
Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pages 2278–2282,
Austin, Texas, November 1-5, 2016. c©2016 Association for Computational Linguistics

Why Neural Translations are the Right Length

Xing Shi1, Kevin Knight1, and Deniz Yuret2
1Information Sciences Institute & Computer Science Department

University of Southern California
{xingshi,knight}@isi.edu

2Computer Engineering, Koç University
dyuret@ku.edu.tr

Abstract

We investigate how neural, encoder-decoder
translation systems output target strings of ap-
propriate lengths, finding that a collection of
hidden units learns to explicitly implement
this functionality.

1 Introduction

The neural encoder-decoder framework for machine
translation (Neco and Forcada, 1997; Castaño and
Casacuberta, 1997; Sutskever et al., 2014; Bahdanau
et al., 2014; Luong et al., 2015) provides new tools
for addressing the field’s difficult challenges. In this
framework (Figure 1), we use a recurrent neural net-
work (encoder) to convert a source sentence into a
dense, fixed-length vector. We then use another re-
current network (decoder) to convert that vector into
a target sentence. In this paper, we train long short-
term memory (LSTM) neural units (Hochreiter and
Schmidhuber, 1997) trained with back-propagation
through time (Werbos, 1990).

A remarkable feature of this simple neural MT
(NMT) model is that it produces translations of the
right length. When we evaluate the system on previ-
ously unseen test data, using BLEU (Papineni et al.,
2002), we consistently find the length ratio between
MT outputs and human references translations to be
very close to 1.0. Thus, no brevity penalty is in-
curred. This behavior seems to come for free, with-
out special design.

By contrast, builders of standard statistical MT
(SMT) systems must work hard to ensure correct
length. The original mechanism comes from the

IBM SMT group, whose famous Models 1-5 in-
cluded a learned table ε(y|x), with x and y being
the lengths of source and target sentences (Brown
et al., 1993). But they did not deploy this table when
decoding a foreign sentence f into an English sen-
tence e; it did not participate in incremental scoring
and pruning of candidate translations. As a result
(Brown et al., 1995):

“However, for a given f, if the goal is to discover
the most probable e, then the product P(e) P(f|e) is
too small for long English strings as compared with
short ones. As a result, short English strings are im-
properly favored over longer English strings. This
tendency is counteracted in part by the following
modification: Replace P(f|e) with clength(e) · P(f|e)
for some empirically chosen constant c. This modifi-
cation is treatment of the symptom rather than treat-
ment of the disease itself, but it offers some tempo-
rary relief. The cure lies in better modeling.”

More temporary relief came from Minimum
Error-Rate Training (MERT) (Och, 2003), which au-
tomatically sets c to maximize BLEU score. MERT
also sets weights for the language model P(e), trans-
lation model P(f|e), and other features. The length
feature combines so sensitively with other features
that MERT frequently returns to it as it revises one
weight at a time.

NMT’s ability to correctly model length is re-
markable for these reasons:
• SMT relies on maximum BLEU training to ob-

tain a length ratio that is prized by BLEU, while
NMT obtains the same result through generic
maximum likelihood training.
• Standard SMT models explicitly “cross off”

2278

Figure 1: The encoder-decoder framework for neural machine translation (NMT) (Sutskever et al., 2014). Here, a source sentence

C B A (fed in reverse as A B C) is translated into a target sentence W X Y Z. At each step, an evolving real-valued vector summarizes

the state of the encoder (left half) and decoder (right half).

source words and phrases as they are translated,
so it is clear when an SMT decoder has finished
translating a sentence. NMT systems lack this
explicit mechanism.
• SMT decoding involves heavy search, so if one

MT output path delivers an infelicitous ending,
another path can be used. NMT decoding ex-
plores far fewer hypotheses, using a tight beam
without recombination.

In this paper, we investigate how length regulation
works in NMT.

2 A Toy Problem for Neural MT

We start with a simple problem in which source
strings are composed of symbols a and b. The goal
of the translator is simply to copy those strings.
Training cases look like this:

a a a b b a <EOS> → a a a b b a <EOS>
b b a <EOS> → b b a <EOS>
a b a b a b a a <EOS> → a b a b a b a a <EOS>
b b a b b a b b a <EOS> → b b a b b a b b a <EOS>

The encoder must summarize the content of any
source string into a fixed-length vector, so that the
decoder can then reconstruct it.1 With 4 hidden
LSTM units, our NMT system can learn to solve
this problem after being trained on 2500 randomly
chosen strings of lengths up to 9.2 3

To understand how the learned system works,
we encode different strings and record the resulting
LSTM cell values. Because our LSTM has four hid-
den units, each string winds up at some point in four-

1We follow Sutskever et al. (2014) in feeding the input string
backwards to the encoder.

2Additional training details: 100 epochs, 100 minibatch
size, 0.7 learning rate, 1.0 gradient clipping threshold.

3We use the toolkit: https://github.com/isi-nlp/Zoph RNN

dimensional space. We plot the first two dimensions
(unit1 and unit2) in the left part of Figure 2, and we
plot the other two dimensions (unit3 and unit4) in the
right part. There is no dimension reduction in these
plots. Here is what we learn:
• unit1 records the approximate length of the

string. Encoding a string of length 7 may gen-
erate a value of -6.99 for unit1.
• unit2 records the number of b’s minus the num-

ber of a’s, thus assigning a more positive value
to b-heavy strings. It also includes a +1 bonus
if the string ends with a.
• unit3 records a prefix of the string. If its value

is less than 1.0, the string starts with b. Other-
wise, it records the number of leading a’s.
• unit4 has a more diffuse function. If its value is

positive, then the string consists of all b’s (with
a possible final a). Otherwise, its value corre-
lates with both negative length and the prepon-
derance of b’s.

For our purposes, unit1 is the interesting one. Fig-
ure 3 shows the progression of “a b a b b b” as it gets
encoded (top figure), then decoded (bottom two fig-
ures). During encoding, the value of unit1 decreases
by approximately 1.0 each time a letter is read. Dur-
ing decoding, its value increases each time a letter is
written. When it reaches zero, it signals the decoder
to output <EOS>.

The behavior of unit1 shows that the translator in-
corporates explicit length regulation. It also explains
two interesting phenomena:
• When asked to transduce previously-unseen

strings up to length 14, the system occasionally
makes a mistake, mixing up an a or b. How-
ever, the output length is never wrong.4

4Machine translation researchers have also noticed that

2279

8 6 4 2

4

2

0

2

4

6

baa

bbbba

bbbaabbaa

aab

bbbabbbb

bba

babaaaaa

bbaaaa

abab

bbb

b

aabb

ba

ab

bbba

bbab

baaaaabbb

abaa
aaabba

aabbaaabb

babaaaa

bbabaab

abbb

bbaaabaa

abbab

babbbbba

baabba

babaab

baba

aababa

a

baababb

aba

ababbaabb

baababab

abaaaabaa

baaba

bab

babbaaa

aaababa

aabbabbaa

aaaababab

aaaaaaa

aabaaaabaaabb

baabb
abbaabab

aaaa

ababa

aaaabbabb

babbbb

aababbbab

abbbbba

bbbabbbbbabaa
bbbabbaa

abaaabaa

aa

baab

bbbb

babba

aaa

bbbbaabba

bb
babab

abaabbab

babbb

abaaaabba aaab

bbaa

bbabbabab

0 1 2 3 4 5 6 7 8
8

7

6

5

4

3

2

1

0

1

baa

bbbba

bbbaabbaa

aab

bbbabbbb

bbaaaa

abab

b
ba

ab

bbab

baaaaabbb

abaa aaabba

aabbaaabb

bbabaab

abbb

bbaaabaa

abbab
baabba

babaab

aababa

a

aba

baababab

abaaaabaa

bab

aaababa

aabbabbaa

aaaababab

aaaaaaaaabaaabb

aaaa

aaaabbabb

aababbbab

bbbab

aa

baab

aaa

abaabbab

abaaaabba

aaab

bbabbabab

Figure 2: After learning, the recurrent network can convert any string of a’s and b’s into a 4-dimensional vector. The left plot

shows the encoded strings in dimensions described by the cell states of LSTM unit1 (x-axis) and unit2 (y-axis). unit1 learns to

record the length of the string, while unit2 records whether there are more b’s than a’s, with a +1 bonus for strings that end in a.

The right plot shows the cell states of LSTM unit3 (x-axis) and unit4 (y-axis). unit3 records how many a’s the string begins with,

while unit4 correlates with both length and the preponderance of b’s. Some text labels are omitted for clarity.

• When we ask the system to transduce very long
strings, beyond what it has been trained on, its
output length may be slightly off. For example,
it transduces a string of 28 b’s into a string of
27 b’s. This is because unit1 is not incremented
and decremented by exactly 1.0.

3 Full-Scale Neural Machine Translation

Next we turn to full-scale NMT. We train on
data from the WMT 2014 English-to-French task,
consisting of 12,075,604 sentence pairs, with
303,873,236 tokens on the English side, and
348,196,030 on the French side. We use 1000 hid-
den LSTM units. We also use two layers of LSTM
units between source and target.5

After the LSTM encoder-decoder is trained, we
send test-set English strings through the encoder
portion. Every time a word token is consumed, we
record the LSTM cell values and the length of the

when the translation is completely wrong, the length is still cor-
rect (anonymous).

5Additional training details: 8 epochs, 128 minibatch size,
0.35 learning rate, 5.0 gradient clipping threshold.

Top 10 units by ... 1st layer 2nd layer
Individual R2 0.868 0.947
Greedy addition 0.968 0.957
Beam search 0.969 0.958

Table 1: R2 values showing how differently-chosen sets of 10

LSTM hidden units correlate with length in the NMT encoder.

string so far. Over 143,379 token observations, we
investigate how the LSTM encoder tracks length.

With 1000 hidden units, it is difficult to build and
inspect a heat map analogous to Figure 3. Instead,
we seek to predict string length from the cell values,
using a weighted, linear combination of the 1000
LSTM cell values. We use the least-squares method
to find the best predictive weights, with resulting R2

values of 0.990 (for the first layer, closer to source
text) and 0.981 (second layer). So the entire network
records length very accurately.

However, unlike in the toy problem, no single unit
tracks length perfectly. The best unit in the second
layer is unit109, which correlates with R2=0.894.

We therefore employ three mechanisms to locate

2280

1

2

3

4

<S> b b b a b a

Encoder cell state

-6

-4

-2

 0

 2

 4

1

2

3

4

<S> a b a b b b

Decoder cell state

-6

-4

-2

 0

 2

 4

<EOS>

b

a

<S> a b a b b b

Decoder output probability

 0.001

 0.01

 0.1

 1

Figure 3: The progression of LSTM state as the recurrent net-

work encodes the string “a b a b b b”. Columns show the in-

puts over time and rows show the outputs. Red color indicates

positive values, and blue color indicates negative. The value

of unit1 decreases during the encoding phase (top figure) and

increases during the decoding phase (middle figure). The bot-

tom figure shows the decoder’s probability of ending the target

string (<EOS>).

k Best subset of LSTM’s 1000 units R2

1 109 0.894
2 334, 109 0.936
3 334, 442, 109 0.942
4 334, 442, 109, 53 0.947
5 334, 442, 109, 53, 46 0.951
6 334, 442, 109, 53, 46, 928 0.953
7 334, 442, 109, 53, 46, 433, 663 0.955

Table 2: Sets of k units chosen by beam search to optimally

track length in the NMT encoder. These units are from the

LSTM’s second layer.

0 5 10 15 20 25 0 5 10 15 20 25 30
20

15

10

5

0

5

Encoding Decoding

Unit 109
Unit 334
log P(<EOS>)

Figure 4: Action of translation unit109 and unit334 during the

encoding and decoding of a sample sentence. Also shown is the

softmax log-prob of output <EOS>.

a subset of units responsible for tracking length. We
select the top k units according to: (1) individual
R2 scores, (2) greedy search, which repeatedly adds
the unit which maximizes the set’s R2 value, and (3)
beam search. Table 1 shows different subsets we ob-
tain. These are quite predictive of length. Table 2
shows how R2 increases as beam search augments
the subset of units.

4 Mechanisms for Decoding

For the toy problem, Figure 3 (middle part) shows
how the cell value of unit1 moves back to zero as the
target string is built up. It also shows (lower part)
how the probability of target word <EOS> shoots up
once the correct target length has been achieved.

MT decoding is trickier, because source and tar-
get strings are not necessarily the same length, and

2281

target length depends on the words chosen. Figure 4
shows the action of unit109 and unit334 for a sample
sentence. They behave similarly on this sentence,
but not identically. These two units do not form a
simple switch that controls length—rather, they are
high-level features computed from lower/previous
states that contribute quantitatively to the decision
to end the sentence.

Figure 4 also shows the log P(<EOS>) curve,
where we note that the probability of outputting
<EOS> rises sharply (from 10−8 to 10−4 to 0.998),
rather than gradually.

5 Conclusion

We determine how target length is regulated in NMT
decoding. In future work, we hope to determine how
other parts of the translator work, especially with
reference to grammatical structure and transforma-
tions.

Acknowledgments

This work was supported by ARL/ARO (W911NF-
10-1-0533), DARPA (HR0011-15-C-0115), and the
Scientific and Technological Research Council of
Turkey (TÜBİTAK) (grants 114E628 and 215E201).

References

D. Bahdanau, K. Cho, and Y. Bengio. 2014. Neural ma-
chine translation by jointly learning to align and trans-
late. In Proc. ICLR.

P. Brown, S. della Pietra, V. della Pietra, and R. Mercer.
1993. The mathematics of statistical machine trans-
lation: Parameter estimation. Computational Linguis-
tics, 19(2):263–311.

P. F. Brown, J. Cocke, S. della Pietra, V. della Pietra,
F. Jelinek, J. C. Lai, and R. L. Mercer. 1995. Method
and system for natural language translation. US Patent
5,477,451.

M. A. Castaño and F. Casacuberta. 1997. A con-
nectionist approach to machine translation. In EU-
ROSPEECH.

S. Hochreiter and J. Schmidhuber. 1997. Lstm can solve
hard long time lag problems. Advances in neural in-
formation processing systems, pages 473–479.

M. Luong, H. Pham, and C. Manning. 2015. Effective
approaches to attention-based neural machine transla-
tion. In Proc. EMNLP.

R. Neco and M. Forcada. 1997. Asynchronous transla-
tions with recurrent neural nets. In International Conf.
on Neural Networks, volume 4, pages 2535–2540.

F. J. Och. 2003. Minimum error rate training in statistical
machine translation. In Proc. ACL.

K. Papineni, S. Roukos, T. Ward, and W. Zhu. 2002.
BLEU: a method for automatic evaluation of machine
translation. In Proc. ACL.

I. Sutskever, O. Vinyals, and Q. V. Le. 2014. Sequence
to sequence learning with neural networks. In Proc.
NIPS.

P. J. Werbos. 1990. Backpropagation through time: what
it does and how to do it. Proceedings of the IEEE,
78(10):1550–1560.

2282

