
Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pages 1807–1816,
Austin, Texas, November 1-5, 2016. c©2016 Association for Computational Linguistics

On- and Off-Topic Classification and Semantic Annotation of
User-Generated Software Requirements

Markus Dollmann and Michaela Geierhos
Heinz Nixdorf Institute
University of Paderborn

Fürstenallee 11, 33102 Paderborn, Germany
{dollmann|geierhos}@hni.upb.de

Abstract

Users prefer natural language software re-
quirements because of their usability and ac-
cessibility. When they describe their wishes
for software development, they often provide
off-topic information. We therefore present
REaCT1, an automated approach for identify-
ing and semantically annotating the on-topic
parts of requirement descriptions. It is de-
signed to support requirement engineers in the
elicitation process on detecting and analyzing
requirements in user-generated content. Since
no lexical resources with domain-specific in-
formation about requirements are available,
we created a corpus of requirements writ-
ten in controlled language by instructed users
and uncontrolled language by uninstructed
users. We annotated these requirements re-
garding predicate-argument structures, con-
ditions, priorities, motivations and semantic
roles and used this information to train clas-
sifiers for information extraction purposes.
REaCT achieves an accuracy of 92% for the
on- and off-topic classification task and an F1-
measure of 72% for the semantic annotation.

1 Introduction

“Requirements are what the software product, or
hardware product, or service, or whatever you in-
tend to build, is meant to do and to be” (Robert-
son and Robertson, 2012). This intuitive descrip-
tion of requirements has one disadvantage. It is as
vague as a requirement that is written by an un-
trained user. More generally, functional require-
ments define what a product, system or process, or

1Requirements Extraction and Classification Tool

a part of it is meant to do (Robertson and Robert-
son, 2012; Vlas and Robinson, 2011). Due to its ex-
pressiveness, natural language (NL) became a pop-
ular medium of communication between users and
developers during the requirement elicitation pro-
cess (de Almeida Ferreira and da Silva, 2012; Mich
et al., 2004). Especially in large ICT projects, re-
quirements, wishes, and ideas of up to thousands of
different users have to be grasped (Castro-Herrera
et al., 2009). For this purpose, requirement en-
gineers collect their data, look for project-relevant
concepts and summarize the identified technical fea-
tures. However, this hand-crafted aggregation and
translation process from NL to formal specifica-
tions is error-prone (Goldin and Berry, 1994). Since
people are getting tired and unfocused during this
monotonous work, the risk of information loss in-
creases. Hence, this process should be automated as
far as possible to support requirement engineers.

In this paper, we introduce our approach to iden-
tify and annotate requirements in user-generated
content. We acquired feature requests for open
source software from SourceForge2, specified by
(potential) users of the software. We divided these
requests into off-topic information and (on-topic)
requirements to train a binary text classifier. This
allows an automated identification of new require-
ments in user-generated content. In addition, we col-
lected requirements in controlled language from the
NFR corpus3 and from web pages with user-story
explanations. We annotated the semantically rele-

2https://sourceforge.net
3http://openscience.us/repo/

requirements/other-requirements/nfr

1807

vant parts of the acquired requirements for infor-
mation extraction purposes. This will support re-
quirements engineers on requirement analysis and
enables a further processing such as disambiguation
or the resolution of incomplete expressions.

This paper is structured as follows: In Section 2,
we discuss the notion of requirements. Then we pro-
vide an overview of previous work (Section 3), be-
fore we introduce lexical resources necessary for our
method (Section 4). The approach itself is presented
in Section 5 before it is evaluated in Section 6. Fi-
nally, we conclude this work in Section 7.

2 The Nature of Requirements

Requirement engineers and software developers
have to meet users’ wishes in order to create new
software products. Such descriptions of software
functionalities can be expressed in different ways:
For example, by using controlled languages or
formal methods, clarity and completeness can be
achieved. But non-experts can hardly apply them
and therefore do not belong to the user group. For
this reason, users are encouraged to express their in-
dividual requirements for the desired software ap-
plication in NL in order to improve user accep-
tance and satisfaction (Firesmith, 2005). In gen-
eral, software requirements are expressed through
active verbs such as “to calculate” or “to publish”
(Robertson and Robertson, 2012). In this work, we
distinguish requirements expressed in NL between
controlled and uncontrolled language.

A controlled language is a subset of NL, which is
characterized by a restricted grammar and/or limited
vocabulary (Yue et al., 2010). Requirements in con-
trolled language do not suffer from ambiguity, re-
dundancy and complexity (Yue et al., 2010). That is
why these recommendations lead to a desirable input
for text processing. Robertson and Robertson (2012)
therefore recommend specifying each requirement
in a single sentence with one verb. Furthermore,
they suggest the following start of record “The [sys-
tem/product/process] shall ...”, which focuses on the
functionality and keeps the active form of a sen-
tence. An example therefore is “The system shall
display the Events in a graph by time.” Another type
of controlled requirements are user stories. They fol-
low the form “As a [role], I want [something] so

that [benefit]” and describe software functionalities
from the user’s perspective (Cohn, 2004). Compared
to the previous ones, they do not focus on the tech-
nical implementation but concentrate on the goals
and resulting benefits. An example therefore is “As
a Creator, I want to upload a video from my local
machine so that any users can view it.”

We also consider uncontrolled language in this
work because requirements are usually specified by
users that have not been instructed for any type
of formulation. Requirements in uncontrolled lan-
guage do not stick to grammar and/or orthographic
rules and may contain abbreviations, acronyms or
emoticons. There is no restriction how to express
oneself. An example therefore is “Hello, I would
like to suggest the implementation of expiration date
for the master password :)”.

In the following, the word “requirement” is used
for a described functionality. We assume that its
textualization is written within a single English sen-
tence. Requirements are specified in documents like
the Software Requirements Specification (SRS). We
refer to SRS and other forms (e.g. e-mails, memos
from workshops, transcripts of interviews or entries
in bug-trackers) as requirement documentations.

3 Previous Work

It is quite common that requirement engineers
elicit requirements together with users in interviews,
group meetings, or by using questionnaires (Mich,
1996). Researchers developed (semi-) automated
and collaborative approaches to support requirement
engineers in this process (Ankori and Ankori, 2005;
Castro-Herrera et al., 2009). Besides the elicitation
in interaction with the users, an identification of re-
quirements from existing sources is possible. For
example, John and Dörr (2003) used documenta-
tions from related products to derive requirements
for a new product. Vlas and Robinson (2011) used
unstructured, informal, NL feature requests from
the platform SourceForge to collect requirements for
open source software. They presented a rule-based
method to identify and classify requirements accord-
ing to the quality criteria of the McCall’s Quality
Model (McCall, 1977). Analogous to their work, we
want to automatically detect requirements in user-
generated content. While they applied a rule-based

1808

method, we plan to identify requirements in user-
generated content with a machine learning approach.
Since those approaches automatically identify pat-
terns for this classification task, we expect a higher
recall and more reliable results.

Goldin and Berry (1994) identified so-called ab-
stractions (i.e. relevant terms and concepts related to
a product) of elicited requirements for a better com-
prehension of the domain and its restrictions. Their
tool AbstFinder is based on the idea that the signifi-
cance of terms and concepts is related to the number
of mentions in the text. However, in some cases,
there is only a weak correlation between the term
frequencies and their relevance in documents. This
problem can be reduced by a statistical corpus anal-
ysis, when the actual term frequency is similar to the
expected (Sawyer et al., 2002; Gacitua et al., 2011).
This approach eliminates corpus specific stopwords
and misleading frequent terms. In our work, we in-
tent to perform a content analysis of the previously
detected requirements. However, instead of only
identifying significant terms and concepts, we cap-
ture the semantically relevant parts of requirements
such as conditions, motivations, roles or actions (cf.
Figure 1).

In addition to the identification of abstractions,
there are methods to transform NL requirements into
graphical models (e.g. in Unified Modeling Lan-
guage) (Harmain and Gaizauskas, 2003; Ambriola
and Gervasi, 2006; Körner and Gelhausen, 2008).
A systematic literature review, done by Yue et al.
(2010), aims at the modeling of requirements by
comparing transformation techniques in such mod-
els. Unlike those techniques, we aim to keep the ex-
pressive aspect of the original textual requirements
and semantically annotate them for filtering pur-
poses. These results can be further used for dif-
ferent NLP tasks such as disambiguation, resolu-
tion of vagueness or the compensation of under-
specification.

The semantic annotation task of this work is sim-
ilar to semantic role labeling (SLR). According to
Jurafsky and Martin (2015), the goal of SLR is un-
derstanding events and their participants, especially
being able to answer the question who did what to
whom (and perhaps also when and where). In this
work, we seek to adapt this goal to the requirements
domain, where we want to answer the question what

actions should be done by which component (and
perhaps also who wants to perform that action, are
there any conditions, what is the motivation for per-
forming this action and is there a priority assigned
to the requirement).

4 Gathering and Annotation of Controlled
and Uncontrolled Requirements

There are benchmarks comparing automated meth-
ods for requirement engineering (Tichy et al., 2015).
However, none of the published datasets is sufficient
to train a text classifier, since annotated information
is missing. For our purposes, we need a data set with
annotated predicate-argument structures, conditions,
priorities, motivations and semantic roles. We there-
fore created a semantically annotated corpus by us-
ing the categories shown in Figure 1, which repre-
sent all information bits of a requirement. Since the
approach should be able to distinguish between (on-
topic) requirements and off-topic comments, we ac-
quired software domain-specific off-topic sentences,
too.

Therefore, we acquired requirements in con-
trolled language from the system’s and the user’s
perspective. While requirements from the system’s
perspective are describing technical software func-
tionalities, the requirements from the user’s per-
spective express wishes for software, to fulfill user
needs. For instance, the NFR corpus4 covers the sys-
tem’s perspective of controlled requirements spec-
ifications. It consists of 255 functional and 370
non-functional requirements whereof we used the
functional subset to cover the system’s perspective.
Since we could not identify any requirement corpus
that describes a software at user’s request, we ac-
quired 304 user stories from websites and books that
describe how to write user stories.

However, these requirements in controlled lan-
guage have not the same characteristics as uncon-
trolled requirements descriptions. For the acquisi-
tion of uncontrolled requirements, we adapted the
idea of Vlas and Robinson (2011) that is based on
feature requests gathered from the open-source soft-
ware platform SourceForge5. These feature requests

4https://terapromise.csc.ncsu.edu/repo/
requirements/nfr/nfr.arff

5https://sourceforge.net

1809

are created by users that have not been instructed for
any type of formulation. Since these requests do not
only contain requirements, we split them into sen-
tences and manually classified them in requirements
and off-topic information. Here, we consider social
communication, descriptions of workflows, descrip-
tions of existing software features, feedback, salu-
tations, or greetings as off-topic information. In to-
tal, we gathered 200 uncontrolled on-topic sentences
(i.e. requirements) and 492 off-topic ones.

Then we analyzed the acquired requirements in
order to identify the different possible semantic cat-
egories to annotate their relevant content in our re-
quirements corpus (cf. Figure 1):

– component
– refinement of component

– action
– argument of action

– condition
– priority
– motivation
– role
– object

– refinement of object
– sub-action

– argument of sub-action
– sub-priority
– sub-role
– sub-object

– refinement of sub-object

Figure 1: Semantic categories in our software requirements

corpus used for annotation purposes

The categories component or role, action and ob-
ject are usually represented by subject, predicate
and object of a sentence. In general, a description
refers to a component, either to a product or sys-
tem itself or to a part of the product/system. Ac-
tions describe what a component should accomplish
and affect. Actions have an effect on Objects. The
authors of the requirements can refine the descrip-
tion of components and objects, which is covered
by the categories refinement of component and re-
finement of object. For each action, users can set a
certain priority, describe their motivation for a spe-
cific functionality, state conditions, and/or even de-
fine some semantic roles. Apart from the component

and the object, additional arguments of the action
(predicate of a sentence) are annotated with argu-
ment of action. In some cases, requirements contain
sub-requirements in subordinate clauses. The anno-
tators took this into account when using the prede-
fined sub-categories. An example of an annotated
requirement is shown in Figure 2.

Figure 2: Annotated requirement sample

Two annotators independently labeled the cate-
gories in the requirements. We define one of the
annotation set as gold standard and the other as can-
didate set. We will use the gold standard for training
and testing purposes in Section 5 and 6 and the can-
didate set for calculating an inter-annotator agree-
ment. In total, our gold standard consists of 3,996
labeled elements (i.e. clauses, phrases, and even
modality). The frequency distribution is shown in
Table 1.

Semantic Category CR UR Total

component 241 84 325
refinement of component 6 16 22

action 526 204 730
argument of action 180 104 284

condition 94 39 133
priority 488 209 697

motivation 33 19 52
role 406 42 448

object 540 195 735
refinement of object 155 48 203

sub-action 76 40 116
argument of sub-action 27 14 41

sub-priority 22 16 38
sub-role 22 11 33

sub-object 78 37 115
refinement of sub-object 16 8 24

Total 2,910 1,086 3,996

Table 1: Number of annotated elements per category in our

gold standard (CR=controlled requirements, UR=uncontrolled

requirements)

1810

The inter-annotator agreement in multi-token an-
notations is commonly evaluated by using F1-score
(Chinchor, 1998). The two annotators achieve an
agreement of 80%, whereby the comparison was in-
voked from the gold standard.

Many information extraction tasks use the IOB
encoding6 for annotation purposes. When using the
IOB encoding, the first token of an element is split
into its head (first token) and its tail (rest of the ele-
ment). That way, its boundaries are labeled with B
(begin) and I (inside). This allows separating suc-
cessive elements of the same category. Thus, we use
the IOB encoding during the annotation step. How-
ever, we want to discuss a drawback of this notation:
When applying text classification approaches in in-
formation extraction tasks with IOB encoding, the
number of classes reduplicates and this reduces the
amount of training data per class. During our an-
notation process, successive elements of the same
semantic category only occurred in the case of argu-
ment of the action and argument of the sub-action.
When we disregard the IOB encoding, we can eas-
ily split up (sub-)actions by keywords such as “in”,
“by”, “from”, “as”, “on”, “to”, “into”, “for”, and
“through”. So if we use IO encoding, it can be eas-
ily transformed to the IOB encoding. The only dif-
ference between IOB and IO encoding is that it does
not distinguish between the head and tail of an el-
ement and therefore does not double the number of
classes.

5 REaCT – A Two-Stage Approach

Requirement documentations are the input of our
system. Figure 3 illustrates the two-stage approach
divided in two separate classification tasks. First,
we apply an on-/off-topic classification to decide
whether a sentence is a requirement or irrelevant for
the further processing (cf. Section 5.1). Then, the
previously identified requirements were automati-
cally annotated (Section 5.2). As a result, we get
filtered and semantically annotated requirements in
XML or JSON.

The models for on-/off-topic classification and se-
mantic annotation are trained on the gathered re-
quirements (cf. Section 4). We split up the gold
standard on sentence level in a ratio of 4:1 in a train-

6I (inside), O (outside) or B (begin) of an element

Figure 3: Processing pipeline of the two-stage approach

ing set of 607 requirements and test set of 152 re-
quirements. Furthermore, we used 10-fold cross val-
idation on the training set for algorithm configura-
tion and feature engineering (cf. Section 5.1 and
Section 5.2). Finally, our approach is evaluated on
the test set (cf. Section 6).

5.1 On-/Off-Topic Classification Task

User requirement documentations often contain off-
topic information. Therefore, we present a binary
text classification approach that distinguishes be-
tween requirements and off-topic content. Thus, we
trained different classification algorithms and tested
them using various features and parameter settings.
We compared the results to select the best algorithm
together with its best-suited parameter values and
features.

5.1.1 Features
To differentiate requirements from off-topic con-

tent, the sentences will be transformed in numerical
feature vectors using a bag-of-words approach with
different settings7. The features for the transforma-
tion are listed along with their possible parameter
settings in Table 2. We can choose whether the fea-
ture should be taken from word or character n-grams
(a.1). For both versions, the unit can range between
[n,m] (a.2), which can be specified by parameters.
Here, we consider all combinations of n = [1, 5] and
m = [1, 5] (where m ≥ n). If the feature should be
build from word n-grams, stopword detection is pos-
sible (a.3). Additionally, terms can be ignored that
reach a document frequency below or above a given

7Parameters; to be chosen during algorithm configuration

1811

threshold (e.g. domain-specific stopwords) (a.4 and
a.5). Another threshold can be specified to only
consider the top features ordered by term frequency
(a.6). Besides, it is possible to re-weight the units
in the bag-of-words model in relation to the inverse
document frequency (IDF) (a.7). Moreover, the fre-
quency vector can be reduced to binary values (a.8),
so that the bag-of-words model only contains infor-
mation about the term occurrence but not about its
calculated frequency. We also consider the length
of a sentence as feature (b). Furthermore, the fre-
quency of the part-of-speech (POS) tags (c) and the
dependencies between the tokens (d) can be added to
the feature vector8. These two features are optional
(c.1 and d.1). This set of features covers the domain-
specific characteristics and should enable the identi-
fication of the requirements.

Feature/Parameter Possible Values

a Bag of words

a.1 analyzer word, char
a.2 ngram range (1,1),(1,2),

...,(5,5)
a.3 stop words True, False
a.4 max df [0,8,1,0]
a.5 min df [0.0,0.5]
a.6 max features int or None
a.7 use idf True, False
a.8 binary True, False

b Length of the sentence

c Dependencies

c.1 use dep True, False

d Part of speech

d.1 use pos True, False

Table 2: Features for on-/off-topic classification together with

their corresponding parameters

5.1.2 Selected Algorithms
We selected the following algorithms from the

scikit-learn library9 for binary classification: deci-
sion tree (DecisionTreeClassifier), Naive

8We use spaCy (https://spacy.io) for POS tagging
and dependency parsing

9http://scikit-learn.org

Bayes (BernoulliNB and MultionmialNB),
support vector machine (SVC and NuSVC) as well
as ensemble methods (BaggingClassifier,
RandomForestClassifier, ExtraTree-
Classifier and AdaBoostClassifier).
Finally, after evaluating these algorithms, we
chose the best one for the classification task (cf.
Section 6).

5.2 Semantic Annotation Task

For each identified requirement, the approach should
annotate the semantic components (cf. Figure 1).
Here, we use text classification techniques on token
level for information extraction purposes. The ben-
efit is that these techniques can automatically learn
rules to classify data from the annotated elements
(cf. Section 4). Each token will be assigned to one
of the semantic categories presented in Figure 1 or
the additional class O (outside according IOB nota-
tion).

We decided in favor of IO encoding during
classification to reduce the drawback described in
Section 4. We finally convert the classification re-
sults into the IOB encoding by labeling the head of
each element as begin and the tail as inside. By us-
ing the keywords listed in Section 4 as separators,
we further distinguish the beginning and the inner
parts of arguments.

5.2.1 Features
In the second classification step, we had to adapt

the features to token level. The goal of feature en-
gineering is to capture the characteristics of the to-
kens embedded in their surrounding context. We di-
vided the features in four groups: orthographic and
semantic features of the token, contextual features,
and traceable classification results.

Orthographic features of a token are its graphe-
matic representation (a) and additional flags that de-
cide if a token contains a number (b), is capitalized
(c), or is somehow uppercased (d) (cf. Table 3). For
the graphematic representation, we can choose be-
tween the token or the lemma (a.1). Another or-
thographic feature provides information about the
length of the token (e). Furthermore, we can use
the pre- and suffix characters of the token as fea-
tures (f and g). Their lengths are configurable (f.1
and g.1).

1812

Feature/Parameter Possible Values

a Graphematic representation

a.1 use lemma True, False

b Token contains a number

c Token is capitalized

d Token is somehow uppercased

e Length of the token

f Prefix of the token

f.1 length prefix [0,5]

g Suffix of the token

g.1 length suffix [0,5]

Table 3: Orthographic features for semantic annotation

Furthermore, we consider the relevance (h), the
POS tag (i) and the WordNet ID of a token (j) as
its semantic features (cf. Table 4). By checking the
stopword status of a token, we can decide about its
relevance. Besides, the POS tag of each token is
used as feature. When applying the POS informa-
tion, we can choose between the Universal Tag Set10

(consisting of 17 POS tags) and the Penn Treebank
Tag Set11 (including of 36 POS tags) (i.1). Another
boolean feature tells us whether the token appears
in WordNet12. We use this feature as indicator for
component or object identification.

Feature/Parameter Possible Values

h Relevance

i Part-of-speech tag

i.1 extended tagset True, False

j WordNet ID

Table 4: Semantic features for semantic annotation

As contextual features, we use sentence length
(k), index of the token in the sentence (l), as well
as the tagging and dependency parsing information
of the surrounding tokens (m, n and o) (cf. Table 5).
Thus, the POS tags sequences of the n previous and

10http://universaldependencies.org/u/pos/
11http://www.ling.upenn.edu/courses/Fall_

2003/ling001/penn_treebank_pos.html
12https://wordnet.princeton.edu

the next m token are considered, where n and m are
defined during algorithm configuration (l.1 and n.1).
Moreover, it can be specified if each POS tag should
be stored as a single feature or should be concate-
nated (e.g. NOUN+VERB+NOUN) (l.2 and n.2).

Feature/Parameter Possible Values

k Sentence length

l Index of the token

m Previous part-of-speech tags

l.1 n pos prev [0,15]
l.2 conc prev pos True, False

n Subsequent part-of-speech tags

n.1 n pos succ [0,15]
n.2 conc succ pos True, False

o Dependencies

Table 5: Contextual features for semantic annotation

The classification task is carried out from left to
right in the sentence. This enables the considera-
tion of previous classification results (cf. Table 6).
We implemented two slightly different variants that
can be combined on demand: Firstly, we can de-
fine a fixed number of previous classification results
as independent or concatenated features (i.e. a slid-
ing window (p)). Secondly, the number of token al-
ready assigned to a particular class may be a valu-
able information (q). This is especially of interest
for the hierarchical structure of the categories: For
instance, a sub-object should only occur if an object
has already been identified. These two features are
optional (p.1 and q.1). The size of the sliding win-
dow will be specified during algorithm configuration
(p.2).

Feature/Parameter Possible Values

p Sliding windows

p.1 conc prev labels True, False
p.2 window size [0,10]

q Number of previous labels per category

q.1 use prev labels True, False

Table 6: Traceable classification results for semantic annotation

1813

5.2.2 Selected Algorithms

In addition to the classifiers we already used in
the on-/off-topic classification task, we considered
three sequential learning algorithms: conditional
random fields (FrankWolfeSSVM) from the PyS-
truct-library13, multinomial hidden markov model
(MultinomialHMM) as well as structured percep-
tron from the seqlearn-library14. We could not esti-
mate feasible parameter settings for the NuSVC clas-
sifier, so that this classifier was ignored. We chose
the algorithm with the best results on the test set for
annotating the requirements (cf. Section 6).

6 Evaluation

As mentioned in Section 5, the data was separated
in a ratio of 4:1 in a training and a test set. We
trained all classifiers on the training set with their
defined settings from the automated algorithm con-
figuration. Subsequently, we evaluated these classi-
fiers on the test set. Our results are shown in Table 7
that lists the accuracy for the best classifier per algo-
rithm family of the on-/off-topic classification task.
The ExtraTreeClassifier performs best on
the test data with an accuracy of 92%. The accuracy
was calculated with the following formula:

accuracy =
#true positives+#true negatives

#classified requirements

The ExtraTreeClassifier is an implemen-
tation of Extremely Randomized Trees (Geurts et al.,
2006). We achieved the best result when using char-
acter n-grams as features in the model with a fixed
length of 4. Thereby, we considered term occurrence
instead of term frequency and IDF. Before creating
the bag-of-words model, the approach removes stop-
words. Furthermore, the frequency of the POS tags
and their dependencies are used as features. In to-
tal, the ExtraTreeClassifier used 167 esti-
mators based on entropy in the ensemble (algorithm-
specific parameters).

13https://pystruct.github.io
14https://github.com/larsmans/seqlearn

Classifier Accuracy

AdaBoostClassifier 0.87
ExtraTreeClassifier 0.92
MultinomialNB 0.89
NuSVC 0.90

Table 7: Accuracy of best classifiers per algorithm family in the

on-/off-topic classification task after algorithm configuration

Table 8 shows the values for precision, recall, and
F1 of the ExtraTreeClassifier. In brief, the
introduced approach detects requirements in user-
generated content with an average F1-score of 91%.

Class Precision Recall F1

off-topic info 0.94 0.85 0.89
requirements 0.89 0.96 0.93

Avg. 0.92 0.91 0.91

Table 8: Evaluation results for the on-/off-topic classification

with the ExtraTreeClassifier

Table 9 provides an overview of the results of the
semantic annotation task. To determine the F1-score,
the agreement of the predicted and the a priori given
annotations is necessary to count an element as true
positive.

Again, the ExtraTreeClassifier achieves
the best F1-score of 72%. We gained the best re-
sults by using 171 randomized decision trees based
on entropy (algorithm-specific parameters). As fea-
tures, we took the POS tags from Universal Tag Set
for the twelve previous and the three following to-
kens. Traceable classification results are taken into
account by a sliding window of size 1. Besides, we
validate if a class label has already been assigned.
For each considered token, the four prefix and the
two suffix characters as well as the graphematic rep-
resentation of the token are applied as features.

The sequential learning algorithms
(FrankWolfeSSVM, MultinomialHMM and
StructuredPerceptron) perform worse
than the other classifiers. We assume that this
is due to the small amount of available training
data. However, the methods depending on de-
cision trees, especially the ensemble methods
(RandomForestClassifier, Bagging-

1814

Classifier and ExtraTreeClassifier),
perform significantly better.

Classifier F1

AdaBoostClassifier 0.33
ExtraTreeClassifier 0.72
FrankWolfeSSVM 0.50
MultinomialNB 0.64
SVC 0.70

Table 9: F1-scores of best classifiers per algorithm family in the

semantic annotation task after algorithm configuration

In Table 10, we provide detailed results achieved
with the ExtraTreeClassifier for the differ-
ent semantic categories. The recognition of main
aspects (component, action and object) reached F1-
scores of 73%, 80% and 68%. The semantic cate-
gories, that have only a few training examples, are
more error-prone (e.g. sub-action or sub-object).

Semantic Category Precision Recall F1

component 0.71 0.75 0.73
ref. of component 0.17 0.14 0.15

action 0.78 0.82 0.80
arg. of action 0.49 0.62 0.54

condition 0.88 0.61 0.72
priority 0.96 0.96 0.96

motivation 0.67 0.29 0.40
role 0.93 0.86 0.89

object 0.63 0.74 0.68
ref. of object 0.69 0.51 0.59

sub-action 0.46 0.44 0.45
arg. of sub-action 0.33 0.29 0.31

sub-priority 0.44 0.57 0.50
sub-role 0.40 0.80 0.53

sub-object 0.35 0.33 0.34
ref. of sub-object 0.67 0.33 0.44

Avg. 0.72 0.73 0.73

Table 10: Evaluation results for the semantic annotation with

the ExtraTreeClassifier

7 Conclusion and Future Work

Requirement engineers and software developers
have to meet users’ wishes to create new software
products. The goal of this work was to develop a
system that can identify and analyze requirements
expressed in natural language. These are written
by users unlimited in their way of expression. Our
system REaCT achieves an accuracy of 92% in dis-
tinguishing between on- and off-topic information
in the user-generated requirement descriptions. The
text classification approach for semantic annotation
reaches an F1-score of 72% – a satisfying result
compared to the inter-annotator agreement of 80%.
One possibility to improve the quality of the seman-
tic annotation is to expand the training set. Espe-
cially the sequential learning techniques need more
training data. Besides, this would have a positive im-
pact on those semantic categories that only contain
a small number of annotated elements.

Developers and requirement engineers can
facilely identify requirements written by users for
products in different scenarios by applying our
approach. Moreover, the semantic annotations
are useful for further NLP tasks. User-generated
software requirements adhere to the same quality
standards as software requirements that are col-
lected and revised by experts: They should be
complete, unambiguous and consistent (Hsia et al.,
1993). Since there was no assistant system to check
the quality for many years (Hussain et al., 2007)
we plan to extend the provided system in order
to provide some quality analysis of the extracted
information. We have already developed concepts
to generate suggestions for non-experts, how to
complete or clarify their requirement descriptions
(Geierhos et al., 2015). Based on these insights, we
want to implement a system for the resolution of
vagueness and incompleteness of NL requirements.

Acknowledgments

Special thanks to our colleagues Frederik S. Bäumer
and David Kopecki for their support during the se-
mantic annotation of the requirements. This work
was partially supported by the German Research
Foundation (DFG) within the Collaborative Re-
search Centre ”On-The-Fly Computing“ (SFB 901).

1815

References
Vincenzo Ambriola and Vincenzo Gervasi. 2006. On

the Systematic Analysis of Natural Language Require-
ments with CIRCE. Automated Software Engineering,
13(1):107–167.

Ronit Ankori and Ronit Ankori. 2005. Automatic re-
quirements elicitation in agile processes. In Pro-
ceedings of the 2005 IEEE International Conference
on Software - Science, Technology and Engineering,
pages 101–109. IEEE.

Carlos Castro-Herrera, Chuan Duan, Jane Cleland-
Huang, and Bamshad Mobasher. 2009. A recom-
mender system for requirements elicitation in large-
scale software projects. In Proceedings of the 2009
ACM Symposium on Applied Computing, pages 1419–
1426. ACM.

Nancy A. Chinchor, editor. 1998. Proceedings of the
Seventh Message Understanding Conference (MUC-7)
Named Entity Task Definition, Fairfax, VA.

Mike Cohn. 2004. User Stories Applied: For Agile Soft-
ware Development. Addison Wesley Longman Pub-
lishing Co., Redwood City, CA, USA.

David de Almeida Ferreira and Alberto Rodrigues
da Silva. 2012. RSLingo: An information extrac-
tion approach toward formal requirements specifica-
tions. In Model-Driven Requirements Engineering
Workshop, pages 39–48. IEEE.

Donald G. Firesmith. 2005. Are Your Requirements
Complete? Journal of Object Technology, 4(2):27–43,
February.

Ricardo Gacitua, Pete Sawyer, and Vincenzo Gervasi.
2011. Relevance-based abstraction identification:
technique and evaluation. Requirements Engineering,
16(3):251–265.

Michaela Geierhos, Sabine Schulze, and Frederik Simon
Bäumer. 2015. What did you mean? Facing the Chal-
lenges of User-generated Software Requirements. In
Proceedings of the 7th International Conference on
Agents and Artificial Intelligence, pages 277–283, 10 -
12 January. Lisbon. ISBN: 978-989-758-073-4.

Pierre Geurts, Damien Ernst, and Louis Wehenkel. 2006.
Extremely randomized trees. Machine Learning,
63(1):3–42.

Leah Goldin and Daniel M. Berry. 1994. AbstFinder,
A Prototype Abstraction Finder for Natural Language
Text for Use in Requirements Elicitation: Design,
Methodology, and Evaluation. Automated Software
Engineering, 4(4):375–412.

H.M. Harmain and R. Gaizauskas. 2003. CM-Builder:
A Natural Language-Based CASE Tool for Object-
Oriented Analysis. IEEE International Conference
on Software - Science, Technology & Engineering,
10(2):157–181.

Pei Hsia, Alan Davis, and David Kung. 1993. Status
Report: Requirements Engineering. IEEE Software,
10(6):75–79, November.

Ishrar Hussain, Olga Ormandjieva, and Leila Kosseim.
2007. Automatic Quality Assessment of SRS Text by
Means of a Decision-Tree-Based Text Classifier. In
Proceedings of the 7th International Conference on
Quality Software, QSIC ’07, pages 209–218. IEEE.

Isabel John and Jörg Dörr. 2003. Elicitation of Require-
ments from User Documentation. In Proceedings of
the 9th International Workshop on Requirements En-
gineering: Foundation of Software Quality, pages 17–
26. Springer.

Daniel Jurafsky and James H Martin. 2015. Semantic
role labeling. In Speech and Language Processing. 3rd
ed. draft edition.

Sven J. Körner and Tom Gelhausen. 2008. Improving
Automatic Model Creation using Ontologies. In Pro-
ceedings of the 20th International Conference on Soft-
ware Engineering & Knowledge Engineering, pages
691–696. Knowledge Systems Institute.

Jim McCall. 1977. McCall’s Qual-
ity Model. http://www.sqa.net/
softwarequalityattributes.html.

Luisa Mich, Mariangela Franch, and Pier Luigi Novi In-
verardi. 2004. Market research for requirements anal-
ysis using linguistic tools. Requirements Engineering,
9(2):151–151.

Luisa Mich. 1996. NL-OOPS: from natural language
to object oriented requirements using the natural lan-
guage processing system LOLITA. Natural Language
Engineering, 2:161–187.

James Robertson and Suzanne Robertson. 2012. Mas-
tering the Requirements Process. Getting Require-
ments Right. Addison-Wesley Publishing, New York,
NY, USA.

Peter Sawyer, Paul Rayson, and Roger Garside. 2002.
REVERE: support for requirements synthesis from
documents. Information Systems Frontiers, 4(3):343–
353.

Walter F. Tichy, Mathias Landhäußer, and Sven J. Körner.
2015. nlrpBENCH: A Benchmark for Natural Lan-
guage Requirements Processing. In Multikonferenz
Software Engineering & Management 2015. GI.

Radu Vlas and William N. Robinson. 2011. A Rule-
Based Natural Language Technique for Requirements
Discovery and Classification in Open-Source Software
Development Projects. In Proceedings of the 44th
Hawaii International Conference on System Sciences,
pages 1–10. IEEE.

Tao Yue, Lionel C. Briand, and Yvan Labiche. 2010.
A systematic review of transformation approaches be-
tween user requirements and analysis models. Re-
quirements Engineering, 16(2):75–99.

1816

