only ones who can help us .
MC can we find someone else ?
Input and he carried them all the time wherever he went .
Vanilla-MLE i don ’t know who he is .
Vanilla-Sample the church ... suffered the winds of 900 meters with horse aid .
Reinforce he was a good man .
MC he was a very good man .
Input somebody probably flushed their pet snake down the toilet .
Vanilla-MLE i ’m sure the dog will be here soon .
Vanilla-Sample i could at least think .
Reinforce i don ’t think so .
MC i don ’t think so .
Input excuse me but how did we pay for these suits ?
Vanilla-MLE i ’m not a beggar .
Vanilla-Sample is this the money eugene ?
Reinforce i don ’t know what to do .
MC how much money you owe me ?
Input ... while the beautiful and happy world was madly destroyed ;
Vanilla-MLE i was born in the world of the world
Vanilla-Sample as in childhood i took you to one tenth of a postcard
Reinforce and the world was full of joy .
MC and the world was full of joy .
Input i was kinda hoping that you were my dad .
Vanilla-MLE i ’m just a little bit of a little bit of a little bit of a little bit of a
Vanilla-Sample shiny gold gold and silver in the mountains .
Reinforce i ’m not gonna be a baby .
MC i ’m not going to be a father .
Input the man who does that is not afraid to die .
Vanilla-MLE he ’s not afraid of the dark .
Vanilla-Sample even the program is the only truth
Reinforce he ’s also not afraid of me .
MC he ’s such a brave man !
Input do you have any idea what caused the explosion ?
Vanilla-MLE i think it ’s the same thing .
Vanilla-Sample i ’m still very nervous .
Reinforce maybe it ’s just a coincidence .
MC i don ’t know if it ’s a coincidence .
Input don ’t bother the citizens in hong kong island anymore
Vanilla-MLE i ’ll be back in a few days
Vanilla-Sample you wiii be transferred to the target court
Reinforce i ’m not sure if you can handle it without bothering them .
MC i ’m not going to be a nuisance
Input you know you ought to find yourself a girl .
Vanilla-MLE you know what i mean ?
Vanilla-Sample it ’s full of crime ...
Reinforce i don ’t know what you ’re talking about .
MC i don ’t want to be a girl .
Input i got you the big screen tv deluxe UNknown machine
Vanilla-MLE i ’m gonna be a little late for the movie .
Vanilla-Sample you mean you ’re living ?
Reinforce i ’m gonna get you a new one .
MC i ’m gonna get you a new tv set .
Input we won ’t give her the chance to surprise us .
Vanilla-MLE she ’s not going to be a party member .
Vanilla-Sample the timing ’s good and bad .
Reinforce we ’ll have to get her back .
MC i don ’t think we have to worry about her .
Input does it live in this matter we call dna ?
Vanilla-MLE i don ’t think so .
Vanilla-Sample and it requires time to be wrong and no one believes it .
Reinforce it ’s a genetic disorder .
MC i don ’t think so .

Table 5: Appendix: Responses sampled from different models.

2168

Input i ’ll have to drive home .
Vanilla-MLE i ’ll be back in a minute .
Vanilla-Sample let ’s go for some fun .
Reinforce i ’ll drive you home .
MC i don ’t have a car .
Input i had to work late and then i went for a walk .
Vanilla-MLE i was in the middle of the road .
Vanilla-Sample my body was just pounding .
Reinforce i was just trying to help you .
MC i was just trying to get a little sleep .
Input lots of cream lots of sugar .
Vanilla-MLE i ’m gonna be in the kitchen .
Vanilla-Sample was this gay or red ?
Reinforce i don ’t want to be a vegetable .
MC i ’m not a very good cook .
Input so they just let him go ?
Vanilla-MLE he ’s not gonna let them go through the motions .
Vanilla-Sample they asked him whether we could go see ernesto ?
Reinforce i don ’t know what to do .
MC he ’s not going to be here any longer .
Input you must not bomb this town .
Vanilla-MLE you have to go back to the city .
Vanilla-Sample the one is a multiple choice .
Reinforce I think I have to .
MC I think I have to .
Input communism recently failed in eastern europe .
Vanilla-MLE the war is not over .
Vanilla-Sample there are people who hope that in tokyo they won ’t risk losing

their departing .
Reinforce and the people who are not the same .
MC the war is still going on .
Input you should stop in more often .
Vanilla-MLE I don ’t think so .
Vanilla-Sample is it possible as old as you ?
Reinforce i ’m not going to be a burden on you .
MC i don ’t want to be a burden .
Input he couldn ’t have heard us .
Vanilla-MLE he was in the middle of the night .
Vanilla-Sample he should have been somewhere out here .
Reinforce he ’s not a good guy .
MC he ’s got a lot of nerve.
Input that ’s our wake up call .
Vanilla-MLE we ’re gonna be late for the meeting .
Vanilla-Sample c ’mon c ’mon let ’s get outta here .
Reinforce i ’ll be right back .
MC we ’re gonna have to get to the station .
Input i had ’em when i started .
Vanilla-MLE i ’m gonna get ’em .
Vanilla-Sample those weak rotten guys had me in a rush on a broken swoop .
Reinforce i don ’t know what to do .
MC i was just a little bit nervous .
Input oatmeal delicious start into a new day
Vanilla-MLE i ’ll be right back
Vanilla-Sample sure if you don ’t put it into the water
Reinforce i ’m gonna be a little busy with the dishes .
MC i ’m gonna make you a little dinner .

Table 6: Appendix: More responses sampled from different models.

2169

