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Abstract

To enable language-based communication
and collaboration with cognitive robots, this
paper presents an approach where an agent
can learn task models jointly from language
instruction and visual demonstration using an
And-Or Graph (AoG) representation. The
learned AoG captures a hierarchical task
structure where linguistic labels (for language
communication) are grounded to correspond-
ing state changes from the physical environ-
ment (for perception and action). Our em-
pirical results on a cloth-folding domain have
shown that, although state detection through
visual processing is full of uncertainties and
error prone, by a tight integration with lan-
guage the agent is able to learn an effective
AoG for task representation. The learned AoG
can be further applied to infer and interpret
on-going actions from new visual demonstra-
tion using linguistic labels at different levels
of granularity.

1 Introduction

Given tremendous advances in robotics, computer
vision, and natural language processing, a new gen-
eration of cognitive robots have emerged that aim
to collaborate with humans in joint tasks. To facili-
tate natural and efficient communication with these
physical agents, natural language processing will
need to go beyond traditional symbolic representa-
tions, but rather ground language to sensors (e.g., vi-
sual perception) and actuators (e.g., lower-level con-
trol systems) of physical agents. The internal task

* The first two authors contributed equally to this paper.

representation will need to capture both higher-level
concepts (for language communication) and lower-
level visual features (for perception and action).

To address this need, we have developed an ap-
proach on learning procedural tasks jointly from
language instruction and visual demonstration.
In particular, we use And-Or Graph (AoG),
which has been used in many computer vision tasks
and robotic applications (Zhao and Zhu, 2013; Li et
al., 2016; Xiong et al., 2016), to represent a hier-
archical task model that not only captures symbolic
concepts (extracted from language instructions) but
also the corresponding visual state changes from the
physical environment (detected by computer vision
algorithms).

Different from previous works that ground lan-
guage to perception (Liu et al., 2012; Matuszek et
al., 2012; Kollar et al., 2013; Yu and Siskind, 2013;
Yang et al., 2016), a key innovation in our frame-
work is that language is no longer grounded just to
perceived objects in the environment, but is further
grounded to a hierarchical structure of state changes
where the states are perceived from the environment
during visual demonstration. The state of environ-
ment is an important notion in robotic systems as
the change of states drives planning for lower-level
robotic actions. Thus, connecting language concepts
to state changes, our learned AoG provides a unified
representation that integrates language and vision to
not only support language-based communication but
also facilitate robot action planning and execution in
the future.

More specifically, within this AoG framework, we
have developed and evaluated our algorithms in the
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context of learning a cloth-folding task. Although
cloth-folding appears simple and intuitive for hu-
mans, it represents significant challenges for both
vision and robotics systems. Furthermore, although
symbolic language processing in this domain is easy
due to limited use of vocabulary, grounded language
understanding is particularly challenging. A sim-
ple phrase (e.g., “fold in half”) could have differ-
ent grounded meanings (e.g., lower-level represen-
tation) given different contexts. Thus, this cloth-
folding domain is a good starting point to focus on
grounding language to task structures.

Our empirical results have shown that, although
state detection from the physical world can be ex-
tremely noisy, our learning algorithm that tightly in-
corporates language is capable of acquiring an effec-
tive and meaningful task model to compensate the
uncertainties in visual processing. Once the AoG
for the task is learned, it can be applied by our infer-
ence algorithm, for example, to infer on-going ac-
tions from new visual demonstration and generate
linguistic labels at different levels of granularity to
facilitate human-agent communication.

2 Related Work

Recent years have seen an increasing amount of
work on grounding language to visual percep-
tion (Liu et al., 2012; Matuszek et al., 2012; Yu
and Siskind, 2013; Kollar et al., 2013; Naim et al.,
2015; Yang et al., 2016; Gao et al., 2016). Further-
more, the robotics community made significant ef-
forts to utilize novel grounding techniques to facil-
itate task execution given natural language instruc-
tions (Chen et al., 2010; Kollar et al., 2010; Tellex et
al., 2011; Misra et al., 2014) and task learning from
demonstration (Saunders et al., 2006; Chernova and
Veloso, 2008).

Research on Learning from Demonstration
(LfD) employed various approaches to model the
tasks (Argall et al., 2009), such as state-to-action
mapping (Chernova and Veloso, 2009), predicate
calculus (Hofmann et al., 2016), and Hierarchical
Task Networks (Nejati et al., 2006; Hogg et al.,
2009). However, aspiring to enable human robot
communication, the framework developed in this
paper focuses on task representation using language
grounded to a structure of state changes detected

Figure 1: The setting of our situated task learning where a hu-

man teacher teaches the robot how to fold a T-shirt through both

task demonstrations and language instructions.

from the physical world. As demonstrated in recent
work (She et al., 2014a; Misra et al., 2015; She and
Chai, 2016), explicitly modeling change of states is
an important step towards interacting with robots in
the physical world.

Additionally, there has also been an increasing
amount of work that learns new tasks either using
methods like supervised learning on large corpus of
data (Branavan et al., 2010; Branavan et al., 2012;
Tellex et al., 2014; Misra et al., 2014), or by learn-
ing from humans through dialogue (Cantrell et al.,
2012; Mohan et al., 2013; Kirk and Laird, 2013; She
et al., 2014b; Mohseni-Kabir et al., 2015). In this pa-
per, we focus on jointly learning new tasks through
visual demonstration and language instruction. The
learned task model is explicitly represented by an
AoG, a hierarchical structure consisting of both lin-
guistic labels and corresponding changes of states
from the physical world. This rich task model will
facilitate not only language-based communication,
but also lower-level action planning and execution.

3 Task and Data

In this paper, we use cloth-folding (e.g., teaching a
robot how to fold a T-shirt) as the task to demon-
strate and evaluate our joint task learning approach.
As mentioned earlier, cloth-folding, although sim-
ple for humans, represents a challenging task for the
robotics community due to the complex state and ac-
tion space.

Figure 1 illustrates the setting for our situated
task learning. A human teacher can teach a robot
how to fold a T-shirt through simultaneous verbal
instructions and visual demonstrations. A Microsoft
Kinect2 camera is mounted on the robot to record

1483



Figure 2: Examples of our parallel data where language in-

structions are paired with a sequence of visual states detected

from the video.

the human’s visual demonstration, and the human’s
corresponding verbal instructions are recorded by
Kinect2’s embedded microphone array.

A recorded video of task demonstration and its
corresponding verbal instruction become one train-
ing example for our task learning system. Figure 2
shows two examples of such “parallel data”. The vi-
sual demonstration is processed into a sequence of
visual states, where each state is a numeric vector
(~vi) capturing the visual features of the T-shirt at a
particular time (see later Section 5.1 for details). The
recorded verbal instructions are then aligned with
the sequence of visual states based on the timing in-
formation.

During teaching the task, we specifically re-
quested the demonstrator to describe and do each
step at roughly the same time. This greatly simpli-
fied the alignment problem. Since our ultimate goal
is to enable humans to teach the robot through nat-
ural language dialogue and demonstration, our hy-
pothesis is that the alignment issue can be alleviated
by certain dialogue mechanism (e.g., ask to repeat
the action, ask for step-by-step aligned instructions,
etc.). As it is human’s best interest that the robot gets
the clearest instructions, we also anticipate during
dialogue human teachers will be collaborative and
provide mostly aligned instructions. Certainly, these
hypotheses will need to be validated in the dialogue
setting in our future work.

In our collected data, each change of state, i.e.,
a transition between two visual states, is caused by
one or more physical actions. Some language de-
scriptions align with only a single-step change of
state. For instance, “fold right sleeve” is aligned
with the change (~v0 → ~v1) and “fold left sleeve”

is aligned with (~v1 → ~v2) in Example 1. This
kind of single-step change of state is considered as
a primitive action. Other language descriptions are
aligned with a sequence of multiple state changes.
For instance, “fold the two sleeves” in Example 2 is
aligned with two consecutive changes: (~v′0, ~v

′
1, ~v
′
2).

This kind of sequence of state changes is considered
as a complex action, which can be decomposed into
partially ordered primitive actions. A complex ac-
tion can also be concisely represented by the change
from the initial state to the end state in the sequence,
such as (~v′0 → ~v′2) in Example 2.

These parallel data are used to train and test our
learning and inference algorithms presented later.

4 And-Or Graph Representation

We use AoG as the formal model of a procedural
task. Figure 3 shows an example AoG for the cloth-
folding task. It is a hierarchical structure that ex-
plicitly captures the compositionality and reconfig-
urability of a procedural task. The terminal nodes
capture state changes associated with primitive ac-
tions of this task, and non-terminal nodes capture
state changes associated with complex actions which
are further composed by lower-level actions.

In addition to state changes, the learned AoG is
also labeled with linguistic information (e.g., verb
frames) capturing the causes of the corresponding
state changes. The state changes are also considered
as grounded meanings of these verb frames. For ex-
ample, Figure 3 shows two “fold the t-shirt” labels
at the top layer. Note that although symbolically,
these two phrases have the same meaning (e.g., same
verb frames), their grounded meanings are different
as they correspond to different changes of state. Be-
ing able to represent differences or ambiguities in
grounded meanings is crucial to connect language
to perception and action.

Formally, an AoG is defined as a 5-tuple G =
(S,Σ, N,R,Θ), where

• S is a root node (or a start symbol) representing
a complete task.
• Σ is a set of terminal nodes, each of which

represents a change of state associated with a
primitive action.
• N = NAND ∪ NOR is a set of non-terminal

nodes, which is divided into two disjoint sub-
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Figure 3: An example of the learned AoG

sets of And-nodes and Or-nodes.
• R is a “child-parent” relation (many-to-one

mapping), i.e., R(nch) = npa (meaning npa is
the parent node of nch), where nch ∈ Σ ∪ N
and npa ∈ N ∪ {S}.
• Θ is a set of conditional probabili-

ties p(nch|npa), where npa ∈ NOR,
nch ∈ {n | R(n) = npa}. Namely, for
each Or-node, Θ defines a probability distribu-
tion over the set of all its children nodes.

In essence, our AoG model is equivalent to Prob-
abilistic Context-Free Grammar (PCFG). An AoG
can be converted into a PCFG:

• Each And-node and its children form a produc-
tion rule

nAND → nch1 ∧ nch2 ∧ . . .

that represents the decomposition of a complex
action into sequentially ordered sub-actions.

• Each Or-node and its children form a produc-
tion rule

nOR → nch1 | nch2 | . . .

that represents all the alternative ways of ac-
complishing an action. Each alternative also
comes with a probability as specified in Θ.

5 Method

5.1 Vision and Language Processing
The input data to our AoG learning algorithm con-
sist of co-occurring visual demonstrations and lan-
guage instructions as described in Section 3. Based

on the RGB-D information provided by the Kinect2
sensor, we developed a vision processing system to
keep track of human’s actions and statuses of the T-
shirt object.

To learn a meaningful task structure, the most im-
portant visual information are those key statuses that
the object goes through. Therefore, our vision sys-
tem processes each visual demonstration into a se-
quence of states. Each state ~v is a multi-dimensional
numeric vector that encodes the geometric infor-
mation of the detected T-shirt, such as its smallest
bounding rectangle and largest inscribed contour-
fitting rectangle. These key states are detected
by tracking the human’s folding actions. Namely,
whenever a folding action is detected1, we append
the new state caused by the action to the sequence of
observed states, till the end of the demonstration.

The verbal instructions given by the demonstra-
tors were mainly verb phrases such as “fold which-
part”, “fold to which-position”, or “fold in-what-
manner”. A semantic parser2 is applied to parse
each instruction text into a canonical verb-frame
representation, such as

FOLD : [PART : left sleeve]
[POSITION : middle].

Through the vision and language processing, each
task demonstration becomes two parallel sequences,
i.e., a sequence of extracted visual states and a se-
quence of parsed language instructions. The align-

1The vision system keeps track of human’s hands, and de-
tects a folding action as a gripping action followed by moving
and releasing the hand(s).

2We use the CMU’s Phoenix parser:
http://wiki.speech.cs.cmu.edu/olympus/index.php/Phoenix

1485



ment between these two sequences is also extracted
from their co-occurrence timing information. Thus,
an instance of a task demonstration is formally rep-
resented as a 3-tuple x = (D,L,∆), where D =
{~v1, ~v2, . . . , ~vM} is the sequence of visual states,
L = {l1, l2, . . . , lK} is the sequence of linguis-
tic verb-frames, and ∆(k) = (i, j) is an “align-
ment function” specifying the correspondence be-
tween a linguistic verb-frame lk and a single or a
sub-sequence of visual state(s) {~vi, . . . , ~vj} (i ≤ j).

Then, given a dataset X of such task demonstra-
tions, our AoG learning algorithm learns an AoG G
as defined in Section 4. The next section describes
our learning algorithm in detail.

5.2 AoG Learning Algorithm

Learning an AoG G = (S,Σ, N,R,Θ) is carried
out in two stages. Firstly, we learn a set of termi-
nal nodes Σ to represent the primitive actions (i.e.,
the actions that can be preformed in a single step).
This is done through clustering the observed visual
states. Secondly, the hierarchical structure (i.e., N
and R) and parameters Θ of the AoG is learned us-
ing an iterative grammar induction algorithm.

5.2.1 Learning Terminal Nodes
A terminal node in the AoG represents a primitive

action, which causes the object to directly change
from one state to another. Thus we represent a ter-
minal node as a 2-tuple of states (or a “change of
state”). Since the visual states detected by computer
vision are numeric vectors with continuous values,
we first apply a clustering algorithm to form a fi-
nite set of discrete state representations. Each clus-
ter then represents a unique situation that one can
encounter in a task. Since when learning a new task
we usually do not know how many unique situa-
tions exist, here we employ a greedy clustering algo-
rithm (Ng and Cardie, 2002), which does not assume
a fixed number of clusters.

As the greedy clustering algorithm relies on the
pairwise similarities of all the visual states, we also
train an SVM classifier on a separate dataset of 22 T-
shirt folding videos and use its classification output
to measure the similarity between two visual states.
The SVM classifier takes two numeric vectors as an
input, and predicts whether these two vectors rep-
resent the same status of a T-shirt. We then apply

this SVM classifier on each pair of detected visual
states in our new dataset (i.e., the dataset for learn-
ing the AoG), and use the SVM’s output class la-
bel (1 or −1) multiplies its classification confidence
score as the similarity measurement between two vi-
sual states.

After clustering all the observed visual states
in the data, we then replace each numeric vec-
tor state representation with the cluster “ID” it be-
longs to. Thus each visual demonstration now be-
comes a sequence of symbolic values, denoted as
D′ = {s1, s2, . . . , sM}. And we further trans-
form it into an equivalent change of state sequence
C = {(s1, s2), (s2, s3), . . . , (sM−1, sM )}, in which
each change of state essentially represents a primi-
tive action in this task. These change of state pairs
then form the set of terminal nodes Σ.

5.2.2 Learning the Structure and Parameters
With the sequences of numeric vector states re-

placed by the “symbolic” change of state sequences
in the first stage, we can further learn the structure
and parameters of an AoG. Namely, to learn N , R,
and Θ that maximize the posterior probability:

arg max
N,R,Θ

P (N,R,Θ|X ,Σ)

= arg max
N,R,Θ

P (N,R|X ,Σ) P (Θ|X ,Σ, N,R).

Following the iterative grammar induction
paradigm (Tu et al., 2013; Xiong et al., 2016),
we employ an iterative procedure that al-
ternatively solves arg max

N,R
P (N,R|X ,Σ) and

arg max
Θ

P (Θ|X ,Σ, N,R).

To solve the first term, we use greedy or beam
search with a heuristic function similar to (Solan et
al., 2005). To solve the second term, we estimate the
probability of each branch of an Or-node by comput-
ing the frequency of that branch, which is essentially
a maximum likelihood estimation similar to (Pei et
al., 2013).

In detail, the learning procedure first initializes
emptyN ,R, and Θ, then iterates through the follow-
ing two steps until no further update can be made.
Step (1): search for new And-nodes.

This step searches for new And-node candidates
from Σ∪N , and updateN andRwith the top-ranked
candidates. Specifically, we denote an And-node
candidate to be searched as A = (sl → sm → sr).
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Here sl is the initial state of an existing node, whose
end state is sm. And sr is the end state of another ex-
isting node, whose initial state is sm. Thus an And-
node candidate always has two child nodes, and rep-
resents a pattern of sub-sequences which starts from
state sl, ends at sr, and has sm occurred somewhere
in the middle.

Using the above notation, the heuristic function
for ranking And-node candidates is defined as

h(A) = (1− λ)Pstate(A) + λPlabel(A)

where Pstate(A) captures the prevalence of a partic-
ular And-node candidate based on the observed state
change sequences:

Pstate(A) =
PR(A) + PL(A)

2

and PR(A) is the ratio between the number of times
(sl → sm → sr) appears and the number of times
(sl → sm) appears, and PL(A) is the ratio between
the number of times (sl → sm → sr) appears and
the number of times (sm → sr) appears.

The component Plabel(A) captures the prevalence
of linguistic labels associated with the sequential
state change patterns. It is computed as the ratio
between the number of times (sl → sm → sr)
co-occurs with a linguistic instruction3 and the to-
tal number of times (sl → sm → sr) appears.

We specially define two AoG learning settings
based on the role that language plays:
• Tight language integration: incorporate heuris-

tics on linguistic labels (i.e., λ = 0.5). In
this setting, the learned AoG prefers And-nodes
that not only happen frequently, but also can be
described by a linguistic label.
• Loose language integration: without incorpo-

rating the heuristics on linguistic labels (λ =
0). Each And-node is learned only based on
the frequency of its state change pattern. The
learned node can still acquire a linguistic label
if there happen to be a co-occurring one, but the
chance is lower than the “tight” setting.

Step (2): search for new Or-nodes or new
branches of existing Or-nodes, then update Θ.

Once new And-nodes are added by the previous
step, the next step is to search for Or-nodes that

3Such information is encoded in the ∆ function as men-
tioned in Section 5.1.

can be created or updated. An Or-node in the AoG
essentially represents the set of all And-nodes that
share the same initial and end states, denoted as
(sl → sr) here (sl and sr are the common initial and
end states, respectively). Suppose (sl → s′m → sr)
is a newly added And-node, it is then assigned as a
child of the Or-node (sl → sr). To further update
Θ, the branching probability is computes as the ra-
tio between the number of times (sl → s′m → sr)
appears and the number of times (sl → sr) appears.

5.3 Inference Using AoG

Once a task AoG is learned, it can be applied to in-
terpret and explain new visual demonstrations using
linguistic labels. Due to the noises and uncertainties
from computer vision processing, one key challenge
in interpreting the visual demonstration is to reliably
identify the different states of the T-shirt.

To tackle this issue, we formulate a joint infer-
ence problem. Namely, given a task demonstration
video, we first process it into a sequence of numeric
vector states D = {~v1, ~v2, . . . , ~vM} as described in
Section 5.1. Then the goal of inference is to find the
most-likely parse tree T and a sequence of “sym-
bolic states” D′ = {s1, s2, . . . , sM} based on the
AoG G and the input D:

(T ∗, D′∗) = arg max
T,D′

P (T,D′ | G, D)

We apply a chart parsing algorithm (Klein and
Manning, 2001) to efficiently solve this problem.
Furthermore, to accommodate the ambiguities in
mapping a numeric vector state ~vm to a symbolic
state, we take into consideration the top-k hypothe-
ses measured by the similarity between ~vm and a
symbolic state sk.4 For each state mapping hypoth-
esis, we add a completed edge between indices m
and m + 1 in the chart, with sk as its symbol and
a probability p based on the similarity between ~vm
and sk. Based on the given AoG, the chart pars-
ing algorithm then uses Dynamic Programming to
search the best parse tree that maximizes the joint
probability of P (T,D′|G, D).

Figure 4 illustrates the input and output of our in-
ference algorithm. As illustrated by this example,

4A symbolic state is represented by a cluster of numeric vec-
tor states learned from the training data.
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Figure 4: An illustration of the input and output of our AoG-based inference algorithm.

the parse tree represents a hierarchical structure un-
derlying the observed task procedure, and the lin-
guistic labels associated with the nodes can be used
to describe the primitive and complex actions in-
volved in the procedure.

6 Evaluation

Using the setting as described in Section 3, we
collected 45 T-shirt folding demonstrations from 6
people to evaluate our AoG learning and inference
methods. More specifically, we conducted a 5-fold
cross validation. In each fold, 36 demonstrations
were used for training to learn a task AoG. Then the
remaining 9 demonstrations were used for testing, in
which the learned AoG is further applied to process
each of the testing visual demonstrations.

Motivated by earlier work on plan/activity recog-
nition using CFG-based models (Carberry, 1990;
Pynadath and Wellman, 2000), we use an extrin-
sic task that automatically assigns linguistic labels
to new demonstrations to evaluate the quality of the
learned AoG and the effectiveness of the inference
algorithm. This involves three steps: (1) parse the
video using the learned AoG; (2) identify linguistic
labels associated with terminal or nonterminal nodes
in the parse tree; and (3) compare the identified lin-
guistic labels with the manually annotated labels.

We conduct the evaluation at two levels:

• Primitive actions: use linguistic labels associ-
ated with terminal nodes to describe the primi-
tive actions in each video. This level provides
detailed descriptions on how the observed task
procedure is performed step-by-step.

• Complex actions: use linguistic labels associ-
ated with nonterminal nodes to describe com-
plex actions. This provides a high-level “sum-
mary” of the detailed low-level actions.

The capability to recognize fine-grained primitive
actions as well as high-level complex actions in a
task procedure and to communicate those in lan-
guage is important for many real-world AI applica-
tions such as human-robot collaboration (Mohseni-
Kabir et al., 2015) and visual question answer-
ing (Tu et al., 2014).

6.1 Primitive Actions

We first compare the performance of interpreting
primitive actions using the learned AoG with a base-
line. The baseline applies a memory-based (or
similarity-base) approach. Given a testing video, it
extracts all the different visual states and maps each
state to the nearest cluster learned from the train-
ing data (see Section 5.2.1). It then pairs each two
consecutive states as a change of state instance, and
uses the linguistic label corresponding to the identi-
cal change of state found in the training data as the
label of a primitive action.

We measure the primitive action recognition per-
formance in terms of the normalized Minimal Edit
Distance (MED). Namely, for each testing demon-
stration we calculate the MED between the ground-
truth sequence of primitive action labels and the au-
tomatically generated sequence of labels, and divide
the MED value by the length of the ground-truth
sequence to produce a normalized score (a smaller
score indicates better performance in recognizing
the primitive actions).
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Figure 5: Performance of interpreting primitive actions. Dif-

ferent number of state mapping hypotheses (k) are used in the

inference algorithm. The x-axis is the number of training ex-

amples used for learning the AoG.

The performances of the baseline and our AoG-
based approach are shown in Figure 5. For the
AoG-based approach, Figure 5 also shows the per-
formances of incorporating different number of state
mapping hypotheses (i.e., k = 1, 5, 10, 15, 20) into
the inference algorithm (Section 5.3). Here we only
report the performance of using AoG learned with
the tight language integration (see Section 5.2.2),
since there is no difference in performance between
the tight and loose language integration settings in
recognizing primitive actions5.

As Figure 5 shows, the baseline performance is
rather weak (i.e., high MED scores). This is largely
due to the noise in state clustering and mapping
from vision. After manually inspecting the collected
demonstration videos, we found 18 unique statuses
associated with folding a T-shirt. However the com-
puter vision based clustering on average produces
more than 30 clusters when all the 36 training ex-
amples are used. This makes it difficult to directly
match the state changes as in the baseline. For our
AoG-based method, when the inference algorithm
only takes the single best state mapping hypothesis
into consideration (i.e., k = 1), it yields a very weak
performance because the observed state change se-
quence often cannot be parsed using the learned
AoG.

However, the performance of the AoG-based

5Because the linguistic labels generated for primitive actions
are all from terminal nodes, and the two different AoG learning
settings only affect nonterminal nodes.

method is significantly improved when multiple
state mapping hypotheses are incorporated into the
inference process. When the top-5 (k = 5) state
mapping hypotheses are incorporated into the AoG-
based inference, its MED score has already outper-
formed the baseline by a 0.3 gap (p < 0.001 using
the Wilcoxon signed-rank test). When k = 20, the
MED score has dropped by more than 0.6 compared
to k = 1 (p < 0.001).

These results indicate that our AoG-based method
is capable of learning useful task structure from
small data. When multiple hypotheses of visual
state mapping are incorporated, the learned AoG can
compensate the uncertainties in vision processing
and identify highly reliable primitive actions from
unseen demonstrations.

6.2 Complex Actions
We further evaluate the performance of interpreting
complex actions using the learned AoG. The base-
line for comparison is similar to the one used in the
previous section. It first converts a test video into
a sequence of “symbolic” states by mapping each
detected visual state to its nearest cluster. It then
enumerates all the possible segments that consist of
more than two consecutive states and search for the
identical segments in the training data. If a matching
segment is found, then the corresponding linguistic
label (if any) is used as the label for a complex ac-
tion. Since complex actions correspond to nontermi-
nal nodes in the parse tree generated by AoG-based
inference, and some of them may have linguistic la-
bels while others may not. We use precision, re-
call, and F-score to measure how well the generated
linguistic labels match the manually segmented and
annotated complex actions in testing videos.

Figure 6 shows the F-scores of recognizing com-
plex actions using the AoG learned from the loose
and the tight language integration, respectively. In
this figure, results are based on k = 20 state map-
ping hypotheses incorporated into the inference al-
gorithm. As shown here, performances from both
settings are significantly better than the baseline
(p < 0.001). The AoG learned based on the tight
integration with language yields significantly bet-
ter performance than the loose integration (over 0.2
gain on F-score, p < 0.001).

This result indicates that the tight integration of
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Figure 6: Performances (F-score) of recognizing complex ac-

tions. The lowest curve shows the performance from the base-

line. Two other curves represent the performance using the AoG

learned from the loose integration and the tight integration with

language respectively (where k = 20 is used in inference).

language during AoG learning favors And-node pat-
terns that are more likely to be described by natural
language (or more consistent with human conceptu-
alization of the task structure)6. Such an AoG repre-
sentation can lead to recognition of video segments
that can be better explained or summarized by hu-
man language. This capability of learning explicit
and language-oriented task representations is impor-
tant to link language and vision for enabling situated
human-agent communication/collaboration.

Table 6.2 further shows the results from different
numbers of state mapping hypotheses that are incor-
porated into the inference algorithm. As shown here,
the trend of performance improvement with the in-
crease in k is again observed. When multiple state
mapping hypotheses are incorporated in inference,
the learned AoG is capable of compensating uncer-
tainties in vision processing and producing better
parses for unseen visual demonstrations.

7 Conclusion and Future Work

This paper presents an approach on task learning
where an agent can learn a grounded task model
from human demonstrations and language instruc-
tions. A key innovation of this work is grounding
language to a perceived structure of state changes

6By further investigating the learned AoG under the two dif-
ferent settings, we found that the nonterminal nodes learned
from the tight language integration setting is more likely to
acquire a linguistic label (33%) than the nonterminal nodes
learned from the loose setting (18%).

Table 1: Performance of recognizing complex actions using the

AoG learned from the loose and tight integration of language as

described in Section 5.2. Different (k) number of state mapping

hypotheses are used in the inference algorithm.
k=1 k=5 k=10 k=15 k=20

Precision Loose 0.34 0.76 0.79 0.84 0.84
Tight 0.34 0.8 0.86 0.89 0.9

Recall Loose 0.12 0.33 0.35 0.38 0.38
Tight 0.12 0.51 0.59 0.64 0.65

F-Score Loose 0.17 0.46 0.49 0.52 0.52
Tight 0.18 0.63 0.70 0.74 0.75

based on AoG representation. Once the task model
is acquired, it can be used as a basis to support col-
laboration and communication between humans and
agents/robots. Using cloth-folding as an example,
our empirical results have demonstrated that tightly
integrating language with vision can effectively pro-
duce task structures in AoG that can generalize well
to new demonstrations.

Although we have only made an initial attempt
on a small task, our approach can be naturally ex-
tended to more complex tasks such like assembling
and cooking. Both the AoG representation and the
task learning approach are general and applicable to
different domains. What needs to be adapted is the
representation of the visual states and computer vi-
sion algorithms to detect these states for a specific
task.

Grounding language to a structure of perceived
state changes will provide an important stepping
stone towards integrating language, perception, and
action for human-robot communication and collabo-
ration. Currently, our algorithms learn the task struc-
tures based on offline parallel data. Our future work
will explore incremental learning through human-
agent dialogue to acquire grounded task structures.
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