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Abstract

This paper describes an empirical study of
the phrase-based decoding algorithm pro-
posed by Chang and Collins (2017). The
algorithm produces a translation by pro-
cessing the source-language sentence in
strictly left-to-right order, differing from
commonly used approaches that build the
target-language sentence in left-to-right
order. Our results show that the new al-
gorithm is competitive with Moses (Koehn
et al., 2007) in terms of both speed and
BLEU scores.

1 Introduction

Phrase-based models (Koehn et al., 2003; Och
and Ney, 2004) have until recently been a state-
of-the-art method for statistical machine transla-
tion, and Moses (Koehn et al., 2007) is one of
the most used phrase-based translation systems.
Moses uses a beam search decoder based on a dy-
namic programming algorithm that constructs the
target-language sentence from left to right (Koehn
et al., 2003). Neural machine translation systems
(Kalchbrenner and Blunsom, 2013; Cho et al.,
2014; Sutskever et al., 2014), which have given
impressive improvements over phrase-based sys-
tems, also typically use models and decoders that
construct the target-language string in strictly left-
to-right order.

Recently, Chang and Collins (2017) proposed
a phrase-based decoding algorithm that processes
the source-language string in strictly left-to-right
order. Reordering is implemented by maintaining
multiple sub-strings in the target-language, with
phrases being used to extend these sub-strings by
various operations (see Section 2 for a full descrip-
tion). With a fixed distortion limit on reordering,
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the time complexity of the algorithm is linear in
terms of sentence length, and is polynomial time
in other factors.

Chang and Collins (2017) present the algorithm
and give a proof of its time complexity, but do not
describe experiments, leaving an open question of
whether the algorithm is useful in practice. This
paper complements the original paper by studying
the algorithm empirically. In addition to an exact
dynamic programming implementation, we study
the use of beam search with the algorithm, and an-
other pruning method that restricts the maximum
number of target-language strings maintained at
any point. The experiments show that the algo-
rithm is competitive with Moses in terms of both
speed and translation quality (BLEU score).

The new decoding algorithm is of interest for
a few reasons. While the experiments in this pa-
per are with phrase-based translation systems, the
method could potentially be extended to neural
translation, for example with an attention-based
model that is in some sense monotonic (left-to-
right). The decoder may be relevant to work on si-
multaneous translation (He et al., 2016). The ideas
may be applicable to string-to-string transduction
problems other than machine translation.

2 A Sketch of the Decoding Algorithm of
Chang and Collins (2017)

This section gives a sketch of the decoding algo-
rithm of Chang and Collins (2017). We first define
the phrase-based decoding problem, and then de-
scribe the algorithm.

2.1 The Phrase-based Decoding Problem

Throughout this paper we will consider the follow-
ing decoding problem. Given a source sentence
x1 . . . xn for n ≥ 1, a phrase p = (s, t, e) speci-
fies a possible translation from xs . . . xt to a string

1495



Sub-derivation State〈〈(
1, 1, <s>

)〉〉 (
1,

{(
1, <s>, 1, <s>

)})
p =

(
2, 3,we must

)
, operation = replace π1 by CONCAT(π1, p)〈〈(

1, 1, <s>
)(

2, 3,we must
)〉〉 (

3,
{(

1, <s>, 3,must
)})

p =
(
4, 4, also

)
, operation = replace π1 by CONCAT(π1, p)〈〈(

1, 1, <s>
)(

2, 3,we must
)(

4, 4, also
)〉〉 (

4,
{(

1, <s>, 4, also
)})

p =
(
5, 6, these criticisms

)
, operation = add a new sequence π2 = 〈p〉〈〈(

1, 1, <s>
)(

2, 3,we must
)(

4, 4, also
)〉
,

〈(
5, 6, these criticisms

)〉〉 (
6,

{(
1, <s>, 4, also

)
,(

5, these,6, criticisms
)})

p =
(
7, 7, seriously

)
, operation = replace π2 by CONCAT(π2, p)〈〈(

1, 1, <s>
)(

2, 3,we must
)(

4, 4, also
)〉
,

〈(
5, 6, these criticisms

)(
7, 7, seriously

)〉〉 (
7,

{(
1, <s>, 4, also

)
,(

5, these,7, seriously
)})

p =
(
8, 8, take

)
, operation = replace π1, π2 by CONCAT(π1, p, π2)〈〈(

1, 1, <s>
)(

2, 3,we must
)(

4, 4, also
)(

8, 8, take
)(

5, 6, these criticisms
)(

7, 7, seriously
)〉〉 (

8,
{(

1, <s>, 7, seriously
)})

p =
(
9, 9, </s>

)
, operation = replace π1 by CONCAT(π1, p)〈〈(

1, 1, <s>
)(

2, 3,we must
)(

4, 4, also
)(

8, 8, take
)(

5, 6, these criticisms
)(

7, 7, seriously
)(

9, 9, </s>
)〉〉 (

9,
{(

1, <s>, 9, </s>
)})

Figure 1: Illustrations of how the new algorithm produces the output translation. We note each phrase
that is being added and the operation it takes to generate the next segments of phrase sequence.

of target-language words e = e1 . . . em. We use
s(p), t(p), and e(p) to refer to the three elements
of a phrase p. A derivation is a sequence of L
phrases, p1 . . . pL. The derivation gives a transla-
tion by concatenating the target-language strings
e(p1) . . . e(pL).

We will always assume that x1 = <s>,
the start-of-sentence symbol, and xn = </s>,
the end-of-sentence symbol. The only phrases
covering positions 1 and n are (1, 1,<s>) and
(n, n,</s>).

A derivation p1 . . . pL is valid if each word in
the source sentence is translated exactly once, and
if for i = 2 . . . Lwe have |t(pi−1)+1−s(pi)| ≤ d,
where d is the distortion limit.

The score for any derivation is

f(p1 . . . pL) = λ(e(p1) . . . e(pL)) +
L∑

i=1

κ(pi)

+
L∑

i=2

η × |t(pi−1) + 1− s(pi)|

where the parameter η is the distortion penalty,
λ(e) is a language model score for the word se-
quence e, and κ(p) is the score for phrase p un-
der the phrase-based model. For example under a
bigram language model, we have λ(e1 . . . em) =∑m

i=2 λ(ei|ei−1). where λ(v|u) is the score for bi-
gram (u, v).

The phrase-based decoding problem is to find

arg max
p1...pL∈P

f(p1 . . . pL)

where P is the set of all valid derivations for the
input sentence.

2.2 The Decoding Algorithm

At a high level, the decoding algorithm of Chang
and Collins (2017) differs from the commonly-
used approach of Koehn et al. (2003) in two im-
portant respects:

1. The decoding algorithm proceeds in strictly
left-to-right order in the source sentence.

2. Each sub-derivation (item) in the beam con-
sists of multiple sequences of phrases, instead
of a single sequence.

To be more precise, each sub-derivation in the
decoding algorithm consists of:

1. An integer j specifying the length of the
derivation (i.e., that words x1 . . . xj have
been translated).

2. A set of segments {π1, π2, . . . , πr} where
r ≥ 1. Each segment π is a sequence
of phrases. The segment π1 always has
(1, 1,<s>) as its first element. Each word
x1 . . . xj is translated exactly once in these
segments.

As one example, the sub-derivation
(1, {〈(1, 1,<s>)〉}) is always the initial sub-
derivation, with only the first word x1 be-
ing translated, and with a single segment
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π1 = 〈(1, 1,<s>)〉. A more complex sub-
derivation is

(7, {〈(1, 1,<s>)(2, 3,we must)(4, 4, also)〉,
〈(5, 6, these criticisms)(7, 7, seriously)〉}) (1)

which translates words x1 . . . x7, and has two seg-
ments,

π1 =〈(1, 1,<s>)(2, 3,we must)(4, 4, also)〉
π2 =〈(5, 6, these criticisms)(7, 7, seriously)〉

We now describe how sub-derivations can be
built as the source sentence is processed in left-
to-right order. A derivation (j, {π1 . . . πr}) can be
extended as follows:

1. First select some phrase p = (j + 1, t, e)
where the phrase-based lexicon specifies that
words xj+1 . . . xt can be translated as the En-
glish sequence e = e1 . . . em.

2. Second, extend the derivation using one of
the following operations (we use CONCAT to
denote an operation that concatenates two or
more phrase sequences):

(a) Replace πi for some i ∈ 1 . . . r by
CONCAT(πi, p).

(b) Replace πi for some i ∈ 2 . . . r by
CONCAT(p, πi).

(c) Replace πi, πi′ for integers i 6= i′ by
CONCAT(πi, p, πi′)

(d) Create a new segment πr+1 = 〈p〉.
Figure 1 shows the sequence of steps, and the

resulting sequence of sub-derivations, in the trans-
lation of a German sentence.

A few remarks:
Remark 1. The score for each of the operations

(a)-(d) described above is easily calculated using a
combination of phrase, language model, and dis-
tortion scores.

Remark 2. The distortion limit can be used to
rule out some of the operations (a)-(d) above, de-
pending on the phrase p and the start/end points of
each of the segments π1 . . . πr.

Remark 3. Dynamic programming can be used
with this algorithm. Under a bigram language
model, the dynamic programming state for a sub-
derivation (j, {π1 . . . πr}) records the words and
positions at the start and end of each segment
π1 . . . πr. For example under a bigram language

0 20 40 60 80 100 120
0

1

2

3

4

5

6

7

8 1e8

Figure 2: The total number of dynamic program-
ming transitions and the sentence length.

model the sub-derivation (7, . . .) in Eq. 1 would
be mapped to the dynamic-programming state
(7, {(1,<s>, 4, also), (5, these, 7, seriously)}). See
Chang and Collins (2017) for more details.

Remark 4. It is simple to use beam search in
conjunction with the algorithm. Different deriva-
tions of the same length j are compared in the
beam. A heuristic—typically a lower-order lan-
guage model—can be used to score the first n− 1
words in each segment π1 · · ·πr: this can be used
as the “future score” for each item in the beam.
This is arguably simpler than the future scores
used in (Koehn et al., 2003), which have to take
into account the fact that different items in the
beam correspond to translations of different sub-
sets of words in the source sentence. In our ap-
proach different derivations of the same length j
have translated the same set of words x1 · · ·xj .
For example in the sub-derivation (7, . . .) given
above (Eq. 1), and given a trigram language
model, the initial bigram these criticisms in π2 is
scored as pu(these) × pb(criticisms|these) where
pu and pb are unigram and bigram language mod-
els.

3 Experiments

The original motivation for Chang and Collins
(2017) was to develop a dynamic-programming al-
gorithm for phrase-based decoding that for a fixed
distortion limit d was polynomial time in other
factors: the resulting dynamic programming algo-
rithm is O(nd!lhd+1) time, where d is the distor-
tion limit, l is a bound on the number of phrases
starting at any position, and h is related to the
maximum number of different target translations
for any source position. However an open ques-
tion is whether the algorithm is useful in practice
when used in conjunction with beam search. This
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d
SegmentD Segment2 Moses

BLEU time BLEU time BLEU time
cs-en 8 13.671 5m31s 17.42 2m49s 17.56 3m32s
de-en 12 25.89 9m02s 26.69 5m25s 26.69 7m37s
es-en 4 32.02 4m27s 32.01 3m58s 32.03 4m01s
fi-en 8 23.02 5m03s 23.66 3m09s 23.73 3m37s
fr-en 4 31.42 4m58s 31.43 4m23s 31.45 4m20s
it-en 4 28.44 4m26s 28.44 3m57s 28.41 3m36s
nl-en 8 24.96 7m53s 25.13 5m20s 25.16 5m56s
pt-en 4 31.06 4m28s 31.05 4m00s 31.05 3m31s
sv-en 4 31.33 3m58s 31.35 3m30s 31.34 3m02s
vi-en 8 20.482 3m39s 20.96 2m08s 20.95 2m40s

Figure 3: Comparison of beam search under the
new decoding algorithm and the Moses decoder.
We show the BLEU score and the decoding time
of three beam search based decoding methods.

section describes experiments comparing beam
search under the new algorithm to the method of
Koehn et al. (2003). Throughout this section we
refer to the algorithm of Chang and Collins (2017)
as the “new” decoding algorithm.

Data. We use the Europarl parallel corpus (Ver-
sion 7)3 (Koehn, 2005) for all language pairs ex-
cept for Vietnamese-English (vi-en). For Czech-
English (cs-en), we use the Newstest2015 as the
development set and Newstest2016 as the test set.
For European languages other than Czech, we
use the development and test set released for the
Shared Task of WPT 20054. For vi-en, we use the
IWSLT’15 data.

3.1 Search Space with a Bigram Model

We first analyze the properties of the algorithm by
running the exact decoding algorithm with a bi-
gram language model and a fixed distortion limit
of four, with no pruning. In Figure 2, we plot the
number of transitions computed versus sentence
length for translation of 2,000 German sentences
to English. The figure confirms that the search
space grows linearly with the number of words in
the source sentence.

3.2 Beam Search under the New Algorithm

Even though the exact algorithm is linear time in
the input sentence length, other factors (the depen-

1Unable to produce translations for 36 sentences.
2Unable to produce translations for one sentence.
3http://www.statmt.org/europarl/
4ACL 2005 Workshop on Building and Using Parallel

Texts.

# segments # sentences percentage
1 636 34.93%
2 1,136 62.38%
3 49 2.69%

(a) The distribution of the number of segments required for
the optimal solutions. Note that the distortion limit is four.

# segments # sentences percentage
1 119,428 15.97%
2 541,833 72.44%
3 82,869 11.08%
4 3,747 0.50%
5 128 0.02%
6 1 0.00%

(b) The distribution of the number of segments required for
reordering the parsed German sentence.

Figure 4: The number of segments required for
German-to-English translation.

dence on d, l, and h, as described above) make the
exact algorithm too costly to be useful in practice.
We experiment with beam search under the new
algorithm,5 both with and without further pruning
or restriction.

We experimented with a segment constraint on
the new algorithm: more specifically, we describe
experiments with a hard limit r ≤ 2 on the number
of segments π1 . . . πr used in any translation.

Figure 3 shows results using a trigram language
model for the new algorithm with beam search
(SegmentD), the new algorithm with beam search
and a hard limit r ≤ 2 on the number of segments
(Segment2), and Moses. A beam size of 100 is
used with all the algorithms. For each language
pair, we pick the distortion limit that maximizes
the BLEU score for Moses. Moses was used to
train all the translation models. It can be seen that
the Segment2 algorithm gives very similar perfor-
mance to Moses, while SegmentD has inferior per-
formance for languges which require a larger dis-
tortion limit.

3.3 Experiments on the Number of Segments
Required for German-to-English
Translation

Finally, we investigate empirically how many seg-
ments (the maximum value of r) are required for
translation from German to English. In a first ex-
periment, we use the system of Chang and Collins
(2011) to give exact search for German-to-English

5See Section 5.1 in Chang and Collins (2017)
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translation under a trigram language model with a
distortion limit d = 4, and then look at the maxi-
mum value for r for each optimal translation. Out
of 1,821 sentences, 34.9% have a maximum value
of r = 1, 62.4% have r = 2, and 2.69% have
r = 3 (Table 4a). No optimal translations require
a value of r greater than 3. It can be seen that very
few translations require more than 2 segments.

In a second experiment, we take the reordering
system of Collins et al. (2005) and test the maxi-
mum value for r on each sentence to capture the
reordering rules. Table 4b gives the results. It can
be seen that over 99% of sentences require a value
of r = 3 or less, again suggesting that for at least
this language pair, a choice of r = 3 or r = 4 is
large enough to capture the majority of reorderings
(assuming that the rules of Collins et al. (2005) are
comprehensive).

4 Conclusion

The goal of this paper was to understand the em-
pirical performance of a newly proposed decoding
algorithm that operates from left to right on the
source side. We compare our implementation of
the new algorithm with the Moses decoder. The
experimental results demonstrate that the new al-
gorithm combined with beam search and segment-
based pruning is competitive with the Moses de-
coder. Future work should consider integration of
the method with more recent models, in particular
neural translation models.
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