
Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing, pages 1866–1872
Copenhagen, Denmark, September 7–11, 2017. c©2017 Association for Computational Linguistics

Syllable-aware Neural Language Models:
A Failure to Beat Character-aware Ones

Zhenisbek Assylbekov
School of Science and Technology

Nazarbayev University
zhassylbekov@nu.edu.kz

Rustem Takhanov
School of Science and Technology

Nazarbayev University
rustem.takhanov@nu.edu.kz

Bagdat Myrzakhmetov
National Laboratory Astana
Nazarbayev University

bagdat.myrzakhmetov@nu.edu.kz

Jonathan N. Washington
Linguistics Department
Swarthmore College

jonathan.washington@swarthmore.edu

Abstract

Syllabification does not seem to im-
prove word-level RNN language model-
ing quality when compared to character-
based segmentation. However, our best
syllable-aware language model, achieving
performance comparable to the competi-
tive character-aware model, has 18%–33%
fewer parameters and is trained 1.2–2.2
times faster.

1 Introduction

Recent advances in neural language modeling
(NLM) are connected with character-aware mod-
els (Kim et al., 2016; Ling et al., 2015b; Verwimp
et al., 2017). This is a promising approach, and
we propose the following direction related to it:
We would like to make sure that in the pursuit of
the most fine-grained representations one has not
missed possible intermediate ways of segmenta-
tion, e.g., by syllables. Syllables, in our opinion,
are better supported as linguistic units of language
than single characters. In most languages, words
can be naturally split into syllables:

ES: el par-la-men-to a-po-yó la en-mien-da
RU: пар-ла-мент под-дер-жал по-прав-ку
(EN: the parliament supported the amendment)

Based on this observation, we attempted to de-
termine whether syllable-aware NLM has any ad-
vantages over character-aware NLM. We exper-
imented with a variety of models but could not
find any evidence to support this hypothesis: split-
ting words into syllables does not seem to improve
the language modeling quality when compared to
splitting into characters. However, there are some
positive findings: while our best syllable-aware
languagemodel achieves performance comparable
to the competitive character-aware model, it has

18%–33% fewer parameters and is 1.2–2.2 times
faster to train.

2 Related Work

Much research has been done on subword-level
and subword-aware1 neural language modeling
when subwords are characters (Ling et al., 2015b;
Kim et al., 2016; Verwimp et al., 2017) or mor-
phemes (Botha and Blunsom, 2014; Qiu et al.,
2014; Cotterell and Schütze, 2015). However,
not much work has been done on syllable-level or
syllable-aware NLM. Mikolov et al. (2012) show
that subword-level language models outperform
character-level ones.2 They keep themost frequent
words untouched and split all other words into
syllable-like units. Our approach differs mainly in
the following aspects: we make predictions at the
word level, use a more linguistically sound syllab-
ification algorithm, and consider a variety of more
advanced neural architectures.
We have recently come across a concurrent

paper (Vania and Lopez, 2017) where the au-
thors systematically compare different subword
units (characters, character trigrams, BPE (Sen-
nrich et al., 2016), morphemes) and different rep-
resentation models (CNN, Bi-LSTM, summation)
on languages with various morphological typol-
ogy. However, they do not consider syllables, and
they experiment with relatively small models on
small data sets (0.6M–1.4M tokens).

3 Syllable-aware word embeddings

Let W and S be finite vocabularies of words and
syllables respectively. We assume that both words

1Subword-level LMs rely on subword-level inputs and
make predictions at the level of subwords; subword-aware
LMs also rely on subword-level inputs but make predictions
at the level of words.

2Not to be confused with character-aware ones, see the
previous footnote.

1866

unconstitutional conditions on

stack of two
LSTMs

word vector

Highway layers (optional)

Syllable-aware word embedding model

Syllable
embeddings

un con sti tu tional

imposes unconstitutional conditions

Figure 1: Syllable-aware language model.

and syllables have already been converted into in-
dices. Let ES ∈ R|S|×dS be an embedding ma-
trix for syllables — i.e., it is a matrix in which the
sth row (denoted as s) corresponds to an embed-
ding of the syllable s ∈ S. Any word w ∈ W
is a sequence of its syllables (s1, s2, . . . , snw), and
hence can be represented as a sequence of the cor-
responding syllable vectors:

[s1, s2, . . . , snw]. (1)

The question is: How shall we pack the sequence
(1) into a single vector x ∈ RdW to produce a
better embedding of the word w?3 In our case
“better” means “better than a character-aware em-
bedding of w via the Char-CNN model of Kim
et al. (2016)”. Below we present several viable ap-
proaches.

3.1 Recurrent sequential model (Syl-LSTM)
Since the syllables are coming in a sequence it is
natural to try a recurrent sequential model:

ht = f(st,ht−1), h0 = 0, (2)

which converts the sequence of syllable vectors (1)
into a sequence of state vectors h1:nw . The last state
vector hnw is assumed to contain the information
on the whole sequence (1), and is therefore used
as a word embedding for w. There is a big variety

3The same question applies to any model that segments
words into a sequence of characters or other subword units.

of transformations fromwhich one can choose f in
(2); however, a recent thorough evaluation (Joze-
fowicz et al., 2015) shows that the LSTM (Hochre-
iter and Schmidhuber, 1997) with its forget bias
initialized to 1 outperforms other popular architec-
tures on almost all tasks, and we decided to use it
for our experiments. We will refer to this model as
Syl-LSTM.

3.2 Convolutional model (Syl-CNN)
Inspired by recent work on character-aware neural
language models (Kim et al., 2016) we decided to
try this approach (Char-CNN) on syllables. Our
case differs mainly in the following two aspects:
1. The set of syllables S is usually bigger than

the set of characters C,4 and also the dimen-
sionality dS of syllable vectors is expected to
be greater than the dimensionality dC of char-
acter vectors. Both of these factors result in
allocating more parameters on syllable em-
beddings compared to character embeddings.

2. On average a word contains fewer syllables
than characters, and therefore we need nar-
rower convolutional filters for syllables. This
results in spending fewer parameters per con-
volution.

This means that by varying dS and the maximum
width of convolutional filters L we can still fit the
parameter budget of Kim et al. (2016) to allow fair
comparison of the models.
Like in Char-CNN, our syllable-aware model,

which is referred to as Syl-CNN-[L], utilizes max-
pooling and highway layers (Srivastava et al.,
2015) to model interactions between the syllables.
The dimensionality of a highway layer is denoted
by dHW.

3.3 Linear combinations
We also considered using linear combinations of
syllable-vectors to represent the word embedding:

x =
∑nw

t=1 αt(st) · st. (3)

The choice for αt is motivated mainly by the ex-
isting approaches (discussed below) which proved
to be successful for other tasks.
Syl-Sum: Summing up syllable vectors to get a
word vector can be obtained by setting αt(st) = 1.
This approach was used by Botha and Blunsom
(2014) to combine a word and its morpheme em-
beddings into a single word vector.

4In languages with alphabetic writing systems.

1867

Syl-Avg: A simple average of syllable vectors can
be obtained by setting αt(st) = 1/nw. This can
be also called a “continuous bag of syllables” in an
analogy to a CBOWmodel (Mikolov et al., 2013),
where vectors of neighboring words are averaged
to get a word embedding of the current word.
Syl-Avg-A: We let the weights αt in (3) be a
function of parameters (a1, . . . , an) of the model,
which are jointly trained together with other pa-
rameters. Here n = maxw{nw} is a maxi-
mum word length in syllables. In order to have
a weighted average in (3) we apply a softmax nor-
malization:

αt = softmax(a)t =
exp(at)∑n

τ=1 exp(aτ)
(4)

Syl-Avg-B:We can let αt depend on syllables and
their positions:

αt = αt(st) = softmax(ast + b)t

where A ∈ RdS×n (with elements as,t) is a set of
parameters that determine the importance of each
syllable type in each (relative) position, b ∈ Rn

is a bias, which is conditioned only on the rela-
tive position. This approach is motivated by re-
cent work on using an attention mechanism in the
CBOW model (Ling et al., 2015a).
We feed the resulting x from (3) into a stack of

highway layers to allow interactions between the
syllables.

3.4 Concatenation (Syl-Concat)
In this model we simply concatenate syllable vec-
tors (1) into a single word vector:

x = [s1; s2; . . . ; snw ; 0; 0; . . . ; 0︸ ︷︷ ︸
n−nw

]

We zero-pad x so that all word vectors have the
same length n · dS to allow batch processing, and
then we feed x into a stack of highway layers.

4 Word-level language model

Once we have word embeddings x1:k for a se-
quence of words w1:k we can use a word-level
RNN language model to produce a sequence of
states h1:k and then predict the next word accord-
ing to the probability distribution

Pr(wk+1|w1:k) = softmax(hkW + b),

where W ∈ RdLM×|W|, b ∈ R|W|, and dLM is the
hidden layer size of the RNN. Training the model

involves minimizing the negative log-likelihood
over the corpus w1:K :

−∑K
k=1 log Pr(wk|w1:k−1) −→ min (5)

As was mentioned in Section 3.1 there is a huge
variety of RNN architectures to choose from. The
most advanced recurrent neural architectures, at
the time of this writing, are recurrent highway net-
works (Zilly et al., 2017) and a novel model which
was obtained through a neural architecture search
with reinforcement learning (Zoph and Le, 2017).
These models can be spiced up with the most re-
cent regularization techniques for RNNs (Gal and
Ghahramani, 2016) to reach state-of-the-art. How-
ever, to make our results directly comparable to
those of Kim et al. (2016) we select a two-layer
LSTMand regularize it as in Zaremba et al. (2014).

5 Experimental Setup

We search for the best model in two steps: first,
we block the word-level LSTM’s architecture and
pre-select the three best models under a small pa-
rameter budget (5M), and then we tune these three
best models’ hyperparameters under a larger bud-
get (20M).
Pre-selection: We fix dLM (hidden layer size of
the word-level LSTM) at 300 units per layer and
run each syllable-aware word embedding method
from Section 3 on the English PTB data set (Mar-
cus et al., 1993), keeping the total parameter bud-
get at 5M. The architectural choices are specified
in Appendix A.
Hyperparameter tuning: The hyperparameters
of the three best-performing models from the pre-
selection step are then thoroughly tuned on the
same English PTB data through a random search
according to the marginal distributions:

• dS ∼ U(20, 650),5
• log(dHW) ∼ U(log(160), log(2000)),
• log(dLM) ∼ U(log(300), log(2000)),

with the restriction dS < dLM. The total parameter
budget is kept at 20M to allow for easy comparison
to the results of Kim et al. (2016). Then these three
best models (with their hyperparameters tuned on
PTB) are trained and evaluated on small- (DATA-
S) and medium-sized (DATA-L) data sets in six
languages.
Optimizaton is performed in almost the same way
as in the work of Zaremba et al. (2014). See Ap-
pendix B for details.

5U(a, b) stands for a uniform distribution over (a, b).

1868

Model PPL Model PPL
LSTM-Word 88.0 Char-CNN 92.3
Syl-LSTM 88.7 Syl-Avg 88.5
Syl-CNN-2 86.6 Syl-Avg-A 91.4
Syl-CNN-3 84.6 Syl-Avg-B 88.5
Syl-CNN-4 86.8 Syl-Concat 83.7
Syl-Sum 84.6

Table 1: Pre-selection results. PPL stands for test
set perplexity, all models have ≈ 5M parameters.

Model dS dHW dLM Size PPL
Syl-CNN 242 1170 380 15M 80.5
Syl-Sum 438 1256 435 18M 80.3
Syl-Concat 228 781 439 13M 79.4

Table 2: Hyperparameters tuning. In Syl-CNN,
dHW is a function of the primary hyperparameter
c = 195 (see Appendix A).

Syllabification: The true syllabification of a word
requires its grapheme-to-phoneme conversion and
then splitting it into syllables based on some rules.
Since these are not always available for less-
resourced languages, we decided to utilize Liang’s
widely-used hyphenation algorithm (Liang, 1983).

6 Results

The results of the pre-selection are reported in
Table 1. All syllable-aware models comfortably
outperform the Char-CNN when the budget is
limited to 5M parameters. Surprisingly, a pure
word-level model,6 LSTM-Word, also beats the
character-aware one under such budget. The three
best configurations are Syl-Concat, Syl-Sum, and
Syl-CNN-3 (hereinafter referred to as Syl-CNN),
and tuning their hyperparameters under 20M pa-
rameter budget gives the architectures in Table
2. The results of evaluating these three models
on small (1M tokens) and medium-sized (17M–
57M tokens) data sets against Char-CNN for dif-
ferent languages are provided in Table 3. The
models demonstrate similar performance on small
data, but Char-CNN scales significantly better on
medium-sized data. From the three syllable-aware
models, Syl-Concat looks the most advantageous
as it demonstrates stable results and has the least
number of parameters. Therefore in what follows
we will make a more detailed comparison of Syl-
Concat with Char-CNN.

6When words are directly embedded intoRdW through an
embedding matrix EW ∈ R|W|×dW .

7Syl-CNN results on DATA-L are not reported since com-
putational resources were insufficient to run these configura-
tions.

Model EN FR ES DE CS RU
Char-CNN 78.9 184 165 239 371 261

D
AT

A
-SSyl-CNN 80.5 191 172 239 374 269

Syl-Sum 80.3 193 170 243 389 273
Syl-Concat 79.4 188 168 244 383 265
Char-CNN 160 124 118 198 392 190

D
AT

A
-LSyl-CNN7 – – – – – –

Syl-Sum 170 141 129 212 451 233
Syl-Concat 176 139 129 225 449 225

Table 3: Evaluation of the syllable-aware mod-
els against Char-CNN. In each case the smallest
model, Syl-Concat, has 18%–33% less parameters
than Char-CNN and is trained 1.2–2.2 times faster
(Appendix C).

Shared errors: It is interesting to see whether
Char-CNN and Syl-Concat are making similar er-
rors. We say that a model gives an error if it as-
signs a probability less than p∗ to a correct word
from the test set. Figure 2 shows the percentage of
errors which are shared by Syl-Concat and Char-
CNN depending on the value of p∗. We see that

0.0 0.1 0.2 0.3 0.4 0.5

threshold p*

84

86

88

90

92

94

96

98

100

%
 o
f
co

m
m
o
n
 e
rr
o
rs

EN

FR

ES

DE

CS

RU

0.0 0.1 0.2 0.3 0.4 0.5

threshold p*

88

90

92

94

96

98

%
 o
f
co

m
m
o
n
 e
rr
o
rs

EN

FR

ES

DE

CS

RU

Figure 2: Percentage of errors shared by both
Syl-Concat and Char-CNN on DATA-S (left) and
DATA-L (right).

the vast majority of errors are shared by both mod-
els even when p∗ is small (0.01).
PPL breakdown by token frequency: To find
out how Char-CNN outperforms Syl-Concat, we
partition the test sets on token frequency, as com-
puted on the training data. We can observe in
Figure 3 that, on average, the more frequent the
word is, the bigger the advantage of Char-CNN
over Syl-Concat. Themore Char-CNN sees aword
in different contexts, the more it can learn about
this word (due to its powerful CNN filters). Syl-
Concat, on the other hand, has limitations – it can-
not see below syllables, which prevents it from ex-
tracting the same amount of knowledge about the
word.
PCA of word embeddings: The intrinsic advan-
tage of Char-CNN over Syl-Concat is also sup-

1869

1 2 3 4 5 6

log-frequency

−18

−16

−14

−12

−10

−8

−6

−4

p
e
rc
e
n
ta
g
e

EN

FR

ES

DE

Figure 3: PPL reduction by token frequency, Char-
CNN relative to Syl-Concat on DATA-L.

Model 80% 90% 95% 99%
Char-CNN 568 762 893 1038
Syl-Concat 515 729 875 1035

Table 4: Number of principle components when
PCA is applied to word embeddings produced by
each model, depending on % of variance to retain.

ported by the following experiment: We took word
embeddings produced by both models on the En-
glish PTB, and applied PCA to them.8 Regard-
less of the threshold percentage of variance to re-
tain, the embeddings from Char-CNN always have
more principal components than the embeddings
from Syl-Concat (see Table 4). This means that
Char-CNN embeds words into higher dimensional
space than Syl-Concat, and thus can better distin-
guish them in different contexts.
LSTM limitations: During the hyperparameters
tuning we noticed that increasing dS , dHW and dLM
from the optimal values (in Table 2) did not result
in better performance for Syl-Concat. Could it be
due to the limitations of the word-level LSTM (the
topmost layer in Fig. 1)? To find out whether this
was the case we replaced the LSTM by a Varia-
tional RHN (Zilly et al., 2017), and that resulted in
a significant reduction of perplexities on PTB for
both Char-CNN and Syl-Concat (Table 5). More-
over, increasing dLM from 439 to 650 did result in
better performance for Syl-Concat. Optimization
details are given in Appendix B.
Comparing syllable and morpheme embed-
dings: It is interesting to compare morphemes and
syllables. We trained Morfessor 2.0 (Creutz and
Lagus, 2007) in its default configuration on the
PTB training data and used it instead of the syl-

8We equalized highway layer sizes dHW in both models to
have same dimensions for embeddings. In both cases, word
vectors were standardized using the z-score transformation.

Model depth dLM Size PPL
RHN-Char-CNN 8 650 20M 67.6
RHN-Syl-Concat 8 439 13M 72.0
RHN-Syl-Concat 8 650 20M 69.4

Table 5: Replacing LSTM with Variational RHN.

labifier in our models. Interestingly, we got ≈3K
unique morphemes, whereas the number of unique
syllables was≈6K. We then trained all our models
on PTB under 5M parameter budget, keeping the
state size of the word-level LSTM at 300 (as in our
pre-selection step for syllable-aware models). The
reduction in number of subword types allowed us
to give them higher dimensionality dM = 100 (cf.
dS = 50).9

Convolutional (Morph-CNN-3) and additive
(Morph-Sum) models performed better than oth-
ers with test set PPLs 83.0 and 83.9 respectively.
Due to limited amount of time, we did not per-
form a thorough hyperparameter search under 20M
budget. Instead, we ran two configurations for
Morph-CNN-3 and two configurations for Morph-
Sum with hyperparameters close to those, which
were optimal for Syl-CNN-3 and Syl-Sum corre-
spondingly. All told, our best morpheme-aware
model is Morph-Sum with dM = 550, dHW =
1100, dLM = 550, and test set PPL 79.5, which
is practically the same as the result of our best
syllable-aware model Syl-Concat (79.4). This
makes Morph-Sum a notable alternative to Char-
CNN and Syl-Concat, and we defer its thorough
study to future work.
Source code: The source code for the models
discussed in this paper is available at https://
github.com/zh3nis/lstm-syl.

7 Conclusion

It seems that syllable-aware language models fail
to outperform competitive character-aware ones.
However, usage of syllabification can reduce the
total number of parameters and increase the train-
ing speed, albeit at the expense of language-
dependent preprocessing. Morphological segmen-
tation is a noteworthy alternative to syllabifica-
tion: a simple morpheme-aware model which
sumsmorpheme embeddings looks promising, and
its study is deferred to future work.

9M stands for morphemes.

1870

A Pre-selection

In all models with highway layers there are two of
them and the non-linear activation of any highway
layer is a ReLU.
LSTM-Word: dW = 108, dLM = 300.
Syl-LSTM: dS = 50, dLM = 300.
Syl-CNN-[L]: dS = 50, convolutional filter
widths are [1, . . . , L], the corresponding convolu-
tional filter depths are [c·l]Ll=1, dHW = c·(1+. . .+
L). We experimented with L = 2, 3, 4. The corre-
sponding values of c are chosen to be 120, 60, 35
to fit the total parameter budget. CNN activation
is tanh.
Linear combinations: Wegive higher dimension-
ality to syllable vectors here (compared to other
models) since the resulting word vector will have
the same size as syllable vectors (see (3)). dS =
175, dHW = 175 in all models except the Syl-Avg-
B, where we have dS = 160, dHW = 160.
Syl-Concat: dS = 50, dHW = 300.

B Optimization

LSTM-based models: We perform the training
(5) by truncated BPTT (Werbos, 1990; Graves,
2013). We backpropagate for 70 time steps on
DATA-S and for 35 time steps on DATA-L using
stochastic gradient descent where the learning rate
is initially set to 1.0 and halved if the perplex-
ity does not decrease on the validation set after
an epoch. We use batch sizes of 20 for DATA-S
and 100 for DATA-L. We train for 50 epochs on
DATA-S and for 25 epochs on DATA-L, picking
the best-performing model on the validation set.
Parameters of the models are randomly initialized
uniformly in [−0.05, 0.05], except the forget bias
of the word-level LSTM, which is initialized to
1. For regularization we use dropout (Srivastava
et al., 2014) with probability 0.5 between word-
level LSTM layers and on the hidden-to-output
softmax layer. We clip the norm of the gradi-
ents (normalized by minibatch size) at 5. These
choices were guided by previous work on word-
level language modeling with LSTMs (Zaremba
et al., 2014).
To speed up training on DATA-L we use a sam-

pled softmax (Jean et al., 2015) with the number
of samples equal to 20% of the vocabulary size
(Chen et al., 2016). Although Kim et al. (2016)
used a hierarchical softmax (Morin and Bengio,
2005) for the same purpose, a recent study (Grave

et al., 2016) shows that it is outperformed by sam-
pled softmax on the Europarl corpus, from which
DATA-L was derived (Botha and Blunsom, 2014).
RHN-basedmodels are optimized as in Zilly et al.
(2017), except that we unrolled the networks for
70 time steps in truncated BPTT, and dropout rates
were chosen to be as follows: 0.2 for the embed-
ding layer, 0.7 for the input to the gates, 0.7 for the
hidden units and 0.2 for the output activations.

C Sizes and speeds

On DATA-S, Syl-Concat has 28%–33% fewer pa-
rameters than Char-CNN, and on DATA-L the re-
duction is 18%–27% (see Fig. 4).

EN FR ES DE CS RU
0

10

20

30

40

50

60

N
u
m

b
e
r

o
f

p
a
ra

m
e
te

rs
,
in

 m
ill

io
n
s

13

20 20

25

31

37

19

29 30

36

43

54
Syl-Concat

Char-CNN

EN FR ES DE CS RU
0

50

100

150

200

250

300

350

N
u
m

b
e
r

o
f

p
a
ra

m
e
te

rs
,
in

 m
ill

io
n
s

42

79 82

175

106

244

51

102
111

233

146

336

Syl-Concat

Char-CNN

Figure 4: Model sizes on DATA-S (left) and
DATA-L, in millions of trainable variables.

Training speeds are provided in the Table 6. Mod-
els were implemented in TensorFlow, and were run
on NVIDIA Titan X (Pascal).

Model EN FR ES DE CS RU
Char-CNN 9 8 8 7 6 6 SSyl-Concat 14 12 12 11 10 9
Char-CNN 10 8 7 5 7 4 LSyl-Concat 22 13 13 6 10 5

Table 6: Training speeds, in thousands of tokens
per second.

Acknowledgements

We gratefully acknowledge the NVIDIA Corpo-
ration for their donation of the Titan X Pascal
GPU used for this research. The work of Bagdat
Myrzakhmetov has been funded by the Commit-
tee of Science of the Ministry of Education and
Science of the Republic of Kazakhstan under the
targeted program O.0743 (0115PK02473). The
authors would like to thank anonymous review-
ers and Aibek Makazhanov for valuable feedback,
Makat Tlebaliyev and Dmitriy Polynin for IT sup-
port, and YoonKim for providing the preprocessed
datasets.

1871

References
Jan Botha and Phil Blunsom. 2014. Compositional

morphology for word representations and language
modelling. In Proceedings of ICML.

Wenlin Chen, David Grangier, and Michael Auli. 2016.
Strategies for training large vocabulary neural lan-
guage models. In Proceedings of ACL.

Ryan Cotterell and Hinrich Schütze. 2015. Morpho-
logical word-embeddings. In Proceedings of HLT-
NAACL.

Mathias Creutz and Krista Lagus. 2007. Unsupervised
models for morpheme segmentation and morphol-
ogy learning. ACM Transactions on Speech and
Language Processing (TSLP), 4(1):3.

Yarin Gal and Zoubin Ghahramani. 2016. A theoret-
ically grounded application of dropout in recurrent
neural networks. In Proceedings of NIPS.

Edouard Grave, Armand Joulin, Moustapha Cissé,
David Grangier, and Hervé Jégou. 2016. Efficient
softmax approximation for gpus. arXiv preprint
arXiv:1609.04309.

Alex Graves. 2013. Generating sequences with
recurrent neural networks. arXiv preprint
arXiv:1308.0850.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural computation,
9(8):1735–1780.

Sébastien Jean, Kyunghyun Cho, Roland Memisevic,
and Yoshua Bengio. 2015. On using very large target
vocabulary for neural machine translation. In Pro-
ceedings of ACL-IJCNLP.

Rafal Jozefowicz, Wojciech Zaremba, and Ilya
Sutskever. 2015. An empirical exploration of
recurrent network architectures. In Proceedings of
ICML.

Yoon Kim, Yacine Jernite, David Sontag, and Alexan-
der M Rush. 2016. Character-aware neural language
models. In Proceedings of AAAI.

Franklin Mark Liang. 1983. Word Hy-phen-a-tion by
Com-put-er. Citeseer.

Wang Ling, Lin Chu-Cheng, Yulia Tsvetkov, and Sil-
vio Amir. 2015a. Not all contexts are created equal:
Better word representations with variable attention.
In Proceedings of EMNLP.

Wang Ling, Chris Dyer, Alan W Black, Isabel Tran-
coso, Ramon Fermandez, Silvio Amir, Luis Marujo,
and Tiago Luis. 2015b. Finding function in form:
Compositional character models for open vocabu-
laryword representation. InProceedings of EMNLP.

Mitchell P Marcus, Mary Ann Marcinkiewicz, and
Beatrice Santorini. 1993. Building a large annotated
corpus of english: The penn treebank. Computa-
tional linguistics, 19(2):313–330.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jef-
frey Dean. 2013. Efficient estimation of word
representations in vector space. arXiv preprint
arXiv:1301.3781.

Tomáš Mikolov, Ilya Sutskever, Anoop Deoras, Hai-
Son Le, Stefan Kombrink, and Jan Cernocky.
2012. Subword language modeling with neu-
ral networks. preprint (http://www. fit. vutbr.
cz/imikolov/rnnlm/char. pdf).

Frederic Morin and Yoshua Bengio. 2005. Hierarchi-
cal probabilistic neural network language model. In
Proceedings of AISTATS.

Siyu Qiu, Qing Cui, Jiang Bian, Bin Gao, and Tie-Yan
Liu. 2014. Co-learning of word representations and
morpheme representations. In Proceedings of COL-
ING.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016. Neural machine translation of rare words with
subword units. In Proceedings of ACL.

Nitish Srivastava, Geoffrey E Hinton, Alex
Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdi-
nov. 2014. Dropout: a simple way to prevent neural
networks from overfitting. Journal of Machine
Learning Research, 15(1):1929–1958.

Rupesh K Srivastava, Klaus Greff, and Jürgen Schmid-
huber. 2015. Training very deep networks. In Pro-
ceedings of NIPS.

Clara Vania and Adam Lopez. 2017. From characters
to words to in between: Do we capture morphology?
In Proceedings of ACL.

LyanVerwimp, Joris Pelemans, PatrickWambacq, et al.
2017. Character-word lstm language models. In
Proceedings of EACL.

Paul J Werbos. 1990. Backpropagation through time:
what it does and how to do it. Proceedings of the
IEEE, 78(10).

Wojciech Zaremba, Ilya Sutskever, and Oriol Vinyals.
2014. Recurrent neural network regularization.
arXiv preprint arXiv:1409.2329.

Julian Georg Zilly, Rupesh Kumar Srivastava, Jan
Koutník, and Jürgen Schmidhuber. 2017. Recurrent
highway networks. In Proceedings of ICML.

Barret Zoph and Quoc V Le. 2017. Neural architecture
search with reinforcement learning. In Proceedings
of ICLR.

1872

