
Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing, pages 1923–1933
Copenhagen, Denmark, September 7–11, 2017. c©2017 Association for Computational Linguistics

A Joint Many-Task Model:
Growing a Neural Network for Multiple NLP Tasks

Kazuma Hashimoto∗, Caiming Xiong†, Yoshimasa Tsuruoka, and Richard Socher
The University of Tokyo

{hassy, tsuruoka}@logos.t.u-tokyo.ac.jp
Salesforce Research

{cxiong, rsocher}@salesforce.com

Abstract

Transfer and multi-task learning have
traditionally focused on either a single
source-target pair or very few, similar
tasks. Ideally, the linguistic levels of mor-
phology, syntax and semantics would ben-
efit each other by being trained in a sin-
gle model. We introduce a joint many-task
model together with a strategy for succes-
sively growing its depth to solve increas-
ingly complex tasks. Higher layers in-
clude shortcut connections to lower-level
task predictions to reflect linguistic hierar-
chies. We use a simple regularization term
to allow for optimizing all model weights
to improve one task’s loss without exhibit-
ing catastrophic interference of the other
tasks. Our single end-to-end model ob-
tains state-of-the-art or competitive results
on five different tasks from tagging, pars-
ing, relatedness, and entailment tasks.

1 Introduction

The potential for leveraging multiple levels of
representation has been demonstrated in various
ways in the field of Natural Language Processing
(NLP). For example, Part-Of-Speech (POS) tags
are used for syntactic parsers. The parsers are used
to improve higher-level tasks, such as natural lan-
guage inference (Chen et al., 2016) and machine
translation (Eriguchi et al., 2016). These systems
are often pipelines and not trained end-to-end.

Deep NLP models have yet shown benefits from
predicting many increasingly complex tasks each
at a successively deeper layer. Existing models
often ignore linguistic hierarchies by predicting

∗Work was done while the first author was an intern at
Salesforce Research.

†Corresponding author.

CHUNK

POS

DEP

Relatedness 
encoder

Relatedness

Entailment 
encoder

Entailment

word representation

Sentence1

CHUNK

POS

DEP

Relatedness 
encoder

Entailment 
encoder

word representation

Sentence2

se
m

an
tic

le
ve

l
sy

nt
ac

tic
le

ve
l

 w
or

d 
le

ve
l

Figure 1: Overview of the joint many-task model
predicting different linguistic outputs at succes-
sively deeper layers.

different tasks either entirely separately or at the
same depth (Collobert et al., 2011).

We introduce a Joint Many-Task (JMT) model,
outlined in Figure 1, which predicts increasingly
complex NLP tasks at successively deeper lay-
ers. Unlike traditional pipeline systems, our sin-
gle JMT model can be trained end-to-end for POS
tagging, chunking, dependency parsing, semantic
relatedness, and textual entailment, by consider-
ing linguistic hierarchies. We propose an adaptive
training and regularization strategy to grow this
model in its depth. With the help of this strat-
egy we avoid catastrophic interference between
the tasks. Our model is motivated by Søgaard and
Goldberg (2016) who showed that predicting two
different tasks is more accurate when performed in
different layers than in the same layer (Collobert
et al., 2011). Experimental results show that our
single model achieves competitive results for all
of the five different tasks, demonstrating that us-

1923



ing linguistic hierarchies is more important than
handling different tasks in the same layer.

2 The Joint Many-Task Model

This section describes the inference procedure of
our model, beginning at the lowest level and work-
ing our way to higher layers and more complex
tasks; our model handles the five different tasks in
the order of POS tagging, chunking, dependency
parsing, semantic relatedness, and textual entail-
ment, by considering linguistic hierarchies. The
POS tags are used for chunking, and the chunking
tags are used for dependency parsing (Attardi and
DellOrletta, 2008). Tai et al. (2015) have shown
that dependencies improve the relatedness task.
The relatedness and entailment tasks are closely
related to each other. If the semantic relatedness
between two sentences is very low, they are un-
likely to entail each other. Based on this obser-
vation, we make use of the information from the
relatedness task for improving the entailment task.

2.1 Word Representations

For each word wt in the input sentence s of length
L, we use two types of embeddings.
Word embeddings: We use Skip-gram (Mikolov
et al., 2013) to train word embeddings.
Character embeddings: Character n-gram em-
beddings are trained by the same Skip-gram ob-
jective. We construct the character n-gram vocab-
ulary in the training data and assign an embed-
ding for each entry. The final character embed-
ding is the average of the unique character n-gram
embeddings of wt. For example, the character n-
grams (n = 1, 2, 3) of the word “Cat” are {C, a,
t, #B#C, Ca, at, t#E#, #B#Ca, Cat, at#E#}, where
“#B#” and “#E#” represent the beginning and the
end of each word, respectively. Using the char-
acter embeddings efficiently provides morpholog-
ical features. Each word is subsequently repre-
sented as xt, the concatenation of its correspond-
ing word and character embeddings shared across
the tasks.1

2.2 Word-Level Task: POS Tagging

The first layer of the model is a bi-directional
LSTM (Graves and Schmidhuber, 2005; Hochre-
iter and Schmidhuber, 1997) whose hidden states

1Bojanowski et al. (2017) previously proposed to train the
character n-gram embeddings by the Skip-gram objective.

are used to predict POS tags. We use the follow-
ing Long Short-Term Memory (LSTM) units for
the forward direction:

it = σ (Wigt + bi) , ft = σ (Wfgt + bf ) ,
ut = tanh (Wugt + bu) ,
ct = it � ut + ft � ct−1, (1)

ot = σ (Wogt + bo) , ht = ot � tanh (ct) ,

where we define the input gt as gt = [
−→
h t−1;xt],

i.e. the concatenation of the previous hidden state
and the word representation of wt. The backward
pass is expanded in the same way, but a different
set of weights are used.

For predicting the POS tag of wt, we use the
concatenation of the forward and backward states
in a one-layer bi-LSTM layer corresponding to the
t-th word: ht = [

−→
h t;
←−
h t]. Then each ht (1 ≤ t ≤

L) is fed into a standard softmax classifier with a
single ReLU layer which outputs the probability
vector y(1) for each of the POS tags.

2.3 Word-Level Task: Chunking
Chunking is also a word-level classification task
which assigns a chunking tag (B-NP, I-VP, etc.)
for each word. The tag specifies the region of ma-
jor phrases (e.g., noun phrases) in the sentence.

Chunking is performed in the second bi-LSTM
layer on top of the POS layer. When stacking
the bi-LSTM layers, we use Eq. (1) with input
g
(2)
t = [h(2)

t−1;h
(1)
t ;xt; y

(pos)
t ], where h(1)

t is the
hidden state of the first (POS) layer. We define
the weighted label embedding y(pos)

t as follows:

y
(pos)
t =

C∑
j=1

p(y(1)
t = j|h(1)

t )`(j), (2)

where C is the number of the POS tags, p(y(1)
t =

j|h(1)
t ) is the probability value that the j-th POS

tag is assigned to wt, and `(j) is the correspond-
ing label embedding. The probability values are
predicted by the POS layer, and thus no gold POS
tags are needed. This output embedding is simi-
lar to the K-best POS tag feature which has been
shown to be effective in syntactic tasks (Andor
et al., 2016; Alberti et al., 2015). For predict-
ing the chunking tags, we employ the same strat-
egy as POS tagging by using the concatenated bi-
directional hidden states h(2)

t = [
−→
h

(2)
t ;
←−
h

(2)
t ] in

the chunking layer. We also use a single ReLU
hidden layer before the softmax classifier.

1924



2.4 Syntactic Task: Dependency Parsing
Dependency parsing identifies syntactic relations
(such as an adjective modifying a noun) between
word pairs in a sentence. We use the third bi-
LSTM layer to classify relations between all pairs
of words. The input vector for the LSTM in-
cludes hidden states, word representations, and
the label embeddings for the two previous tasks:
g
(3)
t = [h(3)

t−1;h
(2)
t ;xt; (y

(pos)
t +y

(chk)
t )], where we

computed the chunking vector in a similar fashion
as the POS vector in Eq. (2).

We predict the parent node (head) for each
word. Then a dependency label is predicted for
each child-parent pair. This approach is related
to Dozat and Manning (2017) and Zhang et al.
(2017), where the main difference is that our
model works on a multi-task framework. To pre-
dict the parent node of wt, we define a matching
function between wt and the candidates of the par-
ent node as m (t, j) = h

(3)
t · (Wdh

(3)
j ), where Wd

is a parameter matrix. For the root, we define
h

(3)
L+1 = r as a parameterized vector. To com-

pute the probability that wj (or the root node) is
the parent of wt, the scores are normalized:

p(j|h(3)
t ) =

exp (m (t, j))∑L+1
k=1,k 6=t exp (m (t, k))

. (3)

The dependency labels are predicted using
[h(3)
t ;h(3)

j ] as input to a softmax classifier with
a single ReLU layer. We greedily select the par-
ent node and the dependency label for each word.
When the parsing result is not a well-formed tree,
we apply the first-order Eisner’s algorithm (Eisner,
1996) to obtain a well-formed tree from it.

2.5 Semantic Task: Semantic relatedness
The next two tasks model the semantic relation-
ships between two input sentences. The first task
measures the semantic relatedness between two
sentences. The output is a real-valued relatedness
score for the input sentence pair. The second task
is textual entailment, which requires one to deter-
mine whether a premise sentence entails a hypoth-
esis sentence. There are typically three classes:
entailment, contradiction, and neutral. We use the
fourth and fifth bi-LSTM layer for the relatedness
and entailment task, respectively.

Now it is required to obtain the sentence-level
representation rather than the word-level represen-
tation h(4)

t used in the first three tasks. We com-
pute the sentence-level representation h(4)

s as the

element-wise maximum values across all of the
word-level representations in the fourth layer:

h
(4)
s = max

(
h

(4)
1 , h

(4)
2 , . . . , h

(4)
L

)
. (4)

This max-pooling technique has proven effective
in text classification tasks (Lai et al., 2015).

To model the semantic relatedness between s
and s′, we follow Tai et al. (2015). The feature
vector for representing the semantic relatedness is
computed as follows:

d1(s, s′) =
[∣∣∣h(4)

s − h(4)
s′

∣∣∣ ;h(4)
s � h(4)

s′

]
, (5)

where
∣∣∣h(4)

s − h(4)
s′

∣∣∣ is the absolute values of the

element-wise subtraction, and h
(4)
s � h

(4)
s′ is the

element-wise multiplication. Then d1(s, s′) is fed
into a softmax classifier with a single Maxout
hidden layer (Goodfellow et al., 2013) to output
a relatedness score (from 1 to 5 in our case).

2.6 Semantic Task: Textual entailment

For entailment classification, we also use the max-
pooling technique as in the semantic relatedness
task. To classify the premise-hypothesis pair
(s, s′) into one of the three classes, we com-
pute the feature vector d2(s, s′) as in Eq. (5) ex-
cept that we do not use the absolute values of
the element-wise subtraction, because we need
to identify which is the premise (or hypothesis).
Then d2(s, s′) is fed into a softmax classifier.

To use the output from the relatedness layer di-
rectly, we use the label embeddings for the related-
ness task. More concretely, we compute the class
label embeddings for the semantic relatedness task
similar to Eq. (2). The final feature vectors that are
concatenated and fed into the entailment classifier
are the weighted relatedness label embedding and
the feature vector d2(s, s′). We use three Maxout
hidden layers before the classifier.

3 Training the JMT Model

The model is trained jointly over all datasets. Dur-
ing each epoch, the optimization iterates over each
full training dataset in the same order as the corre-
sponding tasks described in the modeling section.

3.1 Pre-Training Word Representations

We pre-train word embeddings using the Skip-
gram model with negative sampling (Mikolov

1925



et al., 2013). We also pre-train the character n-
gram embeddings using Skip-gram.2 The only dif-
ference is that each input word embedding is re-
placed with its corresponding average character n-
gram embedding described in Section 2.1. These
embeddings are fine-tuned during the model train-
ing. We denote the embedding parameters as θe.

3.2 Training the POS Layer

Let θPOS = (WPOS, bPOS, θe) denote the set of
model parameters associated with the POS layer,
where WPOS is the set of the weight matrices in
the first bi-LSTM and the classifier, and bPOS is
the set of the bias vectors. The objective function
to optimize θPOS is defined as follows:

J1(θPOS) =−
∑
s

∑
t

log p(y(1)
t = α|h(1)

t )

+ λ‖WPOS‖2 + δ‖θe − θ′e‖2,
(6)

where p(y(1)
t = αwt |h(1)

t ) is the probability value
that the correct label α is assigned towt in the sen-
tence s, λ‖WPOS‖2 is the L2-norm regularization
term, and λ is a hyperparameter.

We call the second regularization term δ‖θe −
θ′e‖2 a successive regularization term. The suc-
cessive regularization is based on the idea that we
do not want the model to forget the information
learned for the other tasks. In the case of POS
tagging, the regularization is applied to θe, and θ′e
is the embedding parameter after training the final
task in the top-most layer at the previous training
epoch. δ is a hyperparameter.

3.3 Training the Chunking Layer

The objective function is defined as follows:

J2(θchk) = −
∑
s

∑
t

log p(y(2)
t = α|h(2)

t )

+ λ‖Wchk‖2 + δ‖θPOS − θ′POS‖2,
(7)

which is similar to that of POS tagging, and θchk is
(Wchk, bchk, EPOS, θe), where Wchk and bchk are
the weight and bias parameters including those in
θPOS, and EPOS is the set of the POS label em-
beddings. θ′POS is the one after training the POS
layer at the current training epoch.

2The training code and the pre-trained embeddings
are available at https://github.com/hassyGo/
charNgram2vec.

3.4 Training the Dependency Layer
The objective function is defined as follows:

J3(θdep) = −
∑
s

∑
t

log p(α|h(3)
t )p(β|h(3)

t , h(3)
α )

+ λ(‖Wdep‖2 + ‖Wd‖2) + δ‖θchk − θ′chk‖2,
(8)

where p(α|h(3)
t ) is the probability value as-

signed to the correct parent node α for wt,
and p(β|h(3)

t , h
(3)
α ) is the probability value as-

signed to the correct dependency label β for
the child-parent pair (wt, α). θdep is defined as
(Wdep, bdep,Wd, r, EPOS, Echk, θe), where Wdep

and bdep are the weight and bias parameters in-
cluding those in θchk, and Echk is the set of the
chunking label embeddings.

3.5 Training the Relatedness Layer
Following Tai et al. (2015), the objective function
is defined as follows:

J4(θrel) =
∑
(s,s′)

KL
(
p̂(s, s′)

∥∥∥p(h(4)
s , h

(4)
s′ )
)

+ λ‖Wrel‖2 + δ‖θdep − θ′dep‖2,
(9)

where p̂(s, s′) is the gold distribution over the de-
fined relatedness scores, p(h(4)

s , h
(4)
s′ ) is the pre-

dicted distribution given the the sentence repre-
sentations, and KL

(
p̂(s, s′)

∥∥∥p(h(4)
s , h

(4)
s′ )
)

is the
KL-divergence between the two distributions. θrel
is defined as (Wrel, brel, EPOS, Echk, θe).

3.6 Training the Entailment Layer
The objective function is defined as follows:

J5(θent) =−
∑
(s,s′)

log p(y(5)
(s,s′) = α|h(5)

s , h
(5)
s′ )

+ λ‖Went‖2 + δ‖θrel − θ′rel‖2,
(10)

where p(y(5)
(s,s′) = α|h(5)

s , h
(5)
s′ ) is the probabil-

ity value that the correct label α is assigned to
the premise-hypothesis pair (s, s′). θent is defined
as (Went, bent, EPOS, Echk, Erel, θe), whereErel is
the set of the relatedness label embeddings.

4 Related Work

Many deep learning approaches have proven to be
effective in a variety of NLP tasks and are becom-
ing more and more complex. They are typically

1926



designed to handle single tasks, or some of them
are designed as general-purpose models (Kumar
et al., 2016; Sutskever et al., 2014) but applied to
different tasks independently.

For handling multiple NLP tasks, multi-task
learning models with deep neural networks have
been proposed (Collobert et al., 2011; Luong et al.,
2016), and more recently Søgaard and Goldberg
(2016) have suggested that using different layers
for different tasks is more effective than using the
same layer in jointly learning closely-related tasks,
such as POS tagging and chunking. However, the
number of tasks was limited or they have very sim-
ilar task settings like word-level tagging, and it
was not clear how lower-level tasks could be also
improved by combining higher-level tasks.

More related to our work, Godwin et al. (2016)
also followed Søgaard and Goldberg (2016) to
jointly learn POS tagging, chunking, and lan-
guage modeling, and Zhang and Weiss (2016)
have shown that it is effective to jointly learn POS
tagging and dependency parsing by sharing inter-
nal representations. In the field of relation extrac-
tion, Miwa and Bansal (2016) proposed a joint
learning model for entity detection and relation ex-
traction. All of them suggest the importance of
multi-task learning, and we investigate the poten-
tial of handling different types of NLP tasks rather
than closely-related ones in a single hierarchical
deep model.

In the field of computer vision, some trans-
fer and multi-task learning approaches have also
been proposed (Li and Hoiem, 2016; Misra et al.,
2016). For example, Misra et al. (2016) proposed
a multi-task learning model to handle different
tasks. However, they assume that each data sam-
ple has annotations for the different tasks, and do
not explicitly consider task hierarchies.

Recently, Rusu et al. (2016) have proposed a
progressive neural network model to handle mul-
tiple reinforcement learning tasks, such as Atari
games. Like our JMT model, their model is also
successively trained according to different tasks
using different layers called columns in their pa-
per. In their model, once the first task is com-
pleted, the model parameters for the first task are
fixed, and then the second task is handled with new
model parameters. Therefore, accuracy of the pre-
viously trained tasks is never improved. In NLP
tasks, multi-task learning has the potential to im-
prove not only higher-level tasks, but also lower-

level tasks. Rather than fixing the pre-trained
model parameters, our successive regularization
allows our model to continuously train the lower-
level tasks without significant accuracy drops.

5 Experimental Settings

5.1 Datasets

POS tagging: To train the POS tagging layer, we
used the Wall Street Journal (WSJ) portion of Penn
Treebank, and followed the standard split for the
training (Section 0-18), development (Section 19-
21), and test (Section 22-24) sets. The evaluation
metric is the word-level accuracy.
Chunking: For chunking, we also used the WSJ
corpus, and followed the standard split for the
training (Section 15-18) and test (Section 20) sets
as in the CoNLL 2000 shared task. We used Sec-
tion 19 as the development set and employed the
IOBES tagging scheme. The evaluation metric is
the F1 score defined in the shared task.
Dependency parsing: We also used the WSJ cor-
pus for dependency parsing, and followed the stan-
dard split for the training (Section 2-21), devel-
opment (Section 22), and test (Section 23) sets.
We obtained Stanford style dependencies using the
version 3.3.0 of the Stanford converter. The evalu-
ation metrics are the Unlabeled Attachment Score
(UAS) and the Labeled Attachment Score (LAS),
and punctuations are excluded for the evaluation.
Semantic relatedness: For the semantic related-
ness task, we used the SICK dataset (Marelli et al.,
2014), and followed the standard split for the train-
ing, development, and test sets. The evaluation
metric is the Mean Squared Error (MSE) between
the gold and predicted scores.
Textual entailment: For textual entailment, we
also used the SICK dataset and exactly the same
data split as the semantic relatedness dataset. The
evaluation metric is the accuracy.

5.2 Training Details

We set the dimensionality of the embeddings and
the hidden states in the bi-LSTMs to 100. At each
training epoch, we trained our model in the or-
der of POS tagging, chunking, dependency pars-
ing, semantic relatedness, and textual entailment.
We used mini-batch stochastic gradient decent and
empirically found it effective to use a gradient
clipping method with growing clipping values for
the different tasks; concretely, we employed the
simple function: min(3.0, depth), where depth is

1927



the number of bi-LSTM layers involved in each
task, and 3.0 is the maximum value. We applied
our successive regularization to our model, along
with L2-norm regularization and dropout (Srivas-
tava et al., 2014). More details are summarized in
the supplemental material.

6 Results and Discussion

Table 1 shows our results on the test sets of the
five tasks.3 The column “Single” shows the re-
sults of handling each task separately using single-
layer bi-LSTMs, and the column “JMTall” shows
the results of our JMT model. The single task set-
tings only use the annotations of their own tasks.
For example, when handling dependency parsing
as a single task, the POS and chunking tags are not
used. We can see that all results of the five tasks
are improved in our JMT model, which shows that
our JMT model can handle the five different tasks
in a single model. Our JMT model allows us to
access arbitrary information learned from the dif-
ferent tasks. If we want to use the model just as a
POS tagger, we can use only first bi-LSTM layer.

Table 1 also shows the results of five subsets
of the different tasks. For example, in the case
of “JMTABC”, only the first three layers of the
bi-LSTMs are used to handle the three tasks. In
the case of “JMTDE”, only the top two layers are
used as a two-layer bi-LSTM by omitting all in-
formation from the first three layers. The results
of the closely-related tasks (“AB”, “ABC”, and
“DE”) show that our JMT model improves both
of the high-level and low-level tasks. The results
of “JMTCD” and “JMTCE” show that the parsing
task can be improved by the semantic tasks.

It should be noted that in our analysis on the
greedy parsing results of the “JMTABC” setting,
we have found that more than 95% are well-
formed dependency trees on the development set.
In the 1,700 sentences of the development data, 11
results have multiple root notes, 11 results have
no root nodes, and 61 results have cycles. These
83 parsing results are converted into well-formed
trees by Eisner’s algorithm, and the accuracy does
not significantly change (UAS: 94.52%→94.53%,
LAS: 92.61%→92.62%).

3In chunking evaluation, we only show the results of “Sin-
gle” and “JMTAB” because the sentences for chunking eval-
uation overlap the training data for dependency parsing.

6.1 Comparison with Published Results

POS tagging Table 2 shows the results of POS
tagging, and our JMT model achieves the score
close to the state-of-the-art results. The best result
to date has been achieved by Ling et al. (2015),
which uses character-based LSTMs. Incorporat-
ing the character-based encoders into our JMT
model would be an interesting direction, but we
have shown that the simple pre-trained character
n-gram embeddings lead to the promising result.

Chunking Table 3 shows the results of chunk-
ing, and our JMT model achieves the state-of-the-
art result. Søgaard and Goldberg (2016) proposed
to jointly learn POS tagging and chunking in dif-
ferent layers, but they only showed improvement
for chunking. By contrast, our results show that
the low-level tasks are also improved.

Dependency parsing Table 4 shows the results
of dependency parsing by using only the WSJ cor-
pus in terms of the dependency annotations.4 It is
notable that our simple greedy dependency parser
outperforms the model in Andor et al. (2016)
which is based on beam search with global infor-
mation. The result suggests that the bi-LSTMs ef-
ficiently capture global information necessary for
dependency parsing. Moreover, our single task
result already achieves high accuracy without the
POS and chunking information. The best result to
date has been achieved by the model propsoed in
Dozat and Manning (2017), which uses higher di-
mensional representations than ours and proposes
a more sophisticated attention mechanism called
biaffine attention. It should be promising to incor-
porate their attention mechanism into our parsing
component.

Semantic relatedness Table 5 shows the results
of the semantic relatedness task, and our JMT
model achieves the state-of-the-art result. The re-
sult of “JMTDE” is already better than the previous
state-of-the-art results. Both of Zhou et al. (2016)
and Tai et al. (2015) explicitly used syntactic trees,
and Zhou et al. (2016) relied on attention mecha-
nisms. However, our method uses the simple max-
pooling strategy, which suggests that it is worth

4Choe and Charniak (2016) employed a tri-training
method to expand the training data with 400,000 trees in ad-
dition to the WSJ data, and they reported 95.9 UAS and 94.1
LAS by converting their constituency trees into dependency
trees. Kuncoro et al. (2017) also reported high accuracy (95.8
UAS and 94.6 LAS) by using a converter.

1928



Single JMTall JMTAB JMTABC JMTDE JMTCD JMTCE

A ↑ POS 97.45 97.55 97.52 97.54 n/a n/a n/a
B ↑ Chunking 95.02 n/a 95.77 n/a n/a n/a n/a

C ↑ Dependency UAS 93.35 94.67 n/a 94.71 n/a 93.53 93.57
Dependency LAS 91.42 92.90 n/a 92.92 n/a 91.62 91.69

D ↓ Relatedness 0.247 0.233 n/a n/a 0.238 0.251 n/a
E ↑ Entailment 81.8 86.2 n/a n/a 86.8 n/a 82.4

Table 1: Test set results for the five tasks. In the relatedness task, the lower scores are better.

Method Acc. ↑
JMTall 97.55
Ling et al. (2015) 97.78
Kumar et al. (2016) 97.56
Ma and Hovy (2016) 97.55
Søgaard (2011) 97.50
Collobert et al. (2011) 97.29
Tsuruoka et al. (2011) 97.28
Toutanova et al. (2003) 97.27

Table 2: POS tagging results.

Method F1 ↑
JMTAB 95.77
Single 95.02
Søgaard and Goldberg (2016) 95.56
Suzuki and Isozaki (2008) 95.15
Collobert et al. (2011) 94.32
Kudo and Matsumoto (2001) 93.91
Tsuruoka et al. (2011) 93.81

Table 3: Chunking results.

Method UAS ↑ LAS ↑
JMTall 94.67 92.90
Single 93.35 91.42
Dozat and Manning (2017) 95.74 94.08
Andor et al. (2016) 94.61 92.79
Alberti et al. (2015) 94.23 92.36
Zhang et al. (2017) 94.10 91.90
Weiss et al. (2015) 93.99 92.05
Dyer et al. (2015) 93.10 90.90
Bohnet (2010) 92.88 90.71

Table 4: Dependency results.

Method MSE ↓
JMTall 0.233
JMTDE 0.238
Zhou et al. (2016) 0.243
Tai et al. (2015) 0.253

Table 5: Semantic relatedness results.

Method Acc. ↑
JMTall 86.2
JMTDE 86.8
Yin et al. (2016) 86.2
Lai and Hockenmaier (2014) 84.6

Table 6: Textual entailment results.

JMTall w/o SC w/o LE w/o SC&LE
POS 97.88 97.79 97.85 97.87
Chunking 97.59 97.08 97.40 97.33
Dependency UAS 94.51 94.52 94.09 94.04
Dependency LAS 92.60 92.62 92.14 92.03
Relatedness 0.236 0.698 0.261 0.765
Entailment 84.6 75.0 81.6 71.2

Table 7: Effectiveness of the Shortcut Connections
(SC) and the Label Embeddings (LE).

investigating such simple methods before develop-
ing complex methods for simple tasks. Currently,
our JMT model does not explicitly use the learned
dependency structures, and thus the explicit use of
the output from the dependency layer should be an
interesting direction of future work.

Textual entailment Table 6 shows the results of
textual entailment, and our JMT model achieves
the state-of-the-art result. The previous state-of-
the-art result in Yin et al. (2016) relied on at-
tention mechanisms and dataset-specific data pre-
processing and features. Again, our simple max-
pooling strategy achieves the state-of-the-art result
boosted by the joint training. These results show
the importance of jointly handling related tasks.

6.2 Analysis on the Model Architectures

We investigate the effectiveness of our model in
detail. All of the results shown in this section are
the development set results.

JMTABC w/o SC&LE All-3
POS 97.90 97.87 97.62
Chunking 97.80 97.41 96.52
Dependency UAS 94.52 94.13 93.59
Dependency LAS 92.61 92.16 91.47

Table 8: Effectiveness of using different layers for
different tasks.

Shortcut connections Our JMT model feeds the
word representations into all of the bi-LSTM lay-
ers, which is called the shortcut connection. Ta-
ble 7 shows the results of “JMTall” with and with-
out the shortcut connections. The results with-
out the shortcut connections are shown in the col-
umn of “w/o SC”. These results clearly show that
the importance of the shortcut connections, and in
particular, the semantic tasks in the higher layers
strongly rely on the shortcut connections. That is,
simply stacking the LSTM layers is not sufficient
to handle a variety of NLP tasks in a single model.
In the supplementary material, it is qualitatively
shown how the shortcut connections work in our
model.

Output label embeddings Table 7 also shows
the results without using the output labels of the
POS, chunking, and relatedness layers, in the col-
umn of “w/o LE”. These results show that the ex-
plicit use of the output information from the clas-
sifiers of the lower layers is important in our JMT

1929



JMTall w/o SR w/o VC
POS 97.88 97.85 97.82
Chunking 97.59 97.13 97.45
Dependency UAS 94.51 94.46 94.38
Dependency LAS 92.60 92.57 92.48
Relatedness 0.236 0.239 0.241
Entailment 84.6 84.2 84.8

Table 9: Effectiveness of the Successive Regular-
ization (SR) and the Vertical Connections (VC).

JMTall Random
POS 97.88 97.83
Chunking 97.59 97.71
Dependency UAS 94.51 94.66
Dependency LAS 92.60 92.80
Relatedness 0.236 0.298
Entailment 84.6 83.2

Table 10: Effects of the order of training.

model. The results in the column of “w/o SC&LE”
are the ones without both of the shortcut connec-
tions and the label embeddings.

Different layers for different tasks Table 8
shows the results of our “JMTABC” setting and
that of not using the shortcut connections and the
label embeddings (“w/o SC&LE”) as in Table 7.
In addition, in the column of “All-3”, we show the
results of using the highest (i.e., the third) layer for
all of the three tasks without any shortcut connec-
tions and label embeddings, and thus the two set-
tings “w/o SC&LE” and “All-3” require exactly
the same number of the model parameters. The
“All-3” setting is similar to the multi-task model
of Collobert et al. (2011) in that task-specific out-
put layers are used but most of the model param-
eters are shared. The results show that using the
same layers for the three different tasks hampers
the effectiveness of our JMT model, and the de-
sign of the model is much more important than the
number of the model parameters.

Successive regularization In Table 9, the col-
umn of “w/o SR” shows the results of omitting the
successive regularization terms described in Sec-
tion 3. We can see that the accuracy of chunking is
improved by the successive regularization, while
other results are not affected so much. The chunk-
ing dataset used here is relatively small compared
with other low-level tasks, POS tagging and de-
pendency parsing. Thus, these results suggest
that the successive regularization is effective when
dataset sizes are imbalanced.

Vertical connections We investigated our JMT
results without using the vertical connections in

Single Single+
POS 97.52
Chunking 95.65 96.08
Dependency UAS 93.38 93.88
Dependency LAS 91.37 91.83
Relatedness 0.239 0.665
Entailment 83.8 66.4

Table 11: Effects of depth for the single tasks.

Single W&C Only W
POS 97.52 96.26
Chunking 95.65 94.92
Dependency UAS 93.38 92.90
Dependency LAS 91.37 90.44

Table 12: Effects of the character embeddings.

the five-layer bi-LSTMs. More concretely, when
constructing the input vectors gt, we do not use
the bi-LSTM hidden states of the previous lay-
ers. Table 9 also shows the JMTall results with
and without the vertical connections. As shown in
the column of “w/o VC”, we observed the compet-
itive results. Therefore, in the target tasks used in
our model, sharing the word representations and
the output label embeddings is more effective than
just stacking the bi-LSTM layers.

Order of training Our JMT model iterates the
training process in the order described in Sec-
tion 3. Our hypothesis is that it is important to start
from the lower-level tasks and gradually move to
the higher-level tasks. Table 10 shows the results
of training our model by randomly shuffling the
order of the tasks for each epoch in the column of
“Random”. We see that the scores of the semantic
tasks drop by the random strategy. In our prelimi-
nary experiments, we have found that constructing
the mini-batch samples from different tasks also
hampers the effectiveness of our model, which
also supports our hypothesis.

Depth The single task settings shown in Table 1
are obtained by using single layer bi-LSTMs, but
in our JMT model, the higher-level tasks use suc-
cessively deeper layers. To investigate the gap be-
tween the different number of the layers for each
task, we also show the results of using multi-layer
bi-LSTMs for the single task settings, in the col-
umn of “Single+” in Table 11. More concretely,
we use the same number of the layers with our
JMT model; for example, three layers are used
for dependency parsing, and five layers are used
for textual entailment. As shown in these results,
deeper layers do not always lead to better results,
and the joint learning is more important than mak-

1930



ing the models complex only for single tasks.

Character n-gram embeddings Finally, Ta-
ble 12 shows the results for the three single tasks
with and without the pre-trained character n-gram
embeddings. The column of “W&C” corresponds
to using both of the word and character n-gram
embeddings, and that of “Only W” corresponds
to using only the word embeddings. These re-
sults clearly show that jointly using the pre-trained
word and character n-gram embeddings is helpful
in improving the results. The pre-training of the
character n-gram embeddings is also effective; for
example, without the pre-training, the POS accu-
racy drops from 97.52% to 97.38% and the chunk-
ing accuracy drops from 95.65% to 95.14%.

6.3 Discussion
Training strategies In our JMT model, it is not
obvious when to stop the training while trying to
maximize the scores of all the five tasks. We fo-
cused on maximizing the accuracy of dependency
parsing on the development data in our experi-
ments. However, the sizes of the training data
are different across the different tasks; for exam-
ple, the semantic tasks include only 4,500 sen-
tence pairs, and the dependency parsing dataset
includes 39,832 sentences with word-level anno-
tations. Thus, in general, dependency parsing
requires more training epochs than the semantic
tasks, but currently, our model trains all of the
tasks for the same training epochs. The same strat-
egy for decreasing the learning rate is also shared
across all the different tasks, although our growing
gradient clipping method described in Section 5.2
helps improve the results. Indeed, we observed
that better scores of the semantic tasks can be
achieved before the accuracy of dependency pars-
ing reaches the best score. Developing a method
for achieving the best scores for all of the tasks at
the same time is important future work.

More tasks Our JMT model has the potential
of handling more tasks than the five tasks used
in our experiments; examples include entity de-
tection and relation extraction as in Miwa and
Bansal (2016) as well as language modeling (God-
win et al., 2016). It is also a promising direction
to train each task for multiple domains by focus-
ing on domain adaptation (Søgaard and Goldberg,
2016). In particular, incorporating language mod-
eling tasks provides an opportunity to use large
text data. Such large text data was used in our

experiments to pre-train the word and character n-
gram embeddings. However, it would be prefer-
able to efficiently use it for improving the entire
model.

Task-oriented learning of low-level tasks Each
task in our JMT model is supervised by its cor-
responding dataset. However, it would be possi-
ble to learn low-level tasks by optimizing high-
level tasks, because the model parameters of the
low-level tasks can be directly modified by learn-
ing the high-level tasks. One example has al-
ready been presented in Hashimoto and Tsuruoka
(2017), where our JMT model is extended to learn-
ing task-oriented latent graph structures of sen-
tences by training our dependency parsing com-
ponent according to a neural machine translation
objective.

7 Conclusion

We presented a joint many-task model to handle
multiple NLP tasks with growing depth in a sin-
gle end-to-end model. Our model is successively
trained by considering linguistic hierarchies, di-
rectly feeding word representations into all lay-
ers, explicitly using low-level predictions, and ap-
plying successive regularization. In experiments
on five NLP tasks, our single model achieves the
state-of-the-art or competitive results on chunk-
ing, dependency parsing, semantic relatedness,
and textual entailment.

Acknowledgments
We thank the anonymous reviewers and the Sales-
force Research team members for their fruitful
comments and discussions.

References
Chris Alberti, David Weiss, Greg Coppola, and Slav

Petrov. 2015. Improved Transition-Based Parsing
and Tagging with Neural Networks. In Proceed-
ings of the 2015 Conference on Empirical Methods
in Natural Language Processing, pages 1354–1359.

Daniel Andor, Chris Alberti, David Weiss, Aliaksei
Severyn, Alessandro Presta, Kuzman Ganchev, Slav
Petrov, and Michael Collins. 2016. Globally Nor-
malized Transition-Based Neural Networks. In Pro-
ceedings of the 54th Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 1: Long
Papers), pages 2442–2452.

Giuseppe Attardi and Felice DellOrletta. 2008. Chunk-
ing and Dependency Parsing. In Proceedings of
LREC 2008 Workshop on Partial Parsing.

1931



Bernd Bohnet. 2010. Top Accuracy and Fast Depen-
dency Parsing is not a Contradiction. In Proceed-
ings of the 23rd International Conference on Com-
putational Linguistics, pages 89–97.

Piotr Bojanowski, Edouard Grave, Armand Joulin, and
Tomas Mikolov. 2017. Enriching Word Vectors with
Subword Information. Transactions of the Associa-
tion for Computational Linguistics, 5:135–146.

Qian Chen, Xiaodan Zhu, Zhenhua Ling, Si Wei, and
Hui Jiang. 2016. Enhancing and Combining Se-
quential and Tree LSTM for Natural Language In-
ference. arXiv, cs.CL 1609.06038.

Do Kook Choe and Eugene Charniak. 2016. Parsing
as Language Modeling. In Proceedings of the 2016
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 2331–2336.

Ronan Collobert, Jason Weston, Leon Bottou,
Michael Karlen nad Koray Kavukcuoglu, and Pavel
Kuksa. 2011. Natural Language Processing (Al-
most) from Scratch. Journal of Machine Learning
Research, 12:2493–2537.

Timothy Dozat and Christopher D. Manning. 2017.
Deep Biaffine Attention for Neural Dependency
Parsing. In Proceedings of the 5th International
Conference on Learning Representations.

Chris Dyer, Miguel Ballesteros, Wang Ling, Austin
Matthews, and Noah A. Smith. 2015. Transition-
Based Dependency Parsing with Stack Long Short-
Term Memory. In Proceedings of the 53rd Annual
Meeting of the Association for Computational Lin-
guistics and the 7th International Joint Conference
on Natural Language Processing (Volume 1: Long
Papers), pages 334–343.

Jason Eisner. 1996. Efficient Normal-Form Parsing for
Combinatory Categorial Grammar. In Proceedings
of the 34th Annual Meeting of the Association for
Computational Linguistics, pages 79–86.

Akiko Eriguchi, Kazuma Hashimoto, and Yoshimasa
Tsuruoka. 2016. Tree-to-Sequence Attentional Neu-
ral Machine Translation. In Proceedings of the 54th
Annual Meeting of the Association for Computa-
tional Linguistics (Volume 1: Long Papers), pages
823–833.

Jonathan Godwin, Pontus Stenetorp, and Sebastian
Riedel. 2016. Deep Semi-Supervised Learning with
Linguistically Motivated Sequence Labeling Task
Hierarchies. arXiv, cs.CL 1612.09113.

Ian J. Goodfellow, David Warde-Farley, Mehdi Mirza,
Aaron Courville, and Yoshua Bengio. 2013. Max-
out Networks. In Proceedings of The 30th Inter-
national Conference on Machine Learning, pages
1319–1327.

Alex Graves and Jurgen Schmidhuber. 2005. Frame-
wise Phoneme Classification with Bidirectional
LSTM and Other Neural Network Architectures.
Neural Networks, 18(5):602–610.

Kazuma Hashimoto and Yoshimasa Tsuruoka. 2017.
Neural Machine Translation with Source-Side La-
tent Graph Parsing. In Proceedings of the 2017 Con-
ference on Empirical Methods in Natural Language
Processing. To appear.

Sepp Hochreiter and Jurgen Schmidhuber. 1997.
Long short-term memory. Neural Computation,
9(8):1735–1780.

Taku Kudo and Yuji Matsumoto. 2001. Chunking with
Support Vector Machines. In Proceedings of the
Second Meeting of the North American Chapter of
the Association for Computational Linguistics.

Ankit Kumar, Ozan Irsoy, Peter Ondruska, Mohit
Iyyer, James Bradbury, Ishaan Gulrajani, Victor
Zhong, Romain Paulus, and Richard Socher. 2016.
Ask Me Anything: Dynamic Memory Networks
for Natural Language Processing. In Proceedings
of The 33rd International Conference on Machine
Learning, pages 1378–1387.

Adhiguna Kuncoro, Miguel Ballesteros, Lingpeng
Kong, Chris Dyer, Graham Neubig, and Noah A.
Smith. 2017. What Do Recurrent Neural Network
Grammars Learn About Syntax? In Proceedings
of the 15th Conference of the European Chapter
of the Association for Computational Linguistics,
pages 1249–1258.

Alice Lai and Julia Hockenmaier. 2014. Illinois-LH:
A Denotational and Distributional Approach to Se-
mantics. In Proceedings of the 8th International
Workshop on Semantic Evaluation, pages 329–334.

Siwei Lai, Liheng Xu, Kang Liu, and Jun Zhao. 2015.
Recurrent Convolutional Neural Networks for Text
Classification. In Proceedings of the Twenty-Ninth
AAAI Conference on Artificial Intelligence, pages
2267–2273.

Zhizhong Li and Derek Hoiem. 2016. Learning with-
out Forgetting. CoRR, abs/1606.09282.

Wang Ling, Chris Dyer, Alan W Black, Isabel Tran-
coso, Ramon Fermandez, Silvio Amir, Luis Marujo,
and Tiago Luis. 2015. Finding Function in Form:
Compositional Character Models for Open Vocab-
ulary Word Representation. In Proceedings of the
2015 Conference on Empirical Methods in Natural
Language Processing, pages 1520–1530.

Minh-Thang Luong, Ilya Sutskever, Quoc V. Le, Oriol
Vinyals, and Lukasz Kaiser. 2016. Multi-task Se-
quence to Sequence Learning. In Proceedings of the
4th International Conference on Learning Represen-
tations.

Xuezhe Ma and Eduard Hovy. 2016. End-to-end Se-
quence Labeling via Bi-directional LSTM-CNNs-
CRF. In Proceedings of the 54th Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pages 1064–1074.

1932



Marco Marelli, Luisa Bentivogli, Marco Baroni, Raf-
faella Bernardi, Stefano Menini, and Roberto Zam-
parelli. 2014. SemEval-2014 Task 1: Evaluation of
Compositional Distributional Semantic Models on
Full Sentences through Semantic Relatedness and
Textual Entailment. In Proceedings of the 8th In-
ternational Workshop on Semantic Evaluation (Se-
mEval 2014), pages 1–8.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013. Distributed Representa-
tions of Words and Phrases and their Composition-
ality. In Advances in Neural Information Processing
Systems 26, pages 3111–3119.

Ishan Misra, Abhinav Shrivastava, Abhinav Gupta, and
Martial Hebert. 2016. Cross-stitch Networks for
Multi-task Learning. CoRR, abs/1604.03539.

Makoto Miwa and Mohit Bansal. 2016. End-to-End
Relation Extraction using LSTMs on Sequences and
Tree Structures. In Proceedings of the 54th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 1105–
1116.

Andrei A. Rusu, Neil C. Rabinowitz, Guillaume Des-
jardins, Hubert Soyer, James Kirkpatrick, Koray
Kavukcuoglu, Razvan Pascanu, and Raia Hadsell.
2016. Progressive Neural Networks. CoRR,
abs/1606.04671.

Anders Søgaard. 2011. Semi-supervised condensed
nearest neighbor for part-of-speech tagging. In Pro-
ceedings of the 49th Annual Meeting of the Associ-
ation for Computational Linguistics: Human Lan-
guage Technologies, pages 48–52.

Anders Søgaard and Yoav Goldberg. 2016. Deep
multi-task learning with low level tasks supervised
at lower layers. In Proceedings of the 54th Annual
Meeting of the Association for Computational Lin-
guistics (Volume 2: Short Papers), pages 231–235.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky,
Ilya Sutskever, and Ruslan Salakhutdinov. 2014.
Dropout: A Simple Way to Prevent Neural Networks
from Overfitting. Journal of Machine Learning Re-
search, 15:1929–1958.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. 2014.
Sequence to Sequence Learning with Neural Net-
works. In Advances in Neural Information Process-
ing Systems 27, pages 3104–3112.

Jun Suzuki and Hideki Isozaki. 2008. Semi-Supervised
Sequential Labeling and Segmentation Using Giga-
Word Scale Unlabeled Data. In Proceedings of the
46th Annual Meeting of the Association for Com-
putational Linguistics: Human Language Technolo-
gies, pages 665–673.

Kai Sheng Tai, Richard Socher, and Christopher D.
Manning. 2015. Improved Semantic Representa-
tions From Tree-Structured Long Short-Term Mem-
ory Networks. In Proceedings of the 53rd Annual

Meeting of the Association for Computational Lin-
guistics and the 7th International Joint Conference
on Natural Language Processing (Volume 1: Long
Papers), pages 1556–1566.

Kristina Toutanova, Dan Klein, Christopher D Man-
ning, and Yoram Singer. 2003. Feature-Rich Part-
of-Speech Tagging with a Cyclic Dependency Net-
work. In Proceedings of the 2003 Human Lan-
guage Technology Conference of the North Ameri-
can Chapter of the Association for Computational
Linguistics, pages 173–180.

Yoshimasa Tsuruoka, Yusuke Miyao, and Jun’ichi
Kazama. 2011. Learning with Lookahead: Can
History-Based Models Rival Globally Optimized
Models? In Proceedings of the Fifteenth Confer-
ence on Computational Natural Language Learning,
pages 238–246.

David Weiss, Chris Alberti, Michael Collins, and Slav
Petrov. 2015. Structured Training for Neural Net-
work Transition-Based Parsing. In Proceedings of
the 53rd Annual Meeting of the Association for
Computational Linguistics and the 7th International
Joint Conference on Natural Language Processing
(Volume 1: Long Papers), pages 323–333.

Wenpeng Yin, Hinrich Schtze, Bing Xiang, and Bowen
Zhou. 2016. ABCNN: Attention-Based Convolu-
tional Neural Network for Modeling Sentence Pairs.
Transactions of the Association for Computational
Linguistics, 4:259–272.

Xingxing Zhang, Jianpeng Cheng, and Mirella Lapata.
2017. Dependency Parsing as Head Selection. In
Proceedings of the 15th Conference of the European
Chapter of the Association for Computational Lin-
guistics, pages 665–676.

Yuan Zhang and David Weiss. 2016. Stack-
propagation: Improved Representation Learning for
Syntax. In Proceedings of the 54th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 1557–1566.

Yao Zhou, Cong Liu, and Yan Pan. 2016. Modelling
Sentence Pairs with Tree-structured Attentive En-
coder. In Proceedings of the 26th International Con-
ference on Computational Linguistics, pages 2912–
2922.

1933


