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Abstract

Intelligent selection of training data has
proven a successful technique to simul-
taneously increase training efficiency and
translation performance for phrase-based
machine translation (PBMT). With the
recent increase in popularity of neural
machine translation (NMT), we explore
in this paper to what extent and how
NMT can also benefit from data selection.
While state-of-the-art data selection (Ax-
elrod et al., 2011) consistently performs
well for PBMT, we show that gains are
substantially lower for NMT. Next, we in-
troduce dynamic data selection for NMT, a
method in which we vary the selected sub-
set of training data between different train-
ing epochs. Our experiments show that the
best results are achieved when applying
a technique we call gradual fine-tuning,
with improvements up to +2.6 BLEU over
the original data selection approach and up
to +3.1 BLEU over a general baseline.

1 Introduction

Recent years have shown a rapid shift from
phrase-based (PBMT) to neural machine transla-
tion (NMT) (Sutskever et al., 2014; Cho et al.,
2014; Bahdanau et al., 2014) as the most common
machine translation paradigm. With large quan-
tities of parallel data, NMT outperforms PBMT
for an increasing number of language pairs (Bo-
jar et al., 2016). Unfortunately, training an NMT
model is often a time-consuming task, with train-
ing times of several weeks not being unusual.

Despite its training inefficiency, most work in
NMT greedily uses all available training data for
a given language pair. However, it is unlikely

∗Work done while at University of Amsterdam

that all data is equally helpful to create the best-
performing system. In PBMT, this issue has been
addressed by applying intelligent data selection,
and it has consistently been shown that using more
data does not always improve translation quality
(Moore and Lewis, 2010; Axelrod et al., 2011;
Gascó et al., 2012). Instead, for a given translation
task, the training bitext likely contains sentences
that are irrelevant or even harmful, making it ben-
eficial to keep only the most relevant subset of the
data while discarding the rest, with the additional
benefit of smaller models and faster training.

Motivated by the success of data selection in
PBMT, we investigate in this paper to what ex-
tent and how NMT can benefit from data selec-
tion as well. While data selection has been ap-
plied to NMT to reduce the size of the data (Cho
et al., 2014; Luong et al., 2015b), the effects on
translation quality have not been investigated. In-
tuitively, and confirmed by our exploratory exper-
iments in Section 5.1, this is a challenging task;
NMT systems are known to under-perform when
trained on limited parallel data (Zoph et al., 2016;
Fadaee et al., 2017), and do not have a separate
large-scale target-side language model to compen-
sate for smaller parallel training data.

To alleviate the negative effect of small training
data on NMT, we introduce dynamic data selec-
tion. Following conventional data selection, we
still dramatically reduce the training data size, fa-
voring parts of the data which are most relevant to
the translation task at hand. However, we exploit
the fact that the NMT training process iterates over
the training corpus in multiple epochs, and we al-
ter the quantity or the composition of the training
data between epochs. The proposed method re-
quires no modifications to the NMT architecture
or parameters, and substantially speeds up training
times while simultaneously improving translation
quality with respect to a complete-bitext baseline.
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In summary, our contributions are as follows:
(i) We compare the effects of a commonly used

data selection approach (Axelrod et al., 2011) on
PBMT and NMT using four different test sets. We
find that this method is much less effective for
NMT than for PBMT, while using the exact same
training data subsets.

(ii) We introduce dynamic data selection as a
way to make data selection profitable for NMT.
We explore two techniques to alter the selected
data subsets, and find that our method called grad-
ual fine-tuning improves over conventional static
data selection (up to +2.6 BLEU) and over a
high-resource general baseline (up to +3.1 BLEU).
Moreover, gradual fine-tuning approximates in-
domain fine-tuning in ∼20% of the training time,
even when no parallel in-domain data is available.

2 Static data selection

As a first step towards dynamic data selection
for NMT, we compare the effects of a commonly
used, state-of-the-art data selection method (Axel-
rod et al., 2011) on both neural and phrase-based
MT. Briefly, this approach ranks sentence pairs in
a large training bitext according to their difference
in cross-entropy with respect to an in-domain cor-
pus (i.e., a corpus representing the test data) and a
general corpus. Next, the top n sentence pairs with
the highest rank—thus lowest cross-entropy—are
selected and used for training an MT system.

Formally, given an in-domain corpus I , we first
create language models from the source side f of I
(LMI,f ) and the target side e of I (LMI,e). We then
draw a random sample (similar in size to I) of the
large general corpus G and create language mod-
els from the source and target sides of G: LMG,f

and LMG,e, respectively. Note that the data for
creating these LMs need not be parallel but can be
independent corpora in both languages.

Next, we compute for each sentence pair s in G
four cross-entropy scores, defined as:

HC,sb
= −

∑
p (sb) log

(
LMC,b (sb)

)
, (1)

where C ∈ {I,G} is the corpus, b ∈ {f, e} refers
to the bitext side, and sb is the bitext side b of sen-
tence pair s in the parallel training corpus.

To find sentences that are similar to the in-
domain corpus, i.e., have low HI , and at the same
time dissimilar to the general corpus, i.e., have
high HG, we compute for each sentence pair s

the bilingual cross-entropy difference CEDs fol-
lowing Axelrod et al. (2011):

CEDs = (HI,sf
−HG,sf

)+(HI,se−HG,se). (2)

Finally, we rank all sentence pairs s ∈ G accord-
ing to their CEDs, and then select only the top n
sentence pairs with the lowest CEDs.

Following related work by Moore and Lewis
(2010), we restrict the vocabulary of the LMs to
the words occurring at least twice in the in-domain
corpus. To analyze the quality of the selected data
subsets, we also run experiments on random se-
lections, all performed in threefold. Finally, we
always use the exact same selection of sentence
pairs in equivalent PBMT and NMT experiments.

LSTM versus n-gram The described data se-
lection method uses n-gram LMs to determine the
domain-relevance of sentence pairs. We adhere
to this setting for our comparative experiments on
PBMT and NMT (Section 5.1). However, when
applying data selection to NMT, we examine the
potential benefit of replacing the conventional n-
gram LMs with LSTMs1. These have the advan-
tage to remember longer histories, and do not have
to back off to shorter histories when encountering
out-of-vocabulary words. In this neural variant to
rank sentences, the score for each sentence pair in
G is still computed as the bilingual cross-entropy
difference in Equation (2). In addition, we use the
same in-domain and general corpora as with the n-
gram method, and we again restrict the vocabulary
to the most frequent words.

3 Dynamic data selection

While data selection aims to discard irrelevant
data, it can also exacerbate the problem of low
vocabulary coverage and unreliable statistics for
rarer words in the ‘long tail’, which are major is-
sues in NMT (Luong et al., 2015b; Sennrich et al.,
2016b). In addition, it has been shown that NMT
performance drops tremendously in low-resource
scenarios (Zoph et al., 2016; Fadaee et al., 2017;
Koehn and Knowles, 2017).

To overcome this problem, we introduce dy-
namic data selection, in which we vary the se-
lected data subsets during training. Unlike other
MT paradigms, which require training data to be
fixed during the entire training process, NMT it-
erates over the training corpus in several epochs,

1We use four-layer LSTMs with embedding and hidden
sizes of 1,024, which we train for 30 epochs.
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a) Dynamic data selection: sampling b) Dynamic data selection: gradual fine-tuning
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Figure 1: Illustration of two dynamic bitext selection techniques for NMT: sampling (left) and gradual
fine-tuning (right). Measured over 16 training epochs (which is used in this work), the total training time
of both examples would be ∼30% of the training time needed when using the complete bitext.

allowing to use a different subset of the training
data in every epoch.

Dynamic data selection starts from a relevance-
ranked bitext, which we create using CED scores
as computed in Equation (2). Given this ranking,
we investigate two dynamic data selection tech-
niques2 that vary per epoch the composition or the
size of the selected training data. Both techniques
aim to favor highly relevant sentences over less
relevant sentences while not completely discard-
ing the latter. In all experiments, we use a fixed
vocabulary created from the complete bitext.

While we use in this work a domain-relevance
ranking of the bitext following Axelrod et al.
(2011), dynamic data selection can also be ap-
plied using other ranking criteria, for example lim-
iting redundancy in the training data (Lewis and
Eetemadi, 2013) or complementing similarity with
diversity (Ruder and Plank, 2017).

Sampling sentence pairs In the first technique,
illustrated in Figure 1a, we sample for every epoch
n sentence pairs from G, using a distribution
computed from the domain-specific CEDs scores.
Concretely, this is done as follows:

First, since higher ranked sentence pairs have
lower CEDs scores, and they can be either nega-
tive or positive, we scale and invert CEDs scores
such that 0 ≤ CED′s ≤ 1 for each sentence pair
s ∈ G:

CED′s = 1− CEDs −min(CEDG)

max(CEDG)−min(CEDG)
, (3)

2Code for bitext ranking and both selection techniques:
github.com/marliesvanderwees/dds-nmt.

where CEDG refers to the set of CEDs scores for
bitext G.

Next, we convert CED′s scores to relative
weights, such that

∑
s∈Gw(s) = 1:

w(s) =
CED′s∑

si∈G CED′si

. (4)

We then use {w(s) : s ∈ G} to perform weighted
sampling, drawing for each epoch n sentence pairs
without replacement. While all selection weights
are very close to zero, higher ranked sentences
have a noticeably higher probability of being se-
lected than lower-ranked sentences; in practice
we find that top-ranked sentences get selected in
nearly each epoch, while bottom-ranked sentence
pairs get selected at most once. Note that the sam-
pled selection for any epoch is independent of se-
lections for all other epochs.

Gradual fine-tuning The second dynamic data
selection technique, see Figure 1b, is inspired by
the success of domain-specific fine-tuning (Luong
and Manning, 2015; Zoph et al., 2016; Sennrich
et al., 2016a; Freitag and Al-Onaizan, 2016), in
which a model trained on a large general-domain
bitext is trained for a few additional epochs only
on small in-domain data. However, rather than
training a full model on the complete bitext G, we
gradually decrease the training data size, starting
from G and keeping only the top n sentence pairs
for the duration of η epochs, where the top n pairs
are defined by their CEDs scores. Given its re-
semblance to fine-tuning, we refer to this variant
as gradual fine-tuning.
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During gradual fine-tuning, the selection size n
is a function of epoch i:

n(i) = α · |G| · βb(i−1)/ηc. (5)

Here 0 ≤ α ≤ 1 is the relative start size, i.e., the
fraction of general bitext G used for the first se-
lection, 0 ≤ β ≤ 1 is the retention rate, i.e., the
fraction of data to be kept in each new selection,
and η ≥ 1 is the number of consecutive epochs
each selected subset is used. Note that bi/η + 1c
indicates rounding down i/η+ 1 to the nearest in-
teger. For example, if we start with the complete
bitext (α = 1), select the top 60% (β = 0.6) every
second epoch (η = 2), then we run epochs 1 and
2 with a subset of size |G|, epochs 3 and 4 with
a subset of size 0.6 · |G|, epochs 5 and 6 with a
subset of size 0.36 · |G|, and so on. For every size
n, the actual selection contains the top n sentences
pairs of G.

4 Experimental settings

We evaluate static and dynamic data selection on
a German→English translation task comprising
four test sets. Below we describe the MT systems
and data specifications.

4.1 Machine translation systems
While the main aim of this paper is to improve data
selection for NMT, we also perform comparative
experiments using PBMT. Our PBMT system is
an in-house system similar to Moses (Koehn et al.,
2007). To create optimal PBMT systems given
the available resources, we apply test-set-specific
parameter tuning using PRO (Hopkins and May,
2011). In addition, we use a linearly interpolated
target-side language model trained with Kneser-
Ney smoothing on 480M tokens of data in various
domains. LM interpolation weights are also opti-
mized per test set. Consistent with Axelrod et al.
(2011), we do not vary the target-side LM between
different experiments on the same test set. All n-
gram models in our work are 5-gram.

For our NMT experiments we use an in-house
encoder-decoder3 model with global attention as
described in Luong et al. (2015a). This choice
comes at the cost of optimal translation quality
but allows for a relatively fast realization of large-
scale experiments given our available resources.
Both the encoder and decoder are four-layer unidi-
rectional LSTMs, with embedding and layer sizes

3github.com/ketranm/tardis

of 1,000. We uniformly initialize all parameters,
and use SGD with a mini-batch size of 64 and an
initial learning rate of 1, which is decayed by a
factor two every epoch after the fifth epoch. We
use dropout with probability 0.3, and a beam size
of 12. We train for 16 epochs and test on the model
from the last epoch. All NMT experiments are run
on a single NVIDIA Titan X GPU.

Train Dev/valid Test

Corpus Lines Tokens Lines Tokens Lines Tokens

EMEA 206K 3.3M 3.9K 59K 5.8K 93K
Movies 101K 1.2M 4.5K 54K 7.1K 87K
TED 189K 3.3M 2.5K 50K 5.4K 99K
WMT 3.8M 84M 3.0K 64K 3.0K 65K

Mix 4.3M 92M 3.5K 61K – –

Table 1: Data specifications with tokens counted
on the German side. The WMT training cor-
pus contains Commoncrawl, Europarl, and News
Commentary but no in-domain news data.

4.2 Training and evaluation data

We evaluate all experiments on four domains: (i)
EMEA medical guidelines (Tiedemann, 2009), (ii)
movie dialogues (van der Wees et al., 2016) con-
structed from OpenSubtitles (Lison and Tiede-
mann, 2016), (iii) TED talks (Cettolo et al.,
2012), and (iv) WMT news. For TED, we use
IWSLT2010 as development set and IWSLT2011-
2014 as test set, and for WMT we use new-
stest2013 as development set and newstest2016
as test set. We train our systems on a mixture
of domains, comprising Commoncrawl, Europarl,
News Commentary, EMEA, Movies, and TED.
Corpus specifications are listed in Table 1.

The in-domain LMs used to rank training sen-
tences for data selection are trained on small por-
tions of in-domain parallel data whenever avail-
able (3.3M, 1.2M and 3.3M German tokens for
EMEA, Movies and TED, respectively). Since
no sizeable in-domain parallel text is available for
WMT, we independently sample 200K sentences
from the WMT monolingual News Crawl corpora
(3.3M German tokens or 3.5M English tokens).
This demonstrates the applicability of data selec-
tion techniques even in cases where one lacks par-
allel in-domain data.

Before running data selection, we preprocess
our data by tokenizing, lowercasing and remov-
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Figure 2: PBMT (purple) and NMT (green) German→English results of Axelrod data selection and
random data selection (average of three runs) for four domains. Purple and green stars indicate BLEU
scores when only the available in-domain data is used. We use selections of the in-domain size |I|, and
5%, 10%, 20%, and 50% of the complete bitext, which are exactly the same for PBMT and NMT.

ing sentences that are longer than 50 tokens or that
are identified as a different language. After selec-
tion, we apply Byte-pair encoding (BPE, Sennrich
et al. (2016b)) with 40K merge operations on ei-
ther side of the complete mix-of-domains training
bitext. For our NMT experiments we use BPE-
processed corpora on both bitext sides, while for
PBMT we only apply BPE to the German side.
Our NMT systems use a vocabulary size of 40K
on both the source and target side.

5 Results

Below we discuss the results of our translation ex-
periments using static and dynamic data selection,
measuring translation quality with case-insensitive
untokenized BLEU (Papineni et al., 2002).

5.1 Static data selection for PBMT and NMT

We first compare the effects of static data selec-
tion with n-gram LMs on both NMT and PBMT
using various selection sizes. Concretely, we se-
lect the top n sentence pairs such that the number
of selected tokens t ∈ {5%, 10%, 20%, 50%

}
of

G, or t = |I| (the in-domain corpus size). Fig-
ure 2 shows German→English translation perfor-

mance in BLEU for our four test sets. The benefits
of n-gram-based data selection for PBMT (purple
circles) are confirmed: In all test sets, the selec-
tion of size |I| (dotted vertical line) yields better
performance than using only the in-domain data of
the exact same size (purple star), and at least one
of the selected subsets—often using only 5% of
the complete bitext—outperforms using the com-
plete bitext (light purple line). We also show that
the informed selections are superior to random se-
lections of the same size (purple diamonds).

In NMT, results of n-gram-based data selection
(green triangles) vary: While for Movies a selec-
tion of only 10% outperforms the complete bitext
(light green line), none of the selected subsets for
other test sets is noticeably better than the full bi-
text.4 Interestingly, the same selections of size |I|
that proved useful in PBMT, never beat the sys-
tem that uses exactly the available in-domain data
(green star), indicating that the current selections
can be further improved for NMT. In all scenarios
we see that NMT suffers much more from small-
data settings than PBMT. Finally, the random se-

4Validation cross-entropy converges after 10–12 epochs,
never reaching the scores of the complete bitext.
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lections (green squares) show that NMT not only
needs large quantities of data, but it is also affected
when the selected data is of low quality. In PBMT,
both low-quantity and low-quality scenarios ap-
pear to be compensated for by the large monolin-
gual LM on the target side.

When comparing the different test sets, we
observe that the impact of domain mismatch in
NMT with respect to PBMT is largest for the
two domains that are most distinct from the gen-
eral bitext, EMEA and Movies. For WMT, both
MT systems achieve very similar baseline results,
but translation quality deteriorates considerably in
data selection experiments, which is likely caused
by the lack of in-domain data in the general bitext.

LSTM versus n-gram Before proceeding with
dynamic data selection for NMT, we test whether
bitext ranking for NMT can be improved using
LSTMs rather than conventional n-gram LMs. Ta-
ble 2 shows NMT BLEU scores of a few differ-
ent sizes of selected subsets created using n-gram
LMs or LSTMs. While results vary among test
sets and selection sizes, we observe an average im-
provement of 0.4 BLEU when using LSTMs in-
stead of n-gram LMs. For PBMT, similar results
have been reported when replacing n-gram LMs
with recurrent neural LMs (Duh et al., 2013). In all
subsequent experiments we use relevance rankings
computed with LSTMs instead of n-gram LMs.

Selection LM type EMEA Movies TED WMT

5%
n-gram 29.8 17.4 22.6 8.1
LSTM 30.0 17.8 22.6 9.6

10%
n-gram 33.0 19.6 24.5 16.6
LSTM 33.0 19.7 24.7 17.4

20%
n-gram 34.8 19.0 25.6 21.9
LSTM 34.5 19.6 26.6 21.9

Table 2: NMT BLEU comparison between using
n-gram LMs and LSTMs for bitext ranking. Selec-
tion sizes concern the selected bitext subsets; LMs
are created from the exact same in-domain data.

5.2 Dynamic data selection for NMT

Equipped with a relevance ranking of sentence
pairs in bitext G, we now examine two variants of
dynamic data selection as described in Section 3.

We are interested in reducing training time
while limiting the negative effect on BLEU for
various domains. Therefore we report BLEU as

well as the relative training time of each exper-
iment. Since wall-clock times depend on other
factors such as the NMT architecture and memory
speed, we define training time as the total number
of tokens observed while training the NMT sys-
tem, i.e., the sum of tokens in the selected subsets
of all epochs. We report all training times relative
to the training time of our complete-bitext base-
line (i.e., 4.3M tokens × 16 epochs). Note that
this measure of training time corresponds closely
but not exactly to the number of model updates,
as the latter relies on the number of sentences,
which vary in length, rather than the number of
tokens in the training data. For completeness:
Training the 100% baseline takes 106 hours, while
our fastest dynamic selection variant takes 19–21
hours. Computing CED scores takes ∼15 minutes
when using n-gram LMs and 5–6 hours when us-
ing LSTMs.

Figure 3 shows BLEU scores of some selected
experiments as a function of relative training time.
Compared to static data selection (blue lines), our
weighted sampling technique (orange triangles)
yields variable results. When sampling a subset
of 20% of |G| from the top 50% of the ranked bi-
text, we obtain small improvements for TED and
WMT, but small drops for EMEA and Movies.
Other selection sizes (30% and 40%, not shown)
give similar results lacking a consistent pattern.

By contrast, our gradual fine-tuning method
performs consistently better than static selection,
and even beats the general baseline in three out of
four test sets. The displayed version uses settings
(α = 0.5, β = 0.7, η = 2) and is at least as fast as
static selection using 20% of the bitext, yielding
up to +2.6 BLEU improvement (for WMT news)
over this static version. Compared to the com-
plete baseline, this gradual fine-tuning method im-
proves up to +3.1 BLEU (for TED talks).

Table 3 provides detailed information on ad-
ditional experiments using other settings. For
all three test domains which are covered in
the parallel data—EMEA, Movies and TED—
improvements are highest when starting gradual
fine-tuning with only the top 50% of the ranked
bitext, which are also the fastest approaches. For
WMT, which is not covered in the general bi-
text, adding more data clearly benefits translation
quality. These findings are consistent with the
static data selection patterns; Using low-ranked
sentences on top of the most relevant selection
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Figure 3: Selected German→English translation results of dynamic data selection methods (orange and
red markers) compared to conventional static data selection (blue circles). Relative training time equals
the total number of training tokens relative to the complete baseline, which takes 106 hours to train and
is represented by the rightmost blue circle. Note that no parallel in-domain data is available for WMT
news. All y-axes are scaled equally for easy comparison of BLEU differences across domains.

Experiment Relative BLEU

Start size Retention rate β Decrease every training time EMEA Movies TED WMT

Static selection top 20% 20% 34.5 19.6 26.6 21.9

50% (α = 0.5) 0.7 η = 2 epochs 18–20% 36.1 (+1.6) 21.0 (+1.4) 29.1 (+2.5) 24.5 (+2.6)
50% (α = 0.5) 0.5 η = 4 epochs 21–23% 36.0 (+1.5) 21.2 (+1.6) 29.0 (+2.4) 25.0 (+3.1)
50% (α = 0.5) 0.6 η = 4 epochs 25–27% 35.6 (+1.1) 21.0 (+1.4) 28.5 (+1.9) 25.1 (+3.2)

100% (α = 1) 0.6 η = 2 epochs 29–31% 35.5 (+1.0) 21.1 (+1.5) 29.0 (+2.4) 25.6 (+3.7)
100% (α = 1) 0.7 η = 2 epochs 37–39% 35.9 (+1.4) 20.4 (+0.8) 28.2 (+1.6) 25.8 (+3.9)
100% (α = 1) 0.9 η = 1 epoch 50–52% 35.4 (+0.9) 19.6 (±0.0) 27.4 (+0.8) 26.1 (+4.2)

Complete bitext baseline 100% 34.8 18.8 26.0 26.7
Gold: fine-tuning on in-domain data 101–103% 37.7 21.3 30.4 –

Table 3: German→English BLEU results of various gradual fine-tuning experiments sorted by relative
training time. Indicated improvements are with respect to static selection using 20% of the bitext, and
highest scores per test set are bold-faced. Results from the first experiment are also shown in Figure 3.

does not improve translation performance for any
domain except WMT news.

Finally, we compare our data selection exper-
iments to domain-specific fine-tuning (light blue
stars in Figure 3), which is the current state-of-the-
art for domain adaptation in NMT. To this end, we
first train a model on the complete bitext, and then
train for twelve additional epochs on available in-
domain data, using an initial learning rate of 1
which halves every epoch. Depending on the test

set, this approach yields +2.5–4.4 BLEU improve-
ments over our baselines, however it does not
speed up training and requires a parallel in-domain
text which may not be available (e.g., for WMT).
While none of our data selection experiments out-
performs domain-specific fine-tuning, we obtain
competitive translation quality in only 20% of the
training time. In additional experiments we found
that in-domain fine-tuning on top of our selection
approaches does not yield improvements.
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6 Further analysis

In this section we conduct a few additional exper-
iments and analyses. We restrict to one parameter
setting per selection approach: Static selection and
sampling with 20% of the data, and gradual fine-
tuning using (α = 0.5, β = 0.7, η = 2). All have
very similar training times.

First, we hypothesize that dynamic data selec-
tion works well because more different sentence
pairs are observed during training, and it therefore
increases coverage with respect to static data se-
lection. To verify this, we measure for each test
set the number of unseen source word types in the
training data of different selection methods. Fig-
ure 4 shows indeed that the average number of
unseen word types is reduced noticeably in both
of our dynamic selection techniques, being much
closer to the complete bitext baseline than to static
selection. Note that all methods use the same vo-
cabulary during training.
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Figure 4: Test set source words not covered in the
training data of different data selection methods.

Next, following the static data selection exper-
iments in Section 5.1, we examine how well dy-
namic data selection performs using random selec-
tions. To this end, we repeat all techniques using
a bitext which is ranked randomly rather than by
its relevance to the test sets. The results in Table 4
show that the bitext ranking plays a crucial role in
the success of data selection. However, the results
also show that even in the absence of an appropri-
ate bitext ranking, dynamic data selection—and in
particular gradual fine-tuning—is still superior to
static data selection. We explain this result as fol-
lows: Compared to static selection, both sampling
and gradual fine-tuning have better coverage due
to their improved exploration of the data. How-
ever, sampling also suffers from a surprise effect
of observing new data in every epoch. Gradual
fine-tuning on the other hand gradually improves

learning on a subset of the selected data, suggest-
ing that repetition across epochs has a positive ef-
fect on translation quality.

Ranking Method EMEA Movies TED WMT

Relevance
Gradual FT 36.1 21.0 29.1 24.5
Sampling 20% 34.5 19.0 27.6 23.2
Static 20% 34.5 19.6 26.6 21.9

Random
Gradual FT 29.2 16.1 23.2 21.3
Sampling 20% 26.7 14.4 22.0 19.8
Static 20% 25.3 14.4 20.9 18.2

Table 4: BLEU scores of data selection using rel-
evance versus random ranking of the bitext. Grad-
ual fine-tuning uses (α = 0.5, β = 0.7, η = 2),
with relative training times of 18–20%.

One could expect that changing the data during
training results in volatile training behavior. To
test this, we inspect cross-entropy of our devel-
opment sets after every training epoch. Figure 5
shows these results for TED. Clearly, static data
selection converges most steadily. However, both
dynamic selection techniques eventually converge
to a lower cross-entropy value which is reflected
by higher translation quality of the test set. We ob-
serve very similar behavior for the other test sets.
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Figure 5: German→English cross-entropy of the
TED dev set as a function of training time. Each
data point represents a completed training epoch.

By its nature, our gradual fine-tuning technique
uses training epochs of different sizes, and there-
fore also implicitly differs from other methods
in its parameter optimization behavior. Since
we decrease both the training data size and the
SGD learning rate after finishing complete train-
ing epochs, we automatically decay the learning
rate at decreasing time intervals. We therefore
study how this approach is affected when we (i)
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decay the learning rate after a fixed number of
updates (i.e., the same as in static data selection)
rather than per epoch, or (ii) keep the learning rate
fixed. In the first scenario, we observe that trans-
lation performance drops with –1.1–2.0 BLEU.
When keeping a fixed learning rate, BLEU scores
hardly change or even improve, indicating that the
implicit change in search behavior may contribute
to the success of gradual fine-tuning.

7 Related work

A few research topics are related to our work.
Regarding data selection for SMT, previous work
has targeted two goals; to reduce model sizes and
training times, or to adapt to new domains. Data
selection methods for domain adaptation mostly
employ information theory metrics to rank train-
ing sentences by their relevance to the domain at
hand. This has been applied monolingually (Gao
et al., 2002) as well as bilingually (Yasuda et al.,
2008). In more recent work, training sentences are
typically ranked according to their cross-entropy
difference between in-domain and general-domain
data (Moore and Lewis, 2010; Axelrod et al.,
2011, 2015), favoring sentences that are similar
to the test domain and at the same time dissimi-
lar from the general domain. Duh et al. (2013) and
Chen and Huang (2016) present similar methods
in which n-gram LMs are replaced by neural LMs
or neural classifiers, respectively.

Data selection with the aim of model size and
training time reduction has the objective to use the
minimum amount of data while still maintaining
high vocabulary coverage (Eck et al., 2005; Gascó
et al., 2012; Lewis and Eetemadi, 2013). In a com-
parative study, Mirkin and Besacier (2014) find
that similarity-objected methods perform best if
the test domain and general corpus are very differ-
ent, while a coverage-objected method is superior
if test and general corpus are relatively similar. A
comprehensive survey on data selection for SMT
is provided by Eetemadi et al. (2015). While in
this work we have used a similarity objective to
rank our bitext, one could also apply dynamic data
selection using a coverage objective.

In NMT, data selection can serve similar goals
as in PBMT; increasing training efficiency or do-
main adaptation. Domain adaptation in NMT typ-
ically involves training a model on the complete
bitext, followed by fine-tuning the parameters on
a smaller in-domain corpus (Luong and Manning,

2015; Zoph et al., 2016). Other work combines
fine-tuning with model ensembles (Freitag and Al-
Onaizan, 2016) or with domain-specific tags in the
training corpus (Chu et al., 2017). Finally, Sen-
nrich et al. (2016a) adapt their systems by back-
translating in-domain data, which is then added to
the training data and used for fine-tuning.

Some other previous work has addressed train-
ing efficiency for NMT, for example by paral-
lelizing models or data (Wu et al., 2016), modi-
fying the NMT network structure (Kalchbrenner
et al., 2016), decreasing the number of parame-
ters through knowledge distillation (Crego et al.,
2016; Kim and Rush, 2016), or by boosting parts
of the data that are ‘challenging’ to the NMT sys-
tem (Zhang et al., 2016). The latter is most related
to our work since training data is also adjusted dur-
ing training, however we reduce the training data
size much more aggressively and study different
techniques of data selection.

Finally, recent work comparing various aspects
for PBMT and NMT includes (Bentivogli et al.,
2016; Farajian et al., 2017; Toral and Sánchez-
Cartagena, 2017; Koehn and Knowles, 2017).

8 Conclusions

With the recent increase in popularity of neural
machine translation (NMT), we explored in this
paper to what extent and how NMT can benefit
from data selection. We first showed that a state-
of-the-art data selection method yields unreliable
results for NMT while consistently performing
well for PBMT. Next, we have introduced dynamic
data selection for NMT, which entails varying the
selected subset of training data between different
training epochs. We explored two techniques of
dynamic data selection and found that our grad-
ual fine-tuning technique, in which we gradu-
ally reduce training size, improves consistently
over conventional static data selection (up to +2.6
BLEU) and over a high-resource general base-
line (up to +3.1 BLEU). Moreover, gradual fine-
tuning approximates in-domain fine-tuning using
only∼20% of the training time, even when no par-
allel in-domain data is available.
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