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Abstract

In this paper, we experiment with a re-
source consisting of metaphorically annotated
proverbs on the task of word-level metaphor
recognition. We observe that existing feature
sets do not perform well on this data. We
design a novel set of features to better cap-
ture the peculiar nature of proverbs and we
demonstrate that these new features are signif-
icantly more effective on the metaphorically
dense proverb data.

1 Introduction

Recent years have seen a growing attention to-
wards attempts to understand figurative language in
text (Steen et al., 2010, Shutova and Teufel, 2010,
Turney et al., 2011, Neuman et al., 2013, Klebanov
et al., 2015). Recently, Özbal et al. (2016) published
a resource consisting of 1,054 proverbs annotated
with metaphors at the word and sentence level, mak-
ing it possible for the first time to test existing mod-
els for metaphor detection on such data. More than
in other genres, such as news, fiction and essays, in
proverbs metaphors can resolve a significant amount
of the figurative meaning (Faycel, 2012). The rich-
ness of proverbs in terms of metaphors is very fas-
cinating from a linguistic and cultural point of view.
Due to this richness, proverbs constitute a challeng-
ing benchmark for existing computational models of
metaphoricity.

In this paper, we devise novel feature sets es-
pecially tailored to cope with the peculiarities of
proverbs, which are generally short and figuratively
rich. To the best of our knowledge, this is the

first attempt to design a word-level metaphor rec-
ognizer specifically tailored to such metaphorically
rich data. Even though some of the resources that we
use (e.g., imageability and concreteness) have been
used for this task before, we propose new ways of
encoding this information, especially with respect to
the density of the feature space and the way that the
context of each word is modeled. On the proverb
data, the novel features result in compact models
that significantly outperform existing features de-
signed for word-level metaphor detection in other
genres (Klebanov et al., 2014), such as news and es-
says. By also testing the new features on these other
genres, we show that their generalization power is
not limited to proverbs.

2 Background

In this section we provide a brief overview of the
efforts of the NLP community to build metaphor
datasets and utilize them to develop computational
techniques for metaphor processing. Steen et al.
(2010) construct the Amsterdam Metaphor Cor-
pus (VUAMC) by annotating a subset of BNC
Baby1. Linguistic metaphors in VUAMC are an-
notated by utilizing the Metaphor Annotation Pro-
cedure (MIP) proposed by Group (2007). VUAMC
contains 200,000 words in sentences sampled from
various genres (news, fiction, academic, and conver-
sations) and 13.6% of the words are annotated as
metaphoric (Shutova, 2010). Another metaphor an-
notation study following the MIP procedure is con-
ducted by Shutova and Teufel (2010). A subset of

1http://www.natcorp.ox.ac.uk/corpus/
babyinfo.html
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the British National Corpus (BNC) (Burnard, 2000)
is annotated to reveal word-level verb metaphors
and to determine the conceptual mappings of the
metaphorical verbs.

Turney et al. (2011) introduce an algorithm to
classify word-level metaphors expressed by an ad-
jective or a verb based on their concreteness levels
in association with the nouns they collocate. Sim-
ilarly, Neuman et al. (2013) extend the concrete-
ness model with a selectional preference approach
to detect metaphors formed of concrete concepts.
They focus on three types of metaphors: i) IS-A,
ii) verb-noun, iii) adjective-noun. Rather than re-
stricting the identification task to a particular POS
or metaphoric structure, Hovy et al. (2013) aim to
recognize any word-level metaphors given an un-
restricted text, and they create a corpus containing
sentences where one target token for each sentence
is annotated as metaphorical or literal. They use
SVM and CRF models with dependency tree-kernels
to capture the anomalies in semantic patterns. Kle-
banov et al. (2014) propose a supervised approach
to predict the metaphoricity of all content words in a
running text. Their model combines unigram, topic
model, POS and concreteness features and it is eval-
uated on VUAMC and a set of essays written for a
large-scale assessment of college graduates. Follow-
ing this study, Klebanov et al. (2015) improve their
model by re-weighting the training examples and re-
designing the concreteness features.

The experiments in this paper are carried out on
PROMETHEUS (Özbal et al., 2016), a dataset con-
sisting of 1,054 English proverbs and their equiv-
alents in Italian. Proverbs are annotated with word-
level metaphors, overall metaphoricity, meaning and
century of first appearance. For our experiments, we
only use the word-level annotations on the English
data.

3 Word-level metaphor detection

Similarly to Klebanov et al. (2014), we classify each
content word (i.e., adjective, noun, verb or adverb)
appearing in a proverb as being used metaphorically
or not. Out of 1,054 proverbs in PROMETHEUS, we
randomly sample 800 for training, 127 for develop-
ment and 127 for testing. We carry out the develop-
ment of new features on the development set; then

we compare the performance of different feature sets
using 10-fold cross validation on the combination of
the development and training data. Finally, we test
the most meaningful configurations on the held-out
test data. As a baseline, we use a set of features
very similar to the one proposed by Klebanov et al.
(2014). To obtain results more easily comparable
with Klebanov et al. (2014), we use the same clas-
sifier, i.e., logistic regression, in the implementation
bundled with the scikit-learn package (Pedregosa et
al., 2011). For all the experiments, we adjust the
weight of the examples proportionally to the inverse
of the class frequency.

3.1 Baseline features (B)
Unigrams (uB): Klebanov et al. (2014) use all con-
tent word forms as features without stemming or
lemmatization. To reduce sparsity, we consider lem-
mas along with their POS tag.
Part-of-speech (pB): The coarse-grained part-of-
speech (i.e., noun, adjective, verb or adverb) of con-
tent words2.
Concreteness (cB): We extract the concreteness
features from the resource compiled by Brysbaert et
al. (2014). Similarly to Klebanov et al. (2014), the
mean concreteness ratings, ranging from 1 to 5, are
binned in 0.25 increments. We also add a binary fea-
ture which encodes the information about whether
the lemma is found in the resource.
Topic models (tB): We use Latent Dirichlet Alloca-
tion (LDA) (Blei et al., 2003) using Gibbs sampling
for parameter estimation and inference (Griffiths,
2002). We run LDA on the full British National Cor-
pus (Consortium and others, 2001) to estimate 100
topics, using 2000 Gibbs sampling iterations, and
keeping the first 1000 words for each topic. As topic
model features for a lemma, we use the conditional
probability of the topic given the lemma for each of
the 100 topics generated by LDA. Besides, we use a
binary feature that encodes whether the lemma ex-
ists in the LDA model.

3.2 Novel features (N )
We introduce five feature sets that capture other as-
pects of the data which we consider to be meaningful
for the peculiar characteristics of proverbs.

2Klebanov et al. (2014) consider the Penn Treebank tagset
generated by Stanford POS tagger.
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Imageability (i) and Concreteness (c): Imageabil-
ity and concreteness of the metaphor constituents
were found to be highly effective in metaphor iden-
tification by several studies in the literature (Turney
et al., 2011, Broadwell et al., 2013, Neuman et al.,
2013, Tsvetkov et al., 2014). We obtain the image-
ability and concreteness scores of each lemma from
the resource constructed by Tsvetkov et al. (2014),
as it accounts for both dimensions. The imageabil-
ity (concreteness) feature set contains the following
four features:
• Has score: A binary feature that indicates

whether the lemma exists in the relevant re-
source.
• Score value: The imageability (concreteness)

score of the lemma.
• Average sentence score: The average image-

ability (concreteness) score of the other lem-
mas in the sentence.
• Score difference: The difference between Av-

erage sentence score and Score value.
The last two features take the context of the target
lemma into account and encode the intuition that
metaphorical lemmas often have higher imageability
(concreteness) than the rest of the sentence (Broad-
well et al., 2013).
Metaphor counts (m): This feature set consists of
three features. The first two features encode the
number of times a lemma-POS pair is used as a
metaphor and a non-metaphor in the data. The third
feature evaluates to the difference between these
counts3.
Standard domains (ds) and normalized domains
(dn): These features reflect our intuition that there
is a strong prior for some domains to be used as
a source for metaphors. This notion is backed by
the analysis of PROMETHEUS carried out by Özbal
et al. (2016). We also expect that words which are
clearly out of context with respect to the rest of the
sentence are more likely to be used as metaphors.
The correlation between word and sentence domains
described below aims to model such phenomenon.
For each lemma-POS pair, we collect the domain
information from WordNet Domains4 (Magnini et
al., 2002, Bentivogli et al., 2004) for the standard

3 Counts are estimated on training folds. To reduce over-
fitting, lemmas are randomly sampled with a probability of 2/3.

4We always select the first sense of the lemma-POS.

Feature sets C P R F

B# 0.9 0.666 0.832 0.738
N∗ 0.6 0.785 0.884 0.833
B ∪N∗ 0.6 0.798 0.875 0.834

N \ i∗ 0.6 0.788 0.886 0.833
N \ c∗ 0.6 0.782 0.888 0.831
N \m∗# 0.6 0.780 0.824 0.799
N \ d∗s 1.0 0.787 0.842 0.815
N \ d∗n 1.0 0.789 0.884 0.832
N \ (ds ∪ dn)

# 1.0 0.746 0.704 0.724
N \ s∗ 1.0 0.776 0.909 0.836

(N \ (ds ∪ dn)) ∪ t#B 0.6 0.751 0.705 0.724

Table 1: Cross-validation performance on the proverb training

and development data. The meta-parameter C is the inverse of

the regularization strength. ∗: significantly different from B

with p < .001; #: s.d. from N with p < .001.

domains feature set, which consists of 167 features
(1 real valued, 166 binary). It includes a binary in-
dicator set to 1 if the lemma is found in WordNet
Domains. A domain vector consisting of 164 binary
indicators mark the domains to which the lemma be-
longs. Then, we compute a sentence domain vector
by summing the vectors for all the other lemmas in
the sentence, and we encode the Pearson correlation
coefficient between the two vectors (lemma and sen-
tence) as a real valued feature. Finally, a binary fea-
ture accounts for the cases in which no other lemma
in the sentence has associated domain information.

The same process is repeated for the normalized
domains. For normalization, we use a reduced set
of domains (43 distinct domains) by considering the
middle level of the WordNet Domains hierarchy. For
instance, VOLLEY or BASKETBALL domains are
mapped to the SPORT domain. Normalization al-
ready proved to be beneficial in tasks such as word
sense disambiguation (Gliozzo et al., 2004). It al-
lows for a good level of abstraction without losing
relevant information and it helps to overcome data
sparsity. The set of normalized domain features (dn)
consists of 46 features (45 binary, 1 real valued).

Dense signals (s): This set includes three binary
features which summarize the concreteness, image-
ability and metaphor count feature sets. The first
(second) feature is set to 1 if the imageability (con-
creteness) of the lemma is higher than the average
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Features P R F

B# 0.75 0.70 0.73
N∗ 0.86 0.83 0.85
N \ s∗ 0.82 0.87 0.85
B ∪N∗ 0.87 0.85 0.86

Table 2: Performance on the proverb test data. ∗: significantly

different from B with p < .001. #: significantly different from

N with p < .001.

Genre Features C P R F

News
B 1.0 0.475 0.742 0.576
N 1.0 0.576 0.479 0.522
B ∪N 1.0 0.615 0.539 0.574

Academic
B 0.6 0.489 0.733 0.568
N 0.6 0.572 0.494 0.511
B ∪N 1.0 0.539 0.648 0.569

Conversation
B 0.6 0.292 0.799 0.416
N 0.6 0.304 0.626 0.393
B ∪N 1.0 0.299 0.731 0.406

Fiction
B 0.6 0.349 0.695 0.460
N 0.6 0.430 0.418 0.421
B ∪N 0.6 0.409 0.551 0.465

Table 3: Cross-validation performance on VUAMC. B is al-

ways significantly different from N (p < .001), and B ∪ N is

always significantly different from both B and N (p < .001).

imageability (concreteness) of the rest of the sen-
tence. The third feature is set to 1 if the lemma was
observed more frequently as a metaphor than not, as
estimated on training data.

3.3 Results

Table 1 shows the results of the 10-fold cross valida-
tion on the English proverb data. The value reported
in the column labeled C is the optimal inverse of
regularization strength, determined via grid-search
in the interval [0.1, 1.0] with a step of 0.1. Using
only baseline features (B) we measure an average F1
score of 0.738. The performance goes up to 0.833
when the novel features are used in isolation (N )
(statistically significant with p < 0.001). We believe
that the difference in performance is at least in part
due to the sparser B features requiring more data
to be able to generalize. But most importantly, un-
like B, N accounts for the context and the peculiar-
ity of the target word with respect to the rest of the
sentence. The combination of the two feature sets

(B ∪N ) very slightly improves over N (0.834), but
the difference is not significant. The second block of
rows in Table 1 presents a summary of the ablation
tests that we conducted to assess the contribution of
the different feature groups. Each lowercase letter
indicates one of the feature sets introduced in the
previous section. All configurations reported, except
N \ (ds ∪ dn), significantly outperform B. In two
cases, N \m and N \ (ds∪dn), there is a significant
loss of performance with respect to N . The worst
performance is observed when all the domain fea-
tures are removed (i.e., N \ (ds∪dn)). These results
suggest that the prior knowledge about the domain
of a word and the frequency of its metaphorical use
are indeed strong predictors of a word metaphoricity
in context. The fact that N \dn and N \ds do not re-
sult in the same loss of performance as N \(ds∪dn)
indicates that both dn and ds are adequately expres-
sive to model the figuratively rich proverb data. In
one case (i.e., N \ s), the F1 measure is slightly
higher than N , even though the difference does not
appear to be statistically significant. Our intuition is
that each of the three binary indicators is a very good
predictor of metaphoricity per se, and due to the rel-
atively small size of the data the classifier may tend
to over-fit on these features. As another configura-
tion, the last row shows the results obtained by re-
placing our domain features ds and dn with the topic
features t from B. With this experiment, we aim to
understand the extent to which the two features are
interchangeable. The results are significantly worse
than N , which is a further confirmation of the suit-
ability of the domain features to model the proverbs
dataset.

We then evaluated the best configuration from the
cross-fold validation (N \ s) and the three feature
sets B, N and B ∪ N on the held-out test data.
The results of this experiment reported in Table 2
are similar to the cross-fold evaluation, and in this
case the contribution of N features is even more ac-
centuated. Indeed, the absolute F1 of N and B ∪N
is slightly higher on test data, while the f-measure of
B decreases slightly. This might be explained by the
low-dimensionality of N , which makes it less prone
to overfitting the training data. On test data, N \ s
is not found to outperform N . Interestingly, N \ s
is the only configuration having higher recall than
precision. As shown by the feature ablation experi-
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ments, one of the main reasons for the performance
difference between N and B is the ability of the for-
mer to model domain information. This finding can
be further confirmed by inspecting the cases where
B misclassifies metaphors that are correctly detected
by N . Among these, we can find several examples
including words that belong to domains often used
as a metaphor source, such as “grist” (domain: “gas-
tronomy”) in “All is grist that comes to the mill”,
or “horse” (domain: “animals”) in “You can take a
horse to the water , but you can’t make him drink”.

Finally, Table 3 shows the effect of the different
feature sets on VUAMC used by Klebanov et al.
(2014). We use the same 12-fold data split as Kle-
banov et al. (2014), and also in this case we per-
form a grid-search to optimize the meta-parameter
C of the logistic regression classifier. The best value
of C identified for each genre and feature set is
shown in the column labeled C. On this data, N
features alone are significantly outperformed by B
(p < 0.01). On the other hand, for the genres
“academic” and “fiction”, combining N and B fea-
tures improves classification performance over B,
and the difference is always statistically significant.
Besides, the addition of N always leads to more bal-
anced models, by compensating for the relatively
lower precision of B. Due to the lack of a separate
test set, as in the original setup by Klebanov et al.
(2014), and to the high dimensionality of B’s lex-
icalized features, we cannot rule out over-fitting as
an explanation for the relatively good performance
of B on this benchmark. It should also be noted that
the results reported in (Klebanov et al., 2014) are not
the same, due to the mentioned differences in the im-
plementation of the features and possibly other dif-
ferences in the experimental setup (e.g., data filter-
ing, pre-processing and meta-parameter optimiza-
tion). In particular, our implementation of the B
features performs better than reported by Klebanov
et al. (2014) on all four genres, namely: 0.52 vs.
0.51 for “news”, 0.51 vs. 0.28 for “academic”, 0.39
vs. 0.28 for “conversation” and 0.42 vs. 0.33 for
“fiction”.

Even though the evidence is not conclusive, these
results suggest that the insights derived from the
analysis of PROMETHEUS and captured by the fea-
ture set N can also be applied to model word-level
metaphor detection across very different genres. In

particular, we believe that our initial attempt to en-
code context and domain information for metaphor
detection deserves further investigation.

4 Conclusion

We designed a novel set of features inspired by the
analysis of PROMETHEUS, and used it to train and
test models for word-level metaphor detection. The
comparison against a strong set of baseline features
demonstrates the effectiveness of the novel features
at capturing the metaphoricity of words for proverbs.
In addition, the novel features show a positive con-
tribution for metaphor detection on “fiction” and
“academic” genres. The experimental results also
highlight the peculiarities of PROMETHEUS, which
stands out as an especially dense, metaphorically
rich resource for the investigation of the linguistic
and computational aspects of figurative language.
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Gözde Özbal, Carlo Strapparava, and Serra Sinem
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