Speed-Accuracy Tradeoffs in Tagging
with Variable-Order CRFs and Structured Sparsity

Tim Vieira®and Ryan Cotterell* and Jason Eisner
Department of Computer Science
Johns Hopkins University
{timv, ryan.cotterell, jason}@cs. jhu.edu

Abstract

We propose a method for learning the structure
of variable-order CRFs, a more flexible variant
of higher-order linear-chain CRFs. Variable-
order CRFs achieve faster inference by in-
cluding features for only some of the tag n-
grams. Our learning method discovers the
useful higher-order features at the same time
as it trains their weights, by maximizing an
objective that combines log-likelihood with a
structured-sparsity regularizer. An active-set
outer loop allows the feature set to grow as
far as needed. On part-of-speech tagging in 5
randomly chosen languages from the Universal
Dependencies dataset, our method of shrink-
ing the model achieved a 2—-6x speedup over a
baseline, with no significant drop in accuracy.

1 Introduction

Conditional Random Fields (CRFs) (Lafferty et al.,
2001) are a convenient formalism for sequence label-
ing tasks common in NLP. A CRF defines a feature-
rich conditional distribution over tag sequences (out-
put) given an observed word sequence (input).

The key advantage of the CRF framework is the
flexibility to consider arbitrary features of the input,
as well as enough features over the output structure to
encourage it to be well-formed and consistent. How-
ever, inference in CRFs is fast only if the features
over the output structure are limited. For example,
an order-k£ CRF (or “k-CRF” for short, with k£ > 1
being “higher-order”) allows expressive features over
a window of k+1 adjacent tags (as well as the input),
and then inference takes time O(n-|Y|**1), where
Y is the set of tags and n is the length of the input.

How large does k need to be? Typically &k = 2
works well, with big gains from 0 — 1 and modest

*Equal contribution

1973

97 @ “ °
& °

9% @ $ ®
" s
=" icre 2-GRF
§ 04 0 CRjF Bulgarian
<) Norwegian

93 Hindi

0 o - Slovenian ®

T e Basque

91
0 1000 2000 3000 1000

Number of Tag String Features
Figure 1: Speed-accuracy tradeoff curves on test data
for the 5 languages. Large dark circles represent the k-
CREFs of ascending orders along x-axis (marked on for
Slovenian). Smaller triangles each represent a VoCRF
discovered by sweeping the speed parameters . We find
faster models at similar accuracy to the best k-CRFs (§5).

5000

gains from 1 — 2 (Fig. 1). Small £ may be sufficient
when there is enough training data to allow the model
to attend to many fine-grained features of the input
(Toutanova et al., 2003; Liang et al., 2008). For ex-
ample, when predicting POS tags in morphologically-
rich languages, certain words are easily tagged based
on their spelling without considering the context
(k=0). In fact, such languages tend to have a more
free word order, making tag context less useful.

We investigate a hybrid approach that gives the
accuracy of higher-order models while reducing run-
time. We build on variable-order CRFs (Ye et al.,
2009) (VoCRF), which support features on tag sub-
sequences of mixed orders. Since only modest gains
are obtained from moving to higher-order models,
we posit that only a small fraction of the higher-order
features are necessary. We introduce a hyperparam-
eter +y that discourages the model from using many
higher-order features (= faster inference) and a hy-
perparameter A that encourages generalization. Thus,
sweeping a range of values for v and \ gives rise to a

Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pages 1973-1978,
Austin, Texas, November 1-5, 2016. (©)2016 Association for Computational Linguistics

number of operating points along the speed-accuracy
curve (triangle points in Fig. 1).

We present three contributions: (1) A simplified
exposition of VoCRFs, including an algorithm for
computing gradients that is asymptotically more ef-
ficient than prior art (Cuong et al., 2014). (2) We
develop a structure learning algorithm for discover-
ing the essential set of higher-order dependencies so
that inference is fast and accurate. (3) We investigate
the effectiveness of our approach on POS tagging
in five diverse languages. We find that the amount
of required context for accurate prediction is highly
language-dependent. In all languages, however, our
approach meets the accuracy of fixed-order models
at a fraction of the runtime.

2 Variable-Order CRFs

An order-k CRF (k-CREF, for short) is a conditional
probability distribution of the form

O f(z,t, ... yt))

where n is the length of the input x, € R? is the
model parameter, and f is an arbitrary user-defined
function that computes a vector in R? of features of
the tag substring s = y;_ ...y when it appears at
position ¢ of input . We define y; to be a distin-
guished boundary tag # when i ¢ [1,n].

A variable-order CRF or VoCREF is a refinement of
the £-CREF, in which f may not always depend on all
k + 1 of the tags that it has access to. The features
of a particular tag substring s may sometimes be
determined by a shorter suffix of s.

To be precise, a VoCRF specifies a finite set
W C Y™ that is sufficient for feature computation
(where Y* denotes the set of all tag sequences).! The
VoCRF’s featurization function f(x,t, s) is then de-
fined as f'(x,t, w(s)) where f’ can be any function
and w(s) € Y™ is the longest suffix of s that appears
in W (or € if none exists). The full power of a k-
CREF can be obtained by specifying W = Y**1 but
smaller VW will in general allow speedups.

To support our algorithms, we define WV to be
the closure of VW under prefixes and last-character
substitution. Formally, JV is the smallest nonempty
superset of WV such that if hy € W for some h € Y*

n+1

Po(y @)= 7z eXp(o

'The constructions given in this section assume that V does not
contain € nor any sequence having ## as a proper prefix.

1974

Algorithm 1 FORWARD: Compute log Zg(x).
al+)=0;a(0,#) =1
fort=1ton+1:

ift=n+1thenY; = {#}elsey, = Y\ {#}
forhc H,y, €Y
h' = NExT(h, y;)
2z = exp (OTf’(a:, t, w(hyt)))
a(t,h) +=a(t—1,h) - 2
Z =3 hena(n+1h)
return log Z

> initialization

> sum over final states

Algorithm 2 GRADIENT: Compute Vg log Zg(x).
5(7) =0,A=0
B(n+1,h)=1forallh € H
fort =n+ 1downto 1:

forhcH,y. €Yy:
h' = NExT(h,y;)
z=-exp (0"f (z.t, w(hy)))
A += f'(z, t,w(hy)) -a(t—1,h)-2-B(t,h')
B(t—1,h) +=z - B(t, k)
return A /Z

> initialization

and y € Y, then h € W and also hy' € W for all
y' € Y. This implies that we can factor W as H x Y,
where H C Y™ is called the set of histories.

We now define NEXT(h, y) to return the longest
suffix of hy that is in H (which may be hy itself, or
even €). We may regard NEXT as the transition func-
tion of a deterministic finite-state automaton (DFA)
with state set H and alphabet Y. If this DFA is used to
read any tag sequence y € Y, then the arc that reads
y; comes from a state h such that hy;, is the longest
suffix of s = y;_y ...y, that appears in W—and
thus w(hy:) = w(s) € W and provides sufficient
information to compute f(z,t, s).2

For a given x of length n and given parameters 6,
the log-normalizer log Zg ()—which will be needed
to compute the log-probability in eq. (1) below—can
be found in time O(|W|n) by dynamic program-
ming. Concise pseudocode is in Alg. 1. In effect, this

2Our DFA construction is essentially that of Cotterell and Eisner
(2015, Appendix B.5). However, Appendix B of that paper also
gives a construction that obtains an even smaller DFA by using
failure arcs (Allauzen et al., 2003), which remove the require-
ment that W be closed under last-character substitution. This
would yield a further speedup to our Alg. 1 (replacing it with
the efficient backward algorithm in footnote 16 of that paper)
and similarly to our Alg. 2 (by differentiating the new Alg. 1).

runs the forward algorithm on the lattice of taggings
given by length-n paths through the DFA.

For finding the parameters @ that minimize eq. (1)
below, we want the gradient Vglog Zg(x). By
applying algorithmic differentiation to Alg. 1, we
obtain Alg. 2, which uses back-propagation to
compute the gradient (asymptotically) as fast as
Alg. 1 and |#| times faster than Cuong et al. (2014)’s
algorithm—a significant speedup since |H| is often
quite large (up to 300 in our experiments). Algs. 1-2
together effectively run the forward-backward
algorithm on the lattice of taggings.’

It is straightforward to modify Alg. 1 to obtain
a Viterbi decoder that finds the most-likely tag se-
quence under pg(- | «). It is also straightforward to
modify Alg. 2 to compute the marginal probabilities
of tag substrings occurring at particular positions.

3 Structured Sparsity and Active Sets

We begin with a k-CRF model whose feature vector
f(x,t,yi—k . . . y¢) is partitioned into non-stationary
local features £V (x,t,1;) and stationary higher-
order features f(? (Yt—k - - y¢). Specifically, f @
includes an indicator feature for each tag string w €
Y* with 1 < |w| < k + 1, where fg)(yt_k CYt)
is 1 if w is a suffix of y5;_j, . . . ¢ and is O otherwise.*

To obtain the advantages of a VoCRF, we merely
have to choose a sparse weight vector 6. The set
W can then be defined to be the set of strings in
Y™ whose features have nonzero weight. Prior work
(Cuong et al., 2014) has left the construction of W to
domain experts or “one size fits all” strategies (e.g.,
k-CRF). Our goal is to choose 8—and thus WW—so
that inference is accurate and fast.

Our approach is to modify the usual Lo-
regularized log-likelihood training criterion with a
carefully defined runtime penalty scaled by a param-
eter -y to balance competing objectives: likelihood on
the data {(z®, y()}™ vs. efficiency (small W).

= logpe(y” =) + A6]|3 +R(0) (1)
=1 \\,_/ \\,—/

loss

generalization runtime

Recall that the runtime of inference on a given
sentence is proportional to the size of W, the closure
3Eisner (2016) explains the connection between algorithmic

differentiation and the forward-backward algorithm.

“Extensions to richer sets of higher-order features are possible,
such as conjunctions with properties of the words at position .

1975

@
@ Ge
@@@ @@

Figure 2: A visual depiction of the tree-structured group
lasso penalty. Each node represents a tag string feature.
The group indexed by a node’s tag string is defined as the
set of features that are proper descendants of the node.
For example, the box indicates the largest group
G, and the aubergine box indicates a smaller group Gy .
To avoid clutter, not all groups are marked.

of VW under prefixes and last-character replacement.
(Any tag strings in YW\W can get nonzero weight
without increasing runtime.) Thus, R(€) would ide-
ally measure |WW)|, or proportionately, |#|. Experi-
mentally, we find that W] has > 99% Pearson cor-
relation with wallclock time, making it an excellent
proxy for wallclock time while being more replicable.

We relax this regularizer to a convex function—
a tree-structured group lasso objective (Yuan and
Lin, 2006; Nelakanti et al., 2013). For each string
h € Y*, we have a group GG, consisting of the in-
dicator features (in f) for all strings w € W that
have h as a proper prefix. Fig. 2 gives a visual depic-
tion. We now define R(0) = >}y |0, ||2. This
penalty encourages each group of weights to remain
all at zero (thereby conserving runtime, in our setting,
because it means that h does not need to be added
to H). Once a single weight in a group becomes
nonzero, the “initial inertia” induced by the group
lasso penalty is overcome, and other features in the
group can be more cheaply adjusted away from zero.

Although eq. (1) is now convex, directly optimiz-
ing it would be expensive for large k, since 6 then
contains very many parameters. We thus use a heuris-
tic optimization algorithm, the active set method
(Schmidt, 2010), which starts with a low-dimensional
0 and incrementally adds features to the model. This
also frees us from needing to specify a limit k. Rather,
W grows until further extensions are unhelpful, and
then implicitly £ = max,epy |w| — 1.

The method defines f(2) to include indicator fea-
tures for all tag sequences w in an active set Wactive-
Thus, 0@ is always a vector of [W,ciive| real numbers.
Initially, we take Waciive = Y and @ = 0. At each

active set iteration, we fully optimize eq. (1) to obtain
a sparse 0 and a set W = {w € Wagive | 0&3) # 0}
of features that are known to be “useful””> We then
update Wieiive to {wy | w € W,y € Y}, so that
it includes single-tag extensions of these useful fea-
tures; this expands 6 to consider additional features
that plausibly might prove useful. Finally, we com-
plete the iteration by updating Wgtive to its closure
Wactive, Simply because this further expansion of the
feature set will not slow down our algorithms. When
eq. (1) is re-optimized at the next iteration, some of
these newly added features in W,.ive may acquire
nonzero weights and thus enter VV, allowing further
extensions. We can halt once VV no longer changes.

As a final step, we follow common practice by
running “debiasing” (Martins et al., 2011a), where
we fix our f(?) feature set to be given by the final W,
and retrain 6 without the group lasso penalty term.

In practice, we optimized eq. (1) using the online
proximal gradient algorithm SPOM (Martins et al.,
2011b) and Adagrad (Duchi et al., 2011) with n =
0.01 and 15 inner epochs. We limited to 3 active set
iterations, and as a result, our final WV contained at
most tag trigrams.

4 Related Work

Our paper can be seen as transferring methods of
Cotterell and Eisner (2015) to the CRF setting.
They too used tree-structured group lasso and active
set to select variable-order n-gram features W for
globally-normalized sequence models (in their case,
to rapidly and accurately approximate beliefs during
message-passing inference). Similarly, Nelakanti et
al. (2013) used tree-structured group lasso to regu-
larize a variable-order language model (though their
focus was training speed). Here we apply these tech-
niques to conditional models for tagging.

Our work directly builds on the variable-order CRF
of Cuong et al. (2014), with a speedup in Alg. 2, but
our approach also learns the VoCRF structure. Our
method is also related to the generative variable-order
tagger of Schiitze and Singer (1994).

Our static feature selection chooses a single model
that permits fast exact marginal inference, similar to
learning a low-treewidth graphical model (Bach and

SEach gradient computation in this inner optimization takes time
O([Wciive| 1), which is especially fast at early iterations.

1976

Jordan, 2001; Elidan and Gould, 2008). This con-
trasts with recent papers that learn to do approximate
1-best inference using a sequence of models, whether
by dynamic feature selection within a greedy infer-
ence algorithm (Strubell et al., 2015), or by gradually
increasing the feature set of a 1-best global inference
algorithm and pruning its hypothesis space after each
increase (Weiss and Taskar, 2010; He et al., 2013).

Schmidt (2010) explores the use of group lasso
penalties and the active set method for learning
the structure of a graphical model, but does not
consider learning repeated structures (in our setting,
W defines a structure that is reused at each position).
Steinhardt and Liang (2015) jointly modeled the
amount of context to use in a variable-order model
that dynamically determines how much context to
use in a beam search decoder.

5 Experiments®

Data: We conduct experiments on multilingual POS
tagging. The task is to label each word in a sen-
tence with one of |Y'| =17 labels. We train on five
typologically-diverse languages from the Universal
Dependencies (UD) corpora (Petrov et al., 2012):
Basque, Bulgarian, Hindi, Norwegian and Slovenian.
For each language, we start with the original train /
dev / test split in the UD dataset, then move random
sentences from train into dev until the dev set has
3000 sentences. This ensures more stable hyperpa-
rameter tuning. We use these new splits below.

Eval: We train models with (\,v) € {107*.
m,1073-m,1072-m} x {0,0.1-m,0.2-m, ..., m},
where m is the number of training sentences. To tag
a dev or test sentence, we choose its most probable
tag sequence. For each of several model sizes, Ta-
ble 1 selects the model of that size that achieved the
highest per-token tagging accuracy on the dev set,
and reports that model’s accuracy on the test set.

Features: Recall from §3 that our features include
non-stationary zeroth-order features f (1) as well as
the stationary features based on W. For (V) (x,t, ;)
we consider the following language-agnostic proper-
ties of (x, t):

e The identities of the tokens x;_3,...,Ti43,

and the token bigrams (x¢y1,x¢), (z¢, T¢—1),

8Code and data are available at the following URLs:

http://github.com/timvieira/vocrf
http://universaldependencies.org

k-CRF (W] = 17%+1) VoCREF at different model sizes |WV| (which is proportional to runtime)

0(17) 1(289) 2(4913)|< 34 < 85 <170 <340 <850 <1700 <2550 < 3400 <4250 < 5100
Ba||91.61%2 92.35° 92.49° [92.25%2 92.25%2 92.38° 92.34° 92.44° 92.44° 92.44° 92.54° 92.54° 92.54°
Bul||96.48%2 97.11%% 97.29°%1196.75% 12 96.78%1:% 96.99% 12 97.08°2 97.18%* 97.25%1 97.34%1 97.34%1 97.34%1 97.34°1
Hi|(95.96%2 96.22° 96.21° [95.97%2 96.22° 96.22° 96.26° 96.13° 96.13° 96.24° 96.24° 96.24° 96.24°
No||96.00%2 96.64° 96.66° [96.07%% 96.26°%2 96.41° 96.60° 96.62° 96.64° 96.67° 96.64° 96.64° 96.64°
SI |(94.46%2 95.41%% 95.6291194.82%2 95,1822 95.36%% 95.39°2 95.39%2 95.69%* 95.69°1 95.69%! 95.69°* 95.67°1

Table 1: Part-of-speech tagging with Universal Tags: This table shows test results on 5 languages at different target
runtimes. Each row’s best results are in boldface, where ties in accuracy are broken in favor of faster models. Superscript
k indicates that the accuracy is significantly different from the k-CRF (paired permutation test, p < 0.05) and this
superscript is in blue/red if the accuracy is higher/lower than the k-CREF. In all cases, we find a VOCRF (underlined) that
is about as accurate as the 2-CRF (i.e., not significantly less accurate) and far faster, since the 2-CRF has |W| = 4913.

Fig. 1 plots the Pareto frontiers.

(z¢—1,z¢+1). We use special boundary symbols
for tokens at positions beyond the start or end
of the sentence.

e Prefixes and suffixes of x;, up to 4 characters
long, that occur > 5 times in the training data.

e Indicators for whether x; is all caps, is
lowercase, or has a digit.

e Word shape of =, which maps the token string
into the following character classes (uppercase,
lowercase, number) with punctuation unmod-
ified (e.g., VoCRF-like = AaAAA-aaaa, $5,432.10
= $8,888.88).

For efficiency, we hash these properties into 222 bins.
The f () features are obtained by conjoining these
bins with y; (Weinberger et al., 2009): e.g., there is
a feature that returns 0 unless y; = NOUN, in which
case it counts the number of bin 1234567’s properties
that (2, ¢) has. (The f(?) features are not hashed.)

Results: Our results are presented in Fig. 1 and
Table 1. We highlight two key points: (i) Across all
languages we learned a tagger about as accurate as
a 2-CRF, but much faster. (ii) The size of the set
W required is highly language-dependent. For many
languages, learning a full k-CRF is wasteful; our
method resolves this problem.

In each language, the fastest “good” VoCRF is
rather faster than the fastest “good” k-CRF (where
“good” means statistically indistinguishable from the
2-CRF). These two systems are underlined; the un-
derlined VoCRF systems are smaller than the under-
lined k-CRF systems (for the 5 languages respec-
tively) by factors of 1.9, 6.4, 3.4, 1.9, and 2.9. In
every language, we learn a VoCRF with W] < 850
that is not significantly worse than a 2-CRF with

1977

W| = 173 = 4913.

We also notice an interesting language-dependent
effect, whereby certain languages require a small
number of tag strings in order to perform well.
For example, Hindi has a competitive model that
ignores the previous tag ;1 unless it is in
{NOUN, VERB, ADP, PROPN}: thus the stationary fea-
tures are 17 unigrams plus 4 x 17 bigrams, for a total
of [W| = 85. At the other extreme, the Slavic lan-
guages Slovenian and Bulgarian seem to require more
expressive models over the tag space, remembering
as many as 98 useful left-context histories (unigrams
and bigrams) for the current tag. An interesting direc-
tion for future research would be to determine which
morpho-syntactic properties of a language tend to
increase the complexity of tagging.

6 Conclusion

We presented a structured sparsity approach for struc-
ture learning in VoCRFs, which achieves the accu-
racy of higher-order CRFs at a fraction of the runtime.
Additionally, we derive an asymptotically faster al-
gorithm for the gradients necessary to train a VOCRF
than prior work. Our method provides an effective
speed-accuracy tradeoff for POS tagging across five
languages—confirming that significant speed-ups are
possible with little-to-no loss in accuracy.

Acknowledgments: This material is based in part on
research sponsored by DARPA under agreement num-
ber FA8750-13-2-0017 (DEFT program) and the Na-
tional Science Foundation under Grant No. 1423276.
The second author was funded by a DAAD Long-
term research grant and an NDSEG fellowship.

References

Cyril Allauzen, Mehryar Mohri, and Brian Roark. 2003.
Generalized algorithms for constructing statistical lan-
guage models. In Proceedings of ACL, pages 40-47.

F. R. Bach and M. I. Jordan. 2001. Thin junction trees. In
NIPS, pages 569-576.

Ryan Cotterell and Jason Eisner. 2015. Penalized expec-
tation propagation for graphical models over strings. In
NAACL-HLT, pages 932-942.

Nguyen Viet Cuong, Nan Ye, Wee Sun Lee, and Hai Leong
Chieu. 2014. Conditional random field with high-order
dependencies for sequence labeling and segmentation.
JMLR, 15(1):981-1009.

John Duchi, Elad Hazan, and Yoram Singer. 2011.
Adaptive subgradient methods for online learning and
stochastic optimization. JMLR, 12:2121-2159.

Jason Eisner. 2016. Inside-outside and forward-backward
algorithms are just backprop. In Proceedings of the
EMNLP 16 Workshop on Structured Prediction for NLP,
Austin, TX, November.

G. Elidan and S. Gould. 2008. Learning bounded
treewidth Bayesian networks. In NIPS, pages 417-424.

He He, Hal Daumé 111, and Jason Eisner. 2013. Dynamic
feature selection for dependency parsing. In EMNLP,
pages 1455-1464.

John D. Lafferty, Andrew McCallum, and Fernando C. N.
Pereira. 2001. Conditional random fields: Probabilistic
models for segmenting and labeling sequence data. In
ICML, pages 282-289.

Percy Liang, Hal Daumé III, and Dan Klein. 2008. Struc-
ture compilation: trading structure for features. In
ICML, pages 592-599.

André F. T. Martins, Noah A. Smith, Pedro M. Q. Aguiar,
and Mdrio A. T. Figueiredo. 2011a. Structured sparsity
in structured prediction. In EMNLP, pages 1500-1511.

André F. T. Martins, Noah A. Smith, Eric P. Xing, Pe-
dro M. Q. Aguiar, and Mério A.T. Figueiredo. 2011b.
Online learning of structured predictors with multiple
kernels. In AISTATS, pages 507-515.

Anil Nelakanti, Cedric Archambeau, Julien Mairal, Fran-
cis Bach, and Guillaume Bouchard. 2013. Structured
penalties for log-linear language models. In EMNLP,
pages 233-243.

Slav Petrov, Dipanjan Das, and Ryan T. McDonald. 2012.
A universal part-of-speech tagset. In LREC, pages
2089-2096.

Mark Schmidt. 2010. Graphical Model Structure Learn-
ing with {1-Regularization. Ph.D. thesis, University of
British Columbias.

Hinrich Schiitze and Yoram Singer. 1994. Part-of-speech
tagging using a variable memory Markov model. In
ACL, pages 181-187.

1978

Jacob Steinhardt and Percy Liang. 2015. Reified context
models. In ICML, pages 1043—-1052.

Emma Strubell, Luke Vilnis, Kate Silverstein, and Andrew
McCallum. 2015. Learning dynamic feature selection
for fast sequential prediction. In ACL, pages 146-155.

Kristina Toutanova, Dan Klein, Christopher D. Manning,
and Yoram Singer. 2003. Feature-rich part-of-speech
tagging with a cyclic dependency network. In ACL,
pages 173-180.

Kilian Weinberger, Anirban Dasgupta, John Langford,
Alex Smola, and Josh Attenberg. 2009. Feature hash-
ing for large scale multitask learning.

David J. Weiss and Benjamin Taskar. 2010. Structured
prediction cascades. In AISTATS, pages 916-923.

Nan Ye, Wee S. Lee, Hai L. Chieu, and Dan Wu. 2009.
Conditional random fields with high-order features for
sequence labeling. In NIPS, pages 2196-2204.

Ming Yuan and Yi Lin. 2006. Model selection and esti-
mation in regression with grouped variables. Journal
of the Royal Statistical Society: Series B (Statistical
Methodology), 68(1):49-67.

