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Abstract

Existing approaches for Chinese zero pro-
noun resolution typically utilize only syn-
tactical and lexical features while ignoring
semantic information. The fundamental
reason is that zero pronouns have no de-
scriptive information, which brings diffi-
culty in explicitly capturing their semantic
similarities with antecedents. Meanwhile,
representing zero pronouns is challenging
since they are merely gaps that convey no
actual content. In this paper, we address
this issue by building a deep memory net-
work that is capable of encoding zero pro-
nouns into vector representations with in-
formation obtained from their contexts and
potential antecedents. Consequently, our
resolver takes advantage of semantic in-
formation by using these continuous dis-
tributed representations. Experiments on
the OntoNotes 5.0 dataset show that the
proposed memory network could substan-
tially outperform the state-of-the-art sys-
tems in various experimental settings.

1 Introduction

A zero pronoun (ZP) is a gap in a sentence,
which refers to an entity that supplies the neces-
sary information for interpreting the gap (Zhao
and Ng, 2007). A ZP can be either anaphoric
if it corefers to one or more preceding noun
phrases (antecedents) in the associated text, or
non-anaphoric if there are no such noun phrases.
Below is an example of ZPs and their antecedents,
where “¢” denotes the ZP.
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Email corresponding.

([The police| said that they are more likely to
commit suicide, but ¢; could not rule out ¢o the
possibility of homicide.)

In this example, the ZP “¢;” is an anaphoric
ZP that refers to the antecedent “& Jj/The police”
while the ZP “¢5” is non-anaphoric. Unlike overt
pronouns, ZPs lack grammatical attributes such
as gender and number that have been proven to
be essential in pronoun resolution (Chen and Ng,
2014a), which makes ZP resolution a more chal-
lenging task than overt pronoun resolution.

Automatic Chinese ZP resolution is typically
composed of two steps, i.e., anaphoric zero pro-
noun (AZP) identification that identifies whether a
ZP is anaphoric; and AZP resolution, which deter-
mines antecedents for AZPs. For AZP identifica-
tion, state-of-the-art resolvers use machine learn-
ing algorithms to build AZP classifiers in a super-
vised manner (Chen and Ng, 2013, 2016). For
AZP resolution, literature approaches include un-
supervised methods (Chen and Ng, 2014b, 2015),
feature-based supervised models (Zhao and Ng,
2007; Kong and Zhou, 2010), and neural network
models (Chen and Ng, 2016). Neural network
models for AZP resolution are of growing interest
for their capacity to learn task-specific represen-
tations without extensive feature engineering and
to effectively exploit lexical information for ZPs
and their candidate antecedents in a more scalable
manner than feature-based models.

Despite these advantages, existing supervised
approaches (Zhao and Ng, 2007; Chen and Ng,
2013, 2016) for AZP resolution typically utilize
only syntactical and lexical information through
features. They overlook semantic information that
is regarded as an important factor in the resolution
of common noun phrases (Ng, 2007). The fun-
damental reason is that ZPs have no descriptive
information, which results in difficulty in calcu-
lating semantic similarities and relatedness scores
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between the ZPs and their antecedents. Therefore,
the proper representations of ZPs are required so
as to take advantage of semantic information when
resolving ZPs. However, representing ZPs is chal-
lenging because they are merely gaps that convey
no actual content.

One straightforward method to address this is-
sue is to represent ZPs with supplemental informa-
tion provided by some available components, such
as contexts and candidate antecedents. Motivated
by Chen and Ng (2016) who encode a ZP’s lex-
ical contexts by utilizing its preceding word and
governing verb, we notice that a ZP’s context can
help to describe the ZP itself. As an example of
its usefulness, given the sentence “¢ taste spicy”,
people may resolve the ZP “¢” to the candidate an-
tecedent “red peppers”, but can hardly regard “my
shoes” as its antecedent, because they naturally
look at the ZP’s context “taste spicy” to resolve
it (“my shoes” cannot “taste spicy”’). Meanwhile,
considering that the antecedents of a ZP provide
the necessary information for interpreting the gap
(ZP), it is a natural way to express a ZP by its po-
tential antecedents. However, only some subsets
of candidate antecedents are needed to represent
a ZP!. To achieve this goal, a desirable solution
should be capable of explicitly capturing the im-
portance of each candidate antecedent and using
them to build up the representation for the ZP.

In this paper, inspired by the recent success of
computational models with attention mechanism
and explicit memory (Sukhbaatar et al., 2015;
Tang et al., 2016; Kumar et al., 2015), we focus
on AZP resolution, proposing the zero pronoun-
specific memory network (ZPMN) that is com-
petent for representing a ZP with information ob-
tained from its contexts and candidate antecedents.
These representations provide our system with an
ability to take advantage of semantic information
when resolving ZPs. Our ZPMN consists of mul-
tiple computational layers with shared parameters.
With the underlying intuition that not all candidate
antecedents are equally relevant for representing
the ZP, we develop each computational layer as an
attention-based model, which first learns the im-
portance of each candidate antecedent and then
utilizes this information to calculate the continu-

'A common way to do this task is to first extract a set
of candidate antecedents, and then select antecedents from
the candidate set. Therefore, only those candidates who are
possibly the correct antecedent of the given ZP are suitable
for interpreting it.

ous distributed representation of the ZP. The at-
tention weights over candidate antecedents with
respect to the ZP’s representation obtained by the
last layer are regarded as the ZP coreference clas-
sification result. Given that every component is
differentiable, the entire model could be efficiently
trained end-to-end with gradient descent.

We evaluate our method on the Chinese portions
of the OntoNotes 5.0 corpus by comparing with
the baseline systems in different experimental set-
tings. Results show that our approach significantly
outperforms the baseline algorithms and achieves
state-of-the-art performance.

2 Zero Pronoun-specific Memory
Network

We describe our deep memory network approach
for AZP resolution in this section. We first give an
overview of our model and then describe its com-
ponents. Finally, we present the training and ini-
tialization details.

2.1 An Overview of the Method

In this part, we present an overview of the zero
pronoun-specific memory network (ZPMN) for
AZP resolution. Given an AZP zp, we first ex-
tract a set of candidate antecedents. Following
Chen and Ng (2016), we regard all and only those
maximal or modifier noun phrases (NPs) that pre-
cede zp in the associated text and are at most two
sentences away from it, to be its candidate an-
tecedents. Suppose k£ candidate antecedents are
extracted, our task is to determine the correct an-
tecedent of zp from its candidate antecedent set
A(zp) = {c1,¢2, ...y i}

Specifically, these candidate antecedents are
represented in form of vectors {vc,, ey, ..., Ue,
which are stacked and regarded as the external
memory mem € R where [ is the dimen-
sion of v.. Meanwhile, we represent each word
as a continuous and real-valued vector, which is
known as word embedding (Bengio et al., 2003).
These word vectors can be randomly initialized, or
be pre-trained from text corpus with learning al-
gorithms (Mikolov et al., 2013; Pennington et al.,
2014). In this work, we adopt the latter strategy
since it can better exploit the semantics of words.
All the word vectors are stacked in a word embed-
ding matrix L,, € R*>IVI where d is the dimen-
sion of the word vector and |V'| is the size of the
word vocabulary. The embedding of word w is
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Figure 1: Illustration of the zero pronoun-specific memory network with three computational layers
(hops). v, and v, denote the vector representation of an AZP and its candidate antecedents. The left

part in dashed box shows the details of the first hop.

notated as e € R4*!, which is the column in Ly,

An illustration of ZPMN is given in Figure 1,
which is inspired by the memory network utilized
in question answering (Sukhbaatar et al., 2015).
Our model consists of multiple computational lay-
ers, each of which contains an attention layer and a
linear layer. First, we represent the AZP zp by uti-
lizing its contextual information, that is, propos-
ing the ZP-centered LSTM that encodes zp into
its distributed vector representation (i.e. v,y in
Figure 1). We then regard v, as the initial rep-
resentation of zp, and feed it as the input to the
first computational layer (hop 1). In the first com-
putational layer, we calculate the attention weight
across the AZP for each candidate antecedent, by
which our model adaptively selects important in-
formation from the external memory (candidate
antecedents). The output of the attention layer and
the linear transformation of v, are summed to-
gether as the input of to the next layer (hop 2).

We stack multiple hops by repeating the same
process for multiple times in a similar manner. We
call the abstractive information obtained from the
external memory the “key extension” of the AZP.
Note that the attention and linear layer parame-
ters are shared in different hops. Regardless of
the number of hops the model employs, they uti-
lize the same number of parameters. Finally, after
going through all the hops, we regard the atten-
tion weight of each candidate antecedent with re-
spect to the AZP representation generated by the
last hop as the probability that the candidate an-
tecedent is the correct antecedent, and predict the
highest-scoring (most probable) one to be the an-
tecedent of the given AZP.

2.2 Modeling Zero Pronouns by Contexts

A vector representation of AZP is required when
computing the ZPMN. As aforementioned, a ZP
contains no actual content, it is therefore needed to
employ some supplemental information to gener-
ate its initial representation. To achieve this goal,
we develop the ZP-centered LSTM that encodes
an AZP into a vector representation by utilizing
its contextual information.

Admittedly, one efficient method to model a
variable-length sequence of words (context words)
is to utilize a recurrent neural network (Elman,
1991). A recurrent neural network (RNN) stores
the sequence history in a real-valued history vec-
tor, which captures information of the whole se-
quence. LSTM (Hochreiter and Schmidhuber,
1997) is one of the classical variations of RNN that
mitigate the gradient vanish problem of RNN. As-
suming = = {x1, z2, ..., T, } is an input sequence,
each time step ¢ has an input z; and a hidden state
h:. The internal mechanics of the LSTM is defined
by:

it = o (WO [zg; hea] +09) (D
fi = O'(W(f) xe ] + b(f)) 2
op = o(W - [zy; hy1] + b)) &)
Cy = tanh(W'9 - [z hy_q] + ) (&)
Ci=i1@Ci+ f ©Cyy o)
hi = o © tanh(Cy) 6)

where © is an element-wise product and W),
b, W v W) pl) wie) and b(e) are the
parameters of the LSTM network.

Intuitively, the words near an AZP generally
contain richer information to express it. To bet-
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Figure 2: ZP-centered LSTM for encoding the AZP by its context words. w; means the i-th word in the
sentence, w.,—; is the i-th last word before the ZP and w,,; is the i-th word behind the ZP.

ter utilize the information of words surrounding
the AZP, on the basis of the traditional LSTM,
we propose the ZP-centered LSTM to encode the
AZPs. A graphical representation of this model
is displayed in Figure 2. Specifically, the ZP-
centered LSTM contains two standard LSTM neu-
ral networks, i.e., the LSTM,, that encodes the pre-
ceding context of the AZP in a left-to-right man-
ner, and the LSTM/ that models the following
context in the reverse direction. Ideally, the ZP-
centered LSTM models the preceding and follow-
ing contexts of the AZP separately, so that the
words near the AZP are regarded as the last hid-
den units and could contribute more in represent-
ing the AZP. Afterward, we obtain the represen-
tation of the AZP by concatenating the last hid-
den vectors of LSTM,, and LSTM, which sum-
marizes the useful contextual information centered
around the AZP. Averaging or summing the last
hidden vectors of LSTM,, and LSTM/ could also
be attempted as alternatives. We regard it as the
initial vector representation of the AZP and feed it
to the first computational layer to go through the
remaining procedures of our system.

2.3 Generating the External Memory

We describe our method for generating the exter-
nal memory in this subsection. For a given AZP,
a set of noun phrases (NPs) is extracted as its can-
didate antecedents. Specifically, we generate the
external memory by utilizing these candidate an-
tecedents. One way to encode an NP candidate is
to utilize its head word embedding (Chen and Ng,
2016). However, this method has a major draw-
back of not utilizing contextual information that is
essential for representing a phrase. Besides, some
approaches (Socher et al., 2013; Sun et al., 2015)
encode a phrase by utilizing the average word em-
bedding it contains. We argue that such an aver-
aging operation simply treats all the words in a

phrase equally, which is inaccurate because some
words might be more informative than others.

A helpful property of LSTM is that it could
keep useful history information in the mem-
ory cell by exploiting input, output and forget
gates to decide how to utilize and update the
memory of previous information. Given a se-
quence of words {wj,ws,...,w,}, previous re-
search (Sutskever et al., 2014) utilizes the last hid-
den vector of LSTM to represent the information
of the whole sequence. For word wy in a sequence,
its corresponding hidden vector h; can capture
useful information before and including w;.

Figure 3: Illustration for modeling a candidate an-
tecedent through its context and content words.
Candi represents the candidate antecedent. Sup-
pose the candidate antecedent contains m words,
w,[;) denotes its j-th word. wj is the i-th word in
the sentence, and w 1(_1) is the word appears im-
mediately after (before) the candidate antecedent.

Inspired by this, we propose a novel method
to produce representations of the candidate an-
tecedents by utilizing both their contexts and con-
tent words. Specifically, we use the subtraction be-
tween LSTM hidden vectors to encode the candi-
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date antecedents, as illustrated in Figure 3. Given
a candidate antecedent ¢ with m words, two stan-
dard LSTM neural networks are employed for en-
coding c in the forward and backward direction,
respectively. For the forward LSTM, we extract a
sequence of words related with c in a left-to-right

manner, i.e., {W1, W2, ..., We—1, We[1]s -+, Wefm] -
Subsequently, the forward vector representation
of ¢ can be calculated as v, = hc[m] — heq,

where A, and h.—; indicate the hidden vec-
tors of the forward LSTM corresponding to we[,]
and w._1, respectively. Meanwhile, the back-
ward LSTM models a sequence of words that
are extracted in the reverse direction, that is,
{wn,wn_l,...,wcH,wc[m],...,wc[l]}. We then
perform the similar operation, computing the

!

backward representation of ¢ as v, = h;[l] —Neyqs

where h; 11 and h,, 1 indicate the hidden vectors
of the backward LSTM corresponding to w,[) and
we+1. Finally, we concatenate these two vectors
together as the ultimate vector representation of c,
Ve = /U—C>H</U—0

This method enables our model to encode a can-
didate antecedent by the information both outside
and inside the phrase, which provides our model
a strong ability to access to sentence-level infor-
mation when modeling the candidate antecedents.
In this manner, we generate the vector repre-
sentations of the candidate antecedents, and re-
gard them as the external memory, i.e., mem =

{UCUUCQv ey vck}'

2.4 Attention Mechanism

In this part, we introduce our attention mecha-
nism. This strategy has been widely used in many
nature language processing tasks, such as fac-
toid question answering (Hermann et al., 2015),
entailment (Rocktéschel et al., 2015) and disflu-
ency detection (Wang et al., 2016). The basic
idea of attention mechanism is that it assigns a
weight/importance to each lower position when
computing an upper-level representation (Bah-
danau et al., 2015). With the underlying intuition
that not all candidate antecedents are equally rel-
evant for representing the AZP, we employ the
attention mechanism as to dynamically align the
more informative candidate antecedents from the
external memory, mem = {vc,, Ve, ..., Uc, } With
regard to the given AZP, and use them to build up
the representation of the AZP.

As shown in Chen and Ng (2016), traditional

hand-crafted features are crucial for the resolver’s
success since they capture the syntactic, positional
and other relationships between an AZP and its
candidate antecedents. Therefore, to evaluate the
importance of each candidate antecedent in a com-
prehensive manner, following Chen and Ng (2016)
who encode hand-crafted features as inputs to their
network, we integrate a set of features that are uti-
lized in Chen and Ng (2016), in the form of vec-
tor (v(f e““”'e)) into our attention model. For each
multi-valued feature, we convert it into a corre-
sponding set of binary-valued features?.
Specifically, for the ¢-th candidate antecedent in
the memory, v.,, taking the vector representation
of the AZP v, and the corresponding feature vec-

tor vgf cature) as inputs, we compute the attention
t .
score as i = G (ve,, Vap, Ut(f e we)). The scoring

function G is defined by:

5 = tanh(W(att) - [Vey; Vaps vlgfeatum)] + b(att))
(N

ap = L(St) (8)

k
thzl e:zp(st/)

where W (%) and b(¢*) are the attention parame-
ters and k indicates the number of candidate an-
tecedents. After obtaining the attention scores for
all the candidate antecedents {a1, ag, ..., aj }, our
attention layer outputs a continuous vector vec
that is computed as the weighted sum of each piece
of memory in mem:

k
vec = Z V¢ 9
i=1

2.5 Training Details

We initialize our word embeddings with 100 di-
mensional ones produced by the word2vec toolkit
(Mikolov et al., 2013) on the Chinese portion of
the training data from the OntoNotes 5.0 corpus.
We randomly initialize the parameters from a uni-
form distribution U(—0.03,0.03) and minimize
the training objective using stochastic gradient de-
scent with learning rate equals to 0.01. In addition,
to regularize the network, we apply L2 regulariza-
tion to the network weights and dropout with a rate
of 0.5 on the output of each hidden layer.

2If one feature has k different values, we will convert it
into k binary features.
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The model is trained in a supervised manner by
minimizing the cross-entropy error of ZP corefer-
ence classification. Suppose the training set con-
tains N AZPs {zp1, 2p2, ..., 2pN . Let A(zp;) de-
note the set of candidate antecedents of an AZP
zpi, and P(c|zp;) represents the probability of
predicting candidate c as the antecedent of zp;
(i.e., the attention weight of candidate antecedent
c with respect to the AZP representation generated
by the last hop), the loss is given by:

N
loss = — Z Z 0(2zpi, c)log(P(clzp;))
i=1 ce A(zp;)
(10)
where 0(zp, ¢) is 1 or 0, indicating whether zp and
c are coreferent.

3 Experiments

3.1 Experimental Setup

Datasets: Following Chen and Ng (2016, 2015),
we run experiments on the Chinese portion of
the OntoNotes Release 5.0 dataset’ used in the
CoNLL 2012 Shared Task (Pradhan et al., 2012).
The dataset consists of three parts, i.e., a training
set, a development set and a test set. Since only
the training set and the development set contain
ZP coreference annotations, we train our model on
the training set and utilize the development set for
testing purposes. Meanwhile, we reserve 20% of
the training set as a held-out development set for
tuning the hyperparameters of our network. The
same experimental data setting is utilized in the
baseline system (Chen and Ng, 2016). Table 1
shows the statistics of our corpus. Besides, doc-
uments in the datasets come from six sources, i.€.,
broadcast news (BN), newswires (NW), broadcast
conversations (BC), telephone conversations (TC),
web blogs (WB) and magazines (MZ).

Documents | Sentences | Words AZPs
Training 1,391 36,487 756K | 12,111
Test 172 6,083 110K 1,713

Table 1: Statistics on the training and test corpus.

Evaluation metrics: Same as previous studies on
Chinese ZP resolution (Zhao and Ng, 2007; Chen
and Ng, 2016), we use three metrics to evaluate the
quality of our model: recall, precision and F-score
(denoted as R, P and F, respectively).

3http://catalog.ldc.upenn.edu/LDC2013T19

Experimental settings: We employ three Chinese
ZP resolution systems as our baselines, i.e., Zhao
and Ng (2007); Chen and Ng (2015, 2016). Con-
sistent with Chen and Ng (2015, 2016), three ex-
perimental settings are designed to evaluate our
approach. In Setting 1, we directly employ the
gold syntactic parse trees and gold AZPs that are
obtained from the OntoNotes dataset. In Setting
2, we utilize gold syntactic parse trees and system
(automatically identified) AZPs*. In Setting 3, we
employ system AZP and system syntactic parse
trees that obtained through the Berkeley parser’,
which is the state-of-the-art parsing model.

3.2 Experimental Results

Table 2 shows the experimental results of the base-
line systems and our model on entire test set. Our
approach is abbreviated to ZPMN (k), where k
indicates the number of hops. The best meth-
ods in each of the three experimental settings
are in bold text. From Table 2, we can ob-
serve that our approach outperforms all previous
baseline systems by a substantial margin. Mean-
while, among all our models from single hop to
six hops, using more computational layers could
generally lead to better performance. The best per-
formance is achieved by the model with six hops
under experimental Setting 1 and 2, and with four
hops in experimental Setting 3. Furthermore, the
ZPMN (with six hops) significantly outperforms
the state-of-the-art baseline system (Chen and Ng,
2016) under three experimental settings by 2.7%,
2.7%, and 3.9% in terms of overall F-score®, re-
spectively. In all words, our model is an ex-
tremely strong performer and substantially outper-
forms baseline methods, which demonstrate the
efficiency of the proposed zero pronoun-specific
memory network.

It is well accepted that computational models
that are composed of multiple processing layers
could learn representations of data with multiple
levels of abstraction (LeCun et al., 2015). In our
approach, multiple computation layers allow the
model to learn representations of AZPs with mul-
tiple levels of abstraction generated by candidate
antecedents. Each layer/hop retrieves important
candidate antecedents, and transforms the repre-

“In this study, we adopt the learning-based method uti-
lized in (Chen and Ng, 2016) to identify system AZPs, in-
cluding the location and identification of AZPs.

Shtps://github.com/slavpetrov/berkeleyparser

8 All significance tests are paired ¢-tests, with p < 0.05.
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Setting 1 Setting 2 Setting 3
Gold Parse + Gold AZP Gold Parse + System AZP System Parse + System AZP
R P F R 3 F R 3 F
Zhao and Ng (2007) || 41.5 | 41.5 | 415 | 224 | 244 | 233 | 12.7 | 142 134
Chen and Ng (2015) || 50.0 | 504 | 50.2 | 35.7 | 26.2 | 303 | 19.6 | 15.5 17.3
Chen and Ng (2016) || 51.8 | 52.5 | 52.2 | 39.6 | 27.0 | 32.1 | 219 | 158 18.4
ZPMN (1) 53.0 | 533 | 53.1 | 379 | 30.0 | 334 | 278 | 174 21.4
ZPMN (2) 53.7 | 54.0 | 539 | 38.8 | 30.6 | 34.0 | 28.1 | 18.2 22.1
ZPMN (3) 539 | 542 | 54.1 | 38.6 | 304 | 342 | 282 | 17.7 21.7
ZPMN (4) 544 | 547 | 545 | 39.0 | 30.7 | 343 | 293 | 185 22.7
ZPMN (5) 54.1 | 544 | 543 | 38.8 | 30.6 | 342 | 28.6 | 17.8 22.0
ZPMN (6) 548 | 551 | 549 | 394 | 31.1 | 348 | 289 | 18.2 22.3

Table 2: Experimental results on the test data. ZPMN represents the proposed zero pronoun-specific
memory network model, and the number beside ZPMN in each row denotes the number of hops.

Setting 1: Gold Parse + Gold AZP Setting 2: Gold Parse + System AZP Setting 3: System Parse + System AZP
Baseline ZPMN Baseline ZPMN Baseline 7ZPMN
R P F R 3 F R 3 F R P F R 3 F R 3 F
NW || 48.8 48.8 48.8| 48.8 48.8 48.8 | 34.5 264 29.9| 39.5 343 36.7| 119 12.8 12.3| 21.0 199 20.5
MZ || 414 41.6 41.5| 463 463 46.3|| 34.0 224 27.0| 346 350 34.8| 93 7.3 82 | 17.1 157 164
WB || 56.3 56.3 56.3| 59.8 59.8 59.8| 44.7 25.1 32.2| 41.2 28.7 33.8| 239 16.1 19.2| 31.3 17.6 22.6
BN 55.4 554 554 582 58.6 58.4 | 36.9 319 342 43.8 30.0 35.6 | 22.1 23.2 22.6| 35.1 20.7 26.1
BC 50.4 513 50.8| 52.9 53.6 53.2|| 37.6 25.6 30.5| 35.6 294 32.2| 21.2 14.6 17.3| 25.6 15.6 194
TC 519 542 53.1| 54.8 54.8 54.8 || 46.3 29.0 35.6| 36.9 329 348| 314 159 21.1| 33.2 21.0 25.8

Table 3: Experimental results on each source of test data. The strongest F-score in each row is in bold.

sentation at previous level into a representation at a
higher, slightly more abstract level. We regard this
representation as the “key extension” of the AZP,
by which our model learns to encode the AZP in
an efficient manner.

For per-source results, we conduct experiments
by comparing the ZPMN (with six hops) with
the state-of-the-art baseline system (Chen and Ng,
2016) on six sources of test data, as shown in Ta-
ble 3. The rows in Table 3 are the experimental re-
sults from different sources under the three exper-
imental settings. In experimental Settings 1 and
3, ZPMN improves results further across all the
six sources of data. Under experimental Setting
2, our model outperforms the baseline system in
five of the six sources of data, only slightly under-
performs in source TC. All these prove that our
approach achieves a considerable improvement in
Chinese ZP resolution.

Moreover, to evaluate the effectiveness of our
methods for modeling the AZP and candidate an-
tecedents proposed in Section 2.2 and 2.3, we
compare with three models that are all simpli-
fied versions of the ZPMN, namely, ZPCon-
textFree where an AZP is initially represented by
its governing verb and preceding word; AntCon-
tentAvg where the candidate antecedents are en-
coded by their averaged content word embed-
dings; and AntContentHead where each candi-

date antecedent is represented by the embedding
of its head word. To make comparison as fair as
possible, we keep the other parts of these mod-
els unchanged from the ZPMN with six compu-
tational layers (hop 6). To minimize the external
influence, we run experiments under experimen-
tal Setting 1 (gold parse and gold AZPs). Table 4
shows the results.

R P F
ZPContextFree 53.5 | 53.8 | 53.6
AntContentAvg 52.6 | 529 | 52.7
AntContentHead || 53.8 | 54.1 | 53.9
ZPMN (hop 6) 54.8 | 55.1 | 549

Table 4: Experimental results of different models.

With an intuition that contexts of an AZP pro-
vide more sufficient information than only a few
specific of words in expressing the AZP, the per-
formance of ZPContextFree is unsurprisingly
worse than that of the ZPMN, which reflects the
effects of the ZP-centered LSTM proposed to gen-
erate the initial representation for the AZP. In
addition, the performance of AntContentAvg is
relatively low. We attribute this to the model
assigning the same importance to all the con-
tent words in a phrase, which causes difficulty
for the model to capture informative words in a
candidate antecedent. Meanwhile, AntContent-
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Head only models limited information when en-
coding candidate antecedents, thereby underper-
forms the ZPMN whose external memory con-
tains sentence-level information both outside and
inside the candidate antecedents. These demon-
strate the utility of the method for modeling can-
didate antecedents.

3.3 Attention Model Visualization

R 50 5 3k ENE RAE B9 & 583N R BR R, o KR BRI, BE
SBEN RIA/R B 25 T 808 .
The earthquake that is the strongest one occurs in India within recent

50 years has a high-magnitude, ¢ influences a large range of areas,
and the neighbouring country of India like Nepal is also affected.

: CREOt RORER D
SEER | kE | g TR RRERL g
H FR O KR :
NPs: i .. R — o
: . : : i Red Cross : earthquake : ;
i Chinese ' china | India | Societyof | that-in :magnitude
; government : : i China | India ;
hopt —
_hop2 I
hop3 —
- hop4 |
hops —
hope —

0 1

Figure 4: Example of attention weights in different
hops. ZP is denoted as ¢. The rows show the at-
tention weights of candidates in each hop. Darker
color means higher weight.

To obtain a better understanding of our deep
memory network, we visualize the attention
weights of the ZPMN, as is shown in Figure 4.
We can observe that in the first three hops, the
fourth candidate “H?[E 4115 %/Red Cross Soci-
ety of China” gains a higher attention weight than
the others. Nevertheless, in hop 5 and 6, the atten-
tion weight of “iXIX... 351 {10 5E/the earthquake
that ... in India” increases and the model finally
predicts it correctly as the antecedent. This case
illustrates the effects of multiple hops.

4 Related Work

4.1 Zero Pronoun Resolution

Chinese zero pronoun resolution. Early stud-
ies utilize heuristic rules to resolve ZPs in Chi-
nese (Converse, 2006; Yeh and Chen, 2007).
More recently, supervised approaches have been
vastly explored. = Zhao and Ng (2007) first
present a machine learning approach to identify
and resolve ZPs. By employing the J48 de-
cision tree algorithm, various kinds of features

are integrated into their model. Kong and Zhou
(2010) develop a kernel-based approach, employ-
ing context-sensitive convolution tree kernels to
model syntactic information. Chen and Ng (2013)
further extend the study of Zhao and Ng (2007)
by proposing several novel features and introduc-
ing the coreference links between ZPs. Despite the
effectiveness of feature engineering, it is labor in-
tensive and highly relies on annotated corpus. To
handle these weaknesses, Chen and Ng (2014b)
propose an unsupervised method. They first re-
cover each ZP into ten overt pronouns and then
apply a ranking model to rank the antecedents.
Chen and Ng (2015) propose an end-to-end unsu-
pervised probabilistic model, utilizing a salience
model to capture discourse information. In recent
years, Chen and Ng (2016) develop a deep neural
network approach to learn useful task-specific rep-
resentations and effectively exploit lexical features
through word embeddings. Different from previ-
ous studies, in this work, we propose a novel mem-
ory network to perform the task. By encoding ZPs
and candidate antecedents through the composi-
tion of texts based on the representation of words,
our model benefits from the semantic information
when resolving the ZPs.

Zero pronoun resolution for other languages.
There have been various studies on ZP resolution
for other languages besides Chinese. Ferrandez
and Peral (2000) propose a set of hand-crafted
rules for resolving ZPs in Spanish texts. Recently,
supervised approaches have been widely exploited
for ZP resolution in Korean (Han, 2006), Ital-
ian (Iida and Poesio, 2011) and Japanese (Isozaki
and Hirao, 2003; Iida et al., 2006, 2007; Imamura
et al.,, 2009; Sasano and Kurohashi, 2011; Iida
and Poesio, 2011; Iida et al., 2015). Iida et al.
(2016) propose a multi-column convolutional neu-
ral network for Japanese intra-sentential subject
zero anaphora resolution, where both the surface
word sequence and dependency tree of a target
sentence are exploited as clues in their model.

4.2 Attention and Memory Network

Attention mechanisms have been widely used in
many studies and have achieved promising perfor-
mances on a variety of NLP tasks (Rocktédschel
et al., 2015; Rush et al., 2015; Liu et al., 2017).
Recently, the memory network has been proposed
and applied to question answering task (Weston
et al., 2014), which is defined to have four compo-
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nents: input (I), generalization (G), output (O) and
response (R). After then, memory networks have
been adopted in many other NLP tasks, such as
aspect sentiment classification (Tang et al., 2016),
dialog systems (Dodge et al., 2015), and informa-
tion extraction (Xiaocheng et al., 2017).

5 Conclusion

In this study, we propose a novel zero pronoun-
specific memory network that is capable of en-
coding zero pronouns into the vector represen-
tations with supplemental information obtained
from their contexts and candidate antecedents.
Consequently, these continuous distributed vec-
tors provide our model with an ability to take ad-
vantage of the semantic information when resolv-
ing zero pronouns. We evaluate our method on
the Chinese portion of OntoNotes 5.0 dataset and
report substantial improvements over the state-of-
the-art systems in various experimental settings.
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