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Abstract

Natural language understanding is the core
of the human computer interactions. How-
ever, building new domains and tasks that
need a separate set of models is a bottle-
neck for scaling to a large number of do-
mains and experiences. In this paper, we
propose a practical technique that addresses
this issue in a web-scale language understand-
ing system: Microsoft’s personal digital as-
sistant Cortana. The proposed technique uses
a constrained decoding method with a uni-
versal slot tagging model sharing the same
schema as the collection of slot taggers built
for each domain. The proposed approach al-
lows reusing of slots across different domains
and tasks while achieving virtually the same
performance as those slot taggers trained per
domain fashion.

1 Introduction

Recently there has been tremendous investment into
the personal digital assistants by big technology
companies (Sarikaya, 2015; Sarikaya et al., 2016).
Apple’s SIRI, Google Now, Microsoft’s Cortana and
Amazon’s Alexa are examples of such systems. Nat-
ural language understanding (Gupta et al., 2006; Tur
and De Mori, 2011)is at the core of these systems
providing natural communication between the user
and the agent. These systems support a number of
scenarios including creating reminders, setting up
alarms, note taking, scheduling meetings, finding
and consuming entertainment (i.e. movie, music,
games), finding places of interest and getting driv-
ing directions to them. The domains supported by

these systems are on the order of tens (not in hun-
dreds) and adding new domains and experiences is
a scaling problem that has not been solved yet (Tur,
2006; Jeong and Lee, 2009; El-Kahky et al., 2014;
Kim et al., 2015d).

The primary reason behind this is that each do-
main requires potentially a new schema, intents
and slots extracted from the natural language query.
That, in turn requires collecting and annotating new
data, which is the most expensive step in terms of
time and money, and building a new set of domain
specific models to support the new domains and sce-
narios. Slot modeling in particular is the most de-
manding component in terms of the difficulty of an-
notation and modeling.

In this study, we propose a new approach that re-
duces the cost of scaling natural language under-
standing to a large number of domains and expe-
riences without significantly sacrificing the accu-
racy. The approach consists of a universal slot tag-
ging method and a runtime technique called con-
strained decoding that performs the decoding ac-
cording a specific schema. The proposed approach,
heavily enables reusing existing slot modeling data
that are collected and annotated for potentially dif-
ferent domains and applications, for building new
domains and applications. The new domains can be
expressed in terms of existing semantic schema.

The rest of the paper is organized as follows. In
the next section, we talk about universal slot mod-
eling. In section 3, we present the constrained de-
coding technique. We describe the experimental set
up, results and analysis in section 4 followed by the
conclusions and future directions in section 5.
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2 Universal Slot Tagging

The first step is to build a universal slot tagger, a sin-
gle model that can handle all the domains an agent
(e.g. Cortana) can support. In Table 1, we show a
subset of the domains that are supported by Cortana
for experimentation purposes.

2.1 Universal Slot Tagger Training

To train the universal slot tagger, we consider two
simple and intuitive approaches: Binary and All-in-
one.

Suppose we have a combined k slots across do-
mains and also have access to the labeled data, Bi-
nary approach trains k binary classifier one for each
slot type. For each binary slot tagger targeting a spe-
cific slot type, the labeled data is programatically
mapped to create a new labeled data set, where only
the target label is kept while all the other labels are
mapped “other” label. All-in-one approach simply
trains a single model by aggregating queries across
all domains.

2.2 Slot Tagging Ambiguity

Universal slot tagging model has an advantage,
which can share schema across all domains used
for training time. In spite of the advantage, there
are ambiguity problems caused by combining all do-
mains (and the underlying data) into a single model.
The problems can be grouped into two categories:

• Imbalanced training data distribution: The
amount of training data varies across domains.
Universal slot model may have bias towards
predicting the slots in domains with larger
training data. For example, slots with less train-
ing data (e.g. app name in MEDIACONTROL
domain could be overwhelmed by slots with
large training data (e.g. place name in PLACES
domain).

• Domain-specific schema: In practice, the do-
mains the system handles are not constructed
at the same time. They are designed for dif-
ferent application back-ends, requirements and
scenarios at different points in time. In other
words, the semantic schema for a domain is de-
signed without considering other domains. In

Figure 1: Constrained Lattice: Disabling nodes and transition

while decoding the lattice to honor given constraints of domain

schema.

ALARM domain, the slot indicating time is sub-
divided into sub-slots such as start time repre-
senting starting time, duration representing du-
ration for an alarm. In contrast, in PLACES do-
main, there is only a single slot indicating time
(time).

3 Constrained Decoding

Slot tagging is considered as a sequence learning
problem (Deoras and Sarikaya, 2013; Li et al.,
2009; Xu and Sarikaya, 2014; Celikyilmaz et al.,
2015; Kim et al., 2015b; Kim et al., 2015c; Kim
et al., 2015a). In sequence learning, given a sam-
ple query x1 . . . xn, the decoding problem is to find
the most likely slot sequence among all the possible
sequences, y1 . . . yn:

f(x1 . . . xn) = argmax
y1...yn

p(x1 . . . xn, y1 . . . yn)

Here, we assume that output space in training is
same as those in test time.

However, in our problem, output (slot) space in
test time can be different from those in training
time. At test time, we may observe different slot se-
quences than what is observed in the training time.

This is not an issue for the Binary approach, since
we can use the output of the selected taggers needed
for the new domain. We simply use general decod-
ing approach with each of the selected taggers. Note
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that a given query is run as many times as the num-
bers of slot types covered in a given domain.

For All-in-One technique, we consider two possi-
ble approaches: Post-Filter and Constrained Decod-
ing. With Post-Filter, we simply provide the best
hypothesis generated by the slot tagger that meets
the domain schema constraints, by computing the
full n-best of slots and filtering out the slot types
that do not meet the target domain schema. With
Constrained Decoding, given a schema ỹ ⊂ y for
the target domain, we first define a constrained lat-
tice lattice Y(x, ỹ) = Y(x1, ỹ)× . . .×Y(xn, ỹ), as
shown in Figure 1. Then, we perform the decoding
in the constrained lattice:

f(x1 . . . xn, ỹ) = argmax
Y(x,ỹ)

p(x1 . . . xn, y1 . . . yn)

4 Experiments

In this section, we conducted a series of experiments
to evaluate the proposed techniques on datasets ob-
tained from real usage.

4.1 Experimental Setup

To test the effectiveness of the proposed approach,
we apply it to a suite of 16 Cortana domains for
slot tagging tasks. The data statistics and short
descriptions are shown in Table 1. As the ta-
ble indicates, the domains have different granu-
larity and diverse semantics. Note that we keep
domain-specific slots such as alarm state, but there
are enough shared labels across domains. For exam-
ple, ALARM domain, there are 6 shared slots among
8 slots. There are 62 slots appearing more than one
domain. Especially, some basic slots such as time,
date,place name,person name,location and product
appear in most domains.

4.2 Slot Taggers

In all our experiments, we trained Conditional Ran-
dom Fields (CRFs)(Lafferty et al., 2001) and used
n-gram features up to n = 3, regular expression,
lexicon features, and Brown Clusters (Brown et al.,
1992). With these features, we compare the follow-
ing methods for slot tagging1:

1For parameter estimation, we used L-BFGS (Liu and No-
cedal, 1989) with 100 as the maximum iteration count and 1.0
for the L2 regularization parameter.

• In-domain: Train a domain specific model us-
ing the domain specific data covering the slots
supported in that domain.

• Binary: Train a binary classifier for each slot
type, combine the slots needed for a given do-
main schema.

• Post: Train a single model with all domain data,
take the one-best parse of the tagger and filter-
out slots outside the domain schema.

• Const: Train a single model with all domain
data and then perform constrained decoding us-
ing a domain specific schema.

4.3 Results
For the first scenario, we assume that test domain
semantic schema is a subset of training domain
schema. The results of this scenario are shown in
Table 2. We consider In-domain as a plausible up-
per bound on the performance, yielding 94.16% of
F1 on average. First, Binary has the lowest perfor-
mance of 75.85%. We believe that when we train
a binary classifier for each slot type, the other slots
that provide valuable contextual information for the
slot sequence are ignored. This leads to degradation
in tagging accuracy. Post improves F1 scores across
domains, resulting into 86.50% F1 on average. Note
that this technique does not handle ambiguities and
data distribution mismatch due to combining mul-
tiple domain specific data with different data sizes.
Finally, Const lead to consistent gains across all do-
mains, achieving 93.36%, which almost matches the
In-domain performance. The reason why Const per-
forms better than Binary is that Const constrains the
best path search to the target domain schema. It does
not consider the schema elements that are outside
the target domain schema. By doing so, it addresses
the training data distribution issue as well as overlap
on various schema elements.

For the second scenario, we consider a new set
of test domains not covered in the training set, as
shown in Table 3. The amount of training data for
the test domains are limited (< 5K). These domains
lack training data for the location and app name
slots. When we use universal slot tagger with con-
strained decoding Const yields 94.30%. On average,
Const increases F1-score by 1.41 percentage points,
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#slots
#shared

slots
#train #test Description

ALARM 8 6 160K 16K Set alarms
CALENDAR 21 17 100K 10K Set meeting in calendar

COMM. 21 14 700K 70K Make a call&send msg
MYSTUFF 20 16 24K 2.5K find&open a document
ONDEVICE 10 8 227K 24k Set up a phone

PLACES 31 22 478K 45K Find location & info
REMIND 17 13 153K 14K Remind to-do list

WEATHER 9 5 281K 26K Ask weather
TRANSIT 16 16 0 2k Ask bus schedule & info

MEDIACONT. 15 15 0 10k Set up a music player
ENTERTAIN. 18 12 130k 13k Find&play movie&music
ORDERFOOD 15 15 2.5k 2k Order food

RESERVATIONS 21 19 3k 2k Reserve restaurant
TAXI 17 17 0 2k Book a cab

EVENTS 7 7 2k 1k Book an event ticket
SHOWTIMES 15 15 2k 1k Book a movie ticket

Table 1: The overview of data we used and descriptions.

Domain In-domain Binary Post Const
ALARM 96.24 76.49 91.86 95.33

CALENDAR 91.79 75.62 80.58 90.19
COMM. 95.06 84.17 88.19 94.76
ENTER. 96.05 85.39 90.42 95.84

MYSTUFF 88.34 51.3 80.6 87.51
ONDEVICE 97.65 70.16 77.8 96.43

PLACES 92.39 75.27 87.63 91.36
REMIND 91.53 72.67 88.98 91.1

WEATHER 98.37 91.56 92.45 97.73
Average 94.16 75.85 86.50 93.36

Table 2: Performance for universal models.

Domain In-domain Const
ORDERFOOD 93.62 95.63

RESERVATIONS 93.03 94.58
EVENTS 92.82 94.28

SHOWTIMES 92.07 92.69
Average 92.89 94.30

Table 3: Performance for prototype domains.

TAXI TRANSIT MEDIAC. AVG.
Const 90.86 99.5 93.08 94.48

Table 4: Results across new domains.

corresponding a 20% decrease in relative error. We
believe that universal slot tagger learns to tag these
slots from data available in PLACES and ENTER-

TAINMENT domains.
For the last scenario shown in Table 4, we assume

that we do not have training data for the test do-
mains. The Const performs reasonably well, yield-
ing 94.48% on average. Interestingly, for the TRAN-
SIT domain, we can get almost perfect tagging per-
formance of 99.5%. Note that all tags in TRANSIT
and TAXI domains are fully covered by our universal
models, but the MEDIACONTROL domain is par-
tially covered.

4.4 Discussion

By using the proposed technique, we maximize
the reuse of existing data labeled for different do-
mains and applications. The proposed technique
allows mixing and matching of slots across differ-
ent domains to create new domains. For exam-
ple, we can tag the slots in the SHOWTIMES do-
main, which involves finding a movie to watch by
using movie titles, actor names from the ENTER-
TAINMENT domain, and the location of the the-
ater by using location, place name slots from the
PLACES domain. If the new domain needs some
new slots that are not covered by the universal tag-
ger, then some examples queries could be annotated
and added to the universal slot tagger training data to
retrain the models. Instead of maintaining a separate
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slot tagger for each domain, one needs to maintain a
single slot tagger. The new slots added can be used
by future domains and applications.

5 Conclusions

We proposed a solution for scaling domains and ex-
periences potentially to a large number of use cases
by reusing existing data labeled for different do-
mains and applications. The universal slot tagging
coupled with constrained decoding achieves almost
as good a performance as those slot taggers built in
a domain specific fashion. This approach enables
creation of virtual domains through any combina-
tion of slot types covered in the universal slot tagger
schema, reducing the need to collect and annotate
the same slot types multiple times for different do-
mains. One of the future directions of research is to
extend the same idea to the intent modeling, where
we can re-use intent data built for different applica-
tions and domains for a new domain. Also, we plan
to extend the constrained decoding idea to slot tag-
ging with neural networks (Kim et al., 2016), which
achieved gains over CRFs.
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