
Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing, pages 1482–1488
Copenhagen, Denmark, September 7–11, 2017. c©2017 Association for Computational Linguistics

Instance Weighting for Neural Machine Translation Domain Adaptation

Rui Wang1, Masao Utiyama1, Lemao Liu2, Kehai Chen1,3 and Eiichiro Sumita1

1National Institute of Information and Communications Technology (NICT)
2Tencent AI Lab

3Harbin Institute of Technology
{wangrui, mutiyama and eiichiro.sumita}@nict.go.jp

lemaoliu@gmail.com and khchen@hit.edu.cn

Abstract

Instance weighting has been widely
applied to phrase-based machine
translation domain adaptation. However,
it is challenging to be applied to
Neural Machine Translation (NMT)
directly, because NMT is not a linear
model. In this paper, two instance
weighting technologies, i.e., sentence
weighting and domain weighting with
a dynamic weight learning strategy, are
proposed for NMT domain adaptation.
Empirical results on the IWSLT English-
German/French tasks show that the
proposed methods can substantially
improve NMT performance by up to
2.7-6.7 BLEU points, outperforming the
existing baselines by up to 1.6-3.6 BLEU
points.

1 Introduction

In Statistical Machine Translation (SMT),
unrelated additional corpora, known as out-of-
domain corpora, have been shown not to benefit
some domains and tasks, such as TED-talks and
IWSLT tasks (Axelrod et al., 2011; Luong and
Manning, 2015). Several Phrase-based SMT
(PBSMT) domain adaptation methods have been
proposed to overcome this problem of the lack
of substantial data in some specific domains and
languages:

i) Data selection. The main idea is to score the
out-of-domain data using models trained from the
in-domain and out-of-domain data, respectively.
Then select training data by using these ranked
scores (Moore and Lewis, 2010; Axelrod et al.,
2011; Duh et al., 2013; Hoang and Sima’an,
2014a,b; Durrani et al., 2015; Chen et al., 2016).

ii) Model Linear Interpolation. Several PBSMT
models, such as language models, translation
models, and reordering models, individually
corresponding to each corpus, are trained. These
models are then combined to achieve the best
performance (Sennrich, 2012; Sennrich et al.,
2013; Durrani et al., 2015, 2016; Imamura and
Sumita, 2016).

iii) Instance Weighting. Instance Weighting has
been applied to several NLP domain adaptation
tasks (Jiang and Zhai, 2007), such as POS tagging,
entity type classification and especially PBSMT
(Matsoukas et al., 2009; Shah et al., 2010; Foster
et al., 2010; Rousseau et al., 2011; Zhou et al.,
2015; Wang et al., 2016; Imamura and Sumita,
2016). They firstly score each instance/domain
by using rules or statistical methods as a weight,
and then train PBSMT models by giving each
instance/domain the weight.

For Neural Machine Translation (NMT) domain
adaptation, the sentence selection can also be
used (Chen et al., 2016; Wang et al., 2017).
Meanwhile, the model linear interpolation is not
easily applied to NMT directly, because NMT
is not a linear model. There are two methods
for model combination of NMT: i) the in-domain
model and out-of-domain model can be ensembled
(Jean et al., 2015). ii) an NMT further training
(fine-tuning) method (Luong and Manning, 2015).
The training is performed in two steps: first, the
NMT system is trained using out-of-domain data,
and then further trained using in-domain data.
Recently, Chu et al. (2017) make an empirical
comparison of NMT further training (Luong and
Manning, 2015) and domain control (Kobus et al.,
2016), which applied word-level domain features
to word embedding layer. This approach provides
natural baselines for comparison.

To the best of our knowledge, there is no
existing work concerning instance weighting in
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NMT. The main challenge is that NMT is not
a liner model or combination of linear models,
where the instance weight can be integrated into
directly. To overcome this difficulty, we try to
integrate the instance weight into NMT objective
function. Two technologies, i.e., sentence
weighting and domain weighting, are proposed to
apply instance weighting to NMT. In addition, we
also propose a dynamic weight learning strategy
to tune the proposed domain weights.

2 NMT Background

An attention based NMT is a neural network that
directly models the conditional probability p(y|x)
of translating a source sentence, x = {x1, ..., xn},
to a target sentence, y = {y1, ..., ym} (Luong
et al., 2015):

p(y|x) =
m∏

j=1

softmax(g(yj |yj−1, sj , cj)), (1)

with g being the transformation function that
outputs a vocabulary-sized vector, sj being the
RNN hidden unit and cj being the weighted sum
of source annotations Hx. The NMT training
objective (maximize) is formulated as,

J =
∑

(x,y)∈D
log p(y|x), (2)

where D is the parallel training corpus.

3 Instance weighting for NMT

In this paper, we integrate the instance weight into
the NMT objective function. Our main hypothesis
is that the in-domain data should have a higher
weight in the NMT objective function than the out-
of-domain ones.

The training corpus D can be divided into in-
domain one Din and the out-of-domain one Dout.
So, the Eq. (2) can be rewritten as,

J = (
∑

〈x,y〉∈Din

log p(y|x) +
∑

〈x′,y′〉∈Dout

log p(y′|x′)), (3)

where 〈x, y〉 is a parallel sentence pair.

3.1 Sentence Weighting
A general method is to give each sentence a
weight. As Axelrod et al. (2011) mentioned, there
are some pseudo in-domain data in out-of-domain

data, which are close to in-domain data. We
can apply their bilingual cross-entropy method to
score each 〈xi, yi〉 as a weight λi, the higher the
better,1

λi = δ(Hout(xi)−Hin(xi)
+Hout(yi)−Hin(yi)).

(4)

Take Hin(xi) as example, it indicates the
cross-entropy between sentence xi and in-domain
language model (Axelrod et al., 2011). Min-max
normalization δ (Priddy and Keller, 2005) is used
to normalize each λi into range [0, 1],

δ(λi) =
λi − λmin

λmax − λmin
. (5)

The λ for in-domain data will set as one
directly. The updated objective function by
sentence weighting (Jsw) can be rewritten as,

Jsw =
∑

〈xi,yi〉∈D
λi log p(yi|xi). (6)

3.2 Domain Weighting
An alternative way is to modify the weight of each
domain in objective function. For we design a
weight parameter λin for in-domain data. The
updated objective function by domain weighting
(Jdw) can be estimated as,

Jdw = λin

∑
(x,y)∈Din

logp(y|x) +
∑

(x′,y′)∈Dout

logp(y′|x′). (7)

3.2.1 Batch weighting
A straightforward domain weighting
implementation is to modify the ratio between
in-domain and out-of-domain data in each NMT
mini-batch. That is, we can increase the in-domain
weight by increasing the number of in-domain
sentences included in a mini-batch. The updated
in-domain data ratioRin in each NMT mini-batch
can be calculated as,

Rin =
|D̂in|

|D̂′in|+ |D̂′out|
=

λin

λin + 1
, (8)

where |D̂in| and |D̂out| are the sentence number
from in and out-of-domain data in each mini-
batch, respectively.

1The original cross-entropy is the lower the better, and we
swap the in and out order.
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Take the IWSLT EN-DE corpus in Table 1
as example, the original ratio Rin between in-
domain data and all of the data is around 1:20.
That is, for a 80-sized mini-batch, it would include
around four sentence from in-domain data and
76 from out-of-domain data on average. For
batch weighting, we can set the ratio Rin as 1:2
manually. That is, we load 40 in-domain and 40
out-of-domain sentences into each mini-batch.

In practice, we create two data iterators, one
for in-domain and one for out-of-domain. Both
of the in and out-of-domain data will be randomly
shuffled and then loaded into corresponding data
iterators before each epoch. For each mini-
batch, the data from these two data iterators are
determined by the ratio Rin. Because the size
of out-of-domain data is much larger than the in-
domain one, the in-domain data will be loaded
and trained for several epochs, while the out-of-
domain data is only trained for one epoch at the
same time.

3.2.2 Dynamic Weight Tuning
For the batch weight tuning, one way is to fix
the weights for several systems and select the
best-performed system on the development data.
Besides this, we also tried to learn the batch
weighting dynamically. That is, the initial in-
domain data ration in mini-batch is set as 0%. We
increased 10% ratio of in-domain data in the mini-
batch if the training cost does not decrease for ten-
time evaluations (the training cost is evaluated on
development data set every 1K batches training).

4 Experiments

4.1 Data Sets

The proposed methods were evaluated by adapting
WMT corpora to IWSLT (mainly contains TED
talks) corpora.2 Statistics on data sets were shown
in Table 1.

• IWSLT 2015 English (EN) to German (DE)
training corpus (Cettolo et al., 2015) was
used as in-domain training data. Out-
of-domain corpora contained WMT 2014
English-German corpora. This adaptation
corpora settings were the same as those used
in (Luong and Manning, 2015).

2In practice, we also also evaluated on the Chinese-to-
English NIST task. Due to limited time and space, we only
showed the IWSLT task.

• IWSLT 2014 English (EN) to French (FR)
training corpus (Cettolo et al., 2014) was
used as in-domain training data. Out-
of-domain corpora contained WMT 2015
English-French corpora. This adaptation
corpora settings were nearly the same as
those used in (Wang et al., 2016).

IWSLT EN-DE Sentences Tokens
TED training (in-domain) 207.1K 3.2M
WMT training (out-of-domain) 4.5M 119.9M
TED tst2012 (development) 1.7K 29.2K
TED tst2013 (test) 0.9K 19.6K
TED tst2014 (test) 1.3K 23.8K
IWSLT EN-FR Sentences Tokens
TED training (in-domain) 178.1K 3.5M
WMT training (out-of-domain) 17.8M 450.0M
TED dev2010 (development) 0.9K 20.1K
TED tst2010 (test) 1.6K 31.9K
TED tst2011 (test) 0.8K 21.4K

Table 1: Statistics on data sets.

4.2 NMT Systems
We implemented the proposed method in
Nematus3 (Sennrich et al., 2017) and online
available4, which is one of the state-of-the-art
NMT frameworks. The default settings of
Nematus were applied to all NMT systems (both
baselines and the proposed methods): the word
embedding dimension was 620 and the size of
a hidden layer was 1000, the batch size was 80,
the maximum sequence length were 50, and the
beam size for decoding was 10. The 30K-sized
vocabulary, which was created by using both in
and out-of-domain data, were applied to all of the
systems. Default dropout was applied. Each NMT
model was trained for 500K batches by using
ADADELTA optimizer (Zeiler, 2012). Training
was conducted on a single Tesla P100 GPU,
taking 7-10 days. We observed that all of the
systems converged before 500K batches training.

For the coding cost of duplicating data, we
only add two data iterators as mentioned in 3.2.1.
For the training cost, using batch weighting can
a accelerate the model converge on development
data in our experiments, because the development
data are also in-domain data. Overall, the
overhead cost is not too much.

3https://github.com/EdinburghNLP/
nematus

4https://github.com/wangruinlp/nmt_
instance_weighting The batch weighting part was
partially motivated by Nematus.
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4.3 Results and Analysis

In Tables 2 and 3, SMT indicates standard PBSMT
(Koehn et al., 2007) models were trained by
corresponding corpora (in, out, and in+out). The
in, out and in + out indicate that the in-domain,
out-of-domain and their mixture were used as the
NMT training corpora.

For related NMT domain adaptation baselines,
“ensemble” indicates in and out models were
ensembled in decoding and “sampler” indicates
that we sampled duplicated in-domain data into
training data, to make the ratio between in/out be
1:1 manually. Actually, if the mini-batch size was
as large as the whole corpus, the sampling method,
and batch weighting method would be the same.
Batch weighting method makes the data more
balanced in each single mini-batch. However, the
mini-batch size is limited, so these two methods
are different.

We also compared Axelrod et al. (2011)’s
sentence selection and Kobus et al. (2016)’s
domain control method, which added a word
feature (in or out) to each word in the training
corpora. For all of the baselines, we tried our best
to re-implemented their methods. The translation
performance was measured by the case-insensitive
BLEU (Papineni et al., 2002), with the paired
bootstrap re-sampling test (Koehn, 2004)5.

IWSLT EN-DE tst2012 tst2013 tst2014
SMT (in) 20.70 21.01 18.50
SMT (out) 18.82 18.12 16.85
SMT (in + out) 20.04 20.23 17.08
in 23.07 25.40 21.45
out 18.87 21.23 17.07
in + out 21.31 23.54 19.41
ensemble (in + out) 24.34 25.83 22.50
sampler 23.37 25.22 21.91
Kobus et al. (2016) 23.23 25.70 22.03
Axelrod et al. (2011) 23.87 25.52 22.41
sentence weighting 23.46 26.26+ 22.51
domain weighting 23.55 25.47 21.45
batch weighting (bw) 25.33++ 27.45++ 23.68++
bw + dynamic tuning 26.03++ 28.58++ 24.12++

Table 2: IWSLT EN-DE results. The marks (the
same in Tables 3) indicate whether the proposed
methods were significantly better than the best
performed baselines in bold (“++”: better at
significance level α = 0.01, “+”: α = 0.05).

In Tables 2 and 3, we reached the following
observations:

5http://www.ark.cs.cmu.edu/MT

IWSLT EN-FR dev2010 tst2010 tst2011
SMT (in) 27.35 31.06 32.50
SMT (out) 26.26 30.04 29.29
SMT (in + out) 27.16 30.00 30.26
in 27.66 32.11 35.22
out 24.93 29.60 32.27
in + out 25.14 29.94 33.50
ensemble (in + out) 28.48 33.63 37.67
sampler 28.67 34.12 38.08
Kobus et al. (2016) 27.87 33.81 37.44
Axelrod et al. (2011) 27.85 34.03 38.30
sentence weighting 29.14+ 34.80+ 38.73
domain weighting 29.05 34.72+ 39.06+
batch weighting(bw) 29.81++ 35.54++ 39.48++
bw + dynamic tuning 30.40++ 36.50++ 41.90++

Table 3: IWSLT EN-FR results.

• Adding out-of-domain to in-domain data, or
directly using out-of-domain data, degraded
NMT performance.

• The proposed instance weighting methods
substantially improved NMT performance
(in) up to 2.7-6.7 BLEU points, and
outperformed the best existing baselines up
to 1.6-3.6 BLEU points.

• Among the proposed methods, batch
weighting performed the best, although
it was the simplest one. The reason may
be: a) the batch weighting method directly
balanced the in-domain data ratio in each
mini-batch, to overcome the in-domain data
sparse problem. b) The batch weight can be
tuned on development data, in comparison
with sentence weighting method, whose
weights were learned and fixed before NMT
training.

• The dynamic weight tuning strategy
outperformed the fixed weight tuning
strategy by 0.6-2.4 BLEU points.

5 Discussions

5.1 Weights Tuning

Figure 1 showed the batch weight tuning
experiments on development data of IWSLT EN-
DE, where the horizontal axis indicates the in-
domain ratio Rin in Eq. (8). “Fix” indicates
several systems were trained with fixed weights
and the best-performed system would be selected.
“Dynamic” indicates that only one system was
trained and the domain weight was learned
dynamically as mentioned in Section 3.2.2.
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Figure 1: Batch weight tuning on IWSLT EN-DE.

As shown in Figure 1, the fixed weight learning
reached the highest BLEU on dev at around 50%
and dynamic learning at around 60%. If we
keep training the dynamic learning after 100% in-
domain data were used, the performance would
trend to become similar to only using in-domain
data from the beginning.

5.2 Further Training
Further training (Luong and Manning, 2015) can
be viewed as a special case of the proposed
batch weighting method. That is, it trained NMT
model by using 0% in-domain data at first and
then using 100% in-domain data. In comparison,
our batch weighting kept some ratio of out-of-
domain data during the whole training process. In
addition, further training can work together with
batch weighting. That is, NMT was trained with
0% in-domain data at first and then with batch
weighing method for further training (Luong + bw
in Table 4). . Rin was tuned on development data.
As mentioned in Section 3.2.2, “bw + dynamic
tuning” indicates that this batch weighting was
learned dynamically.

IWSLT EN-DE tst2012 tst2013 tst2014
Luong 25.68 28.14 24.31
Luong + bw 25.87 28.54+ 24.53
bw + dynamic tuning 26.03 28.58+ 24.12
IWSLT EN-FR dev2010 tst2010 tst2011
Luong 29.33 35.36 40.62
Luong + bw 29.65 35.65 41.20+
bw + dynamic tuning 30.40++ 36.50++ 41.90++

Table 4: Further training (Luong and Manning,
2015) is the baseline for significance test.

Table 4 shows that batch weighting worked
synergistically with Luong’s further training
method, and slightly improved NMT performance.
The “bw + dynamic tuning” method outperformed
both of them. We observed that the original further
training overfitted quickly after around one epoch
training. Keeping some out-of-domain data would

prevent further training from overfitting.

6 Conclusion and Future Work

In this paper, we proposed two straightforward
instance weighting methods with a dynamic
weight learning strategy for NMT domain
adaptation. Empirical results on IWSLT EN-
DE/FR tasks showed that the proposed methods
can substantially improve NMT performances
and outperform state-of-the-art NMT adaptation
methods.

The current sentence weighting method is a
simple implementation of the existing PBSMT
adaptation methods. In the future, we will try
to study a specific sentence weighting method for
NMT domain adaptation.
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