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Abstract

The goal of language modeling techniques is
to capture the statistical and structural prop-
erties of natural languages from training cor-
pora. This task typically involves the learning
of short range dependencies, which generally
model the syntactic properties of a language
and/or long range dependencies, which are se-
mantic in nature. We propose in this paper a
new multi-span architecture, which separately
models the short and long context informa-
tion while it dynamically merges them to per-
form the language modeling task. This is done
through a novel recurrent Long-Short Range
Context (LSRC) network, which explicitly
models the local (short) and global (long)
context using two separate hidden states that
evolve in time. This new architecture is an
adaptation of the Long-Short Term Memory
network (LSTM) to take into account the lin-
guistic properties. Extensive experiments con-
ducted on the Penn Treebank (PTB) and the
Large Text Compression Benchmark (LTCB)
corpus showed a significant reduction of the
perplexity when compared to state-of-the-art
language modeling techniques.

1 Introduction

A high quality Language Model (LM) is considered
to be an integral component of many systems for
speech and language technology applications, such
as machine translation (Brown et al., 1990), speech
recognition (Katz, 1987), etc. The goal of an LM
is to identify and predict probable sequences of pre-
defined linguistic units, which are typically words.

These predictions are typically guided by the seman-
tic and syntactic properties encoded by the LM.

In order to capture these properties, classical LMs
were typically developed as fixed (short) context
techniques such as, the word count-based meth-
ods (Rosenfeld, 2000; Kneser and Ney, 1995), com-
monly known as N -gram language models, as well
as the Feedforward Neural Networks (FFNN) (Ben-
gio et al., 2003), which were introduced as an al-
ternative to overcome the exponential growth of pa-
rameters required for larger context sizes in N -gram
models.

In order to overcome the short context constraint
and capture long range dependencies known to be
present in language, Bellegarda (1998a) proposed to
use Latent Semantic Analysis (LSA) to capture the
global context, and then combine it with the standard
N -gram models, which capture the local context. In
a similar but more recent approach, Mikolov and
Zweig (2012) showed that Recurrent Neural Net-
work (RNN)-based LM performance can be signif-
icantly improved using an additional global topic
information obtained using Latent Dirichlet Allo-
cation (LDA). In fact, although recurrent architec-
tures theoretically allow the context to indefinitely
cycle in the network, Hai Son et al. (2012) have
shown that, in practice, this information changes
quickly in the classical RNN (Mikolov et al., 2010)
structure, and that it is experimentally equivalent
to an 8-gram FFNN. Another alternative to model
linguistic dependencies, Long-Short Term Memory
(LSTM) (Sundermeyer et al., 2012), addresses some
learning issues from the original RNN by control-
ling the longevity of context information in the net-
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work. This architecture, however, does not particu-
larly model long/short context but rather uses a sin-
gle state to model the global linguistic context.

Motivated by the works in (Bellegarda, 1998a;
Mikolov and Zweig, 2012), this paper proposes a
novel neural architecture which explicitly models 1)
the local (short) context information, generally syn-
tactic, as well as 2) the global (long) context, which
is semantic in nature, using two separate recurrent
hidden states. These states evolve in parallel within
a long-short range context network. In doing so,
the proposed architecture is particularly adapted to
model natural languages that manifest local-global
context information in their linguistic properties.

We proceed as follows. Section 2 presents a
brief overview of short vs long range context lan-
guage modeling techniques. Section 3 introduces
the novel architecture, Long-Short Range Context
(LSRC), which explicitly models these two depen-
dencies. Then, Section 4 evaluates the proposed net-
work in comparison to different state-of-the-art lan-
guage models on the PTB and the LTCB corpus. Fi-
nally, we conclude in Section 5.

2 Short vs Long Context Language Models

The goal of a language model is to estimate the
probability distribution p(wT

1 ) of word sequences
wT
1 = w1, · · · , wT . Using the chain rule, this dis-

tribution can be expressed as

p(wT
1 ) =

T∏

t=1

p(wt|wt−1
1 ) (1)

This probability is generally approximated under
different simplifying assumptions, which are typi-
cally derived based on different linguistic observa-
tions. All these assumptions, however, aim at mod-
eling the optimal context information, be it syntac-
tic and/or semantic, to perform the word prediction.
The resulting models can be broadly classified into
two main categories: long and short range context
models. The rest of this section presents a brief
overview of these categories with a particular focus
on Neural Network (NN)-based models.

2.1 Short Range Context
This category includes models that approximate (1)
based on the Markov dependence assumption of or-
derN−1. That is, the prediction of the current word

depends only on the last N − 1 words in the history.
In this case, (1) becomes

p(wT
1 ) ≈

T∏

t=1

p(wt|wt−1
t−N+1) (2)

The most popular methods that subscribe in this
category are the N -gram models (Rosenfeld, 2000;
Kneser and Ney, 1995) as well as the FFNN
model (Bengio et al., 2003), which estimates
each of the terms involved in this product, i.e,
p(wt|wt−1

t−N+1) in a single bottom-up evaluation of
the network.

Although these methods perform well and are
easy to learn, the natural languages that they try to
encode, however, are not generated under a Markov
model due to their dynamic nature and the long
range dependencies they manifest. Alleviating this
assumption led to an extensive research to develop
more suitable modeling techniques.

2.2 Long Range Context

Conventionally, N-gram related LMs have not been
built to capture long linguistic dependencies, al-
though significant word triggering information is
still available for large contexts. To illustrate such
triggering correlations spread over a large context,
we use correlation defined over a distance d, given
by cd(w1, w2) = Pd(w1,w2)

P (w1)P (w2)
. A value greater than

1 shows that it is more likely that the word w1 fol-
lows w2 at a distance d than expected without the
occurrence ofw2. In Figure 1, we show the variation
of this correlation for pronouns with the distance d.
It can be observed that seeing another “he” about
twenty words after having seen a first “he” is much
more likely. A similar observation can be made for
the word “she”. It is, however, surprising that seeing
“he” after “he” is three times more likely than see-
ing “she” after “she”, so “he” is much more predic-
tive. In the cases of cross-word triggering of “he”→
“she” and “she”→ “he”, we find that the correlation
is suppressed in comparison to the same word trig-
gering for distances larger than three. In summary,
Figure 1 demonstrates that word triggering informa-
tion exists at large distances, even up to one thou-
sand words. These conclusions were confirmed by
similar correlation experiments that we conducted
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for different types of words and triggering relations.
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Figure 1: Variation of word triggering correlations for pro-

nouns over large distances.

In order to model this long-term correlation and
overcome the restrictive Markov assumption, recur-
rent language models have been proposed to approx-
imate (1) according to

p(wT
1 ) ≈

T∏

t=1

p(wt|wt−1, ht−1) =
T∏

t=1

p(wt|ht) (3)

In NN-based recurrent models, ht is a context
vector which represents the complete history, and
modeled as a hidden state that evolves within the
network.

2.2.1 Elman-Type RNN-based LM
The classical RNN (Mikolov et al., 2010) esti-

mates each of the product terms in (3) according to

Ht = f (Xt−1 + V ·Ht−1) (4)

Pt = g (W ·Ht) (5)

where Xt−1 is a continuous representation (i.e,
embedding) of the word wt−1, V encodes the re-
current connection weights and W is the hidden-to-
output connection weights. These parameters define
the network and are learned during training. More-
over, f(·) is an activation function, whereas g(·) is
the softmax function. Figure (2) shows an example
of the standard RNN architecture.

Theoretically, the recurrent connections of an
RNN allow the context to indefinitely cycle in the

Figure 2: Elman RNN architecture.

network and thus, modeling long context. In prac-
tice, however, Hai Son et al. (2012) have shown that
this information changes quickly over time, and that
it is experimentally equivalent to an 8-gram FFNN.
This observation was confirmed by the experiments
that we report in this paper.

2.2.2 Long-Short Term Memory Network
In order to alleviate the rapidly changing context

issue in standard RNNs and control the longevity
of the dependencies modeling in the network, the
LSTM architecture (Sundermeyer et al., 2012) in-
troduces an internal memory state Ct, which explic-
itly controls the amount of information, to forget or
to add to the network, before estimating the current
hidden state. Formally, this is done according to

{i, f, o}t = σ
(
U i,f,o ·Xt−1 + V i,f,o ·Ht−1

)
(6)

C̃t = f (U c ·Xt−1 + V c ·Ht−1) (7)

Ct = ft � Ct−1 + it � C̃t (8)

Ht = ot � f (Ct) (9)

Pt = g (W ·Ht) (10)

where � is the element-wise multiplication opera-
tor, C̃t is the memory candidate, whereas it, ft and
ot are the input, forget and output gates of the net-
work, respectively. Figure 3 illustrates the recurrent
module of an LSTM network. Learning of an LSTM
model requires the training of the network parame-
ters U i,f,o,c, V i,f,o,c and W .

Although LSTM models have been shown to out-
perform classical RNN in modeling long range de-
pendencies, they do not explicitly model long/short
context but rather use a single state to encode the
global linguistic context.
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Figure 3: Block diagram of the recurrent module of an LSTM

network.

3 Multi-Span Language Models

The attempts to learn and combine short and long
range dependencies in language modeling led to
what is known as multi-span LMs (Bellegarda,
1998a). The goal of these models is to learn the
various constraints, both local and global, that are
present in a language. This is typically done using
two different models, which separately learn the lo-
cal and global context, and then combine their re-
sulting linguistic information to perform the word
prediction. For instance, Bellegarda (1998b) pro-
posed to use Latent Semantics Analysis (LSA) to
capture the global context, and then combine it with
the standard N -gram models, which capture the lo-
cal context, whereas Mikolov and Zweig (2012)
proposed to model the global topic information us-
ing Latent Dirichlet Allocation (LDA), which is then
combined with an RNN-based LM. This idea is not
particular to language modeling but has been also
used in other Natural Language Processing (NLP)
tasks, e.g., Anastasakos et al. (2014) proposed to use
a local/global model to perform a spoken language
understanding task.

3.1 Long-Short Range Context Network

Following the line of thoughts in (Bellegarda,
1998b; Mikolov and Zweig, 2012), we propose a
new multi-span model, which takes advantage of the
LSTM ability to model long range context while,
simultaneously, learning and integrating the short
context through an additional recurrent, local state.
In doing so, the resulting Long-Short Range Con-
text (LSRC) network is able to separately model the

short/long context while it dynamically combines
them to perform the next word prediction task. For-
mally, this new model is defined as

H l
t = f

(
Xt−1 + U c

l ·H l
t−1

)
(11)

{i, f, o}t = σ
(
V i,f,o
l ·H l

t + V i,f,o
g ·Hg

t−1

)
(12)

C̃t = f
(
V c
l ·H l

t + V c
g ·Hg

t−1

)
(13)

Ct = ft � Ct−1 + it � C̃t (14)

Hg
t = ot � f (Ct) (15)

Pt = g (W ·Hg
t ) (16)

Learning of an LSRC model requires the training
of the local parameters V i,f,o,c

l and U c
l , the global

parameters V i,f,o,c
g and the hidden-to-output connec-

tion weightsW . This can be done using the standard
Back-Propagation Through Time (BPTT) algorithm,
which is typically used to train recurrent networks.

The proposed approach uses two hidden states,
namely, H l

t and Hg
t to model short and long range

context, respectively. More particularly, the local
state H l

t evolves according to (11) which is noth-
ing but a simple recurrent model as it is defined in
(4). In doing so, H l

t is expected to have a similar be-
havior to RNN, which has been shown to capture
local/short context (up to 10 words), whereas the
global state Hg

t follows the LSTM model, which is
known to capture longer dependencies (see example
in Figure 5). The main difference here, however, is
the dependence of the network modules (gates and
memory candidate) on the previous local state H l

t

instead of the last seen word Xt−1. This model is
based on the assumption that the local context car-
ries more linguistic information, and is therefore,
more suitable to combine with the global context and
update LSTM, compared to the last seen word. Fig-
ure 4 illustrates the recurrent module of an LSRC
network. It is worth mentioning that this model was
not particularly developed to separately learn syn-
tactic and semantic information. This may come,
however, as a result of the inherent local and global
nature of these two types of linguistic properties.

3.2 Context Range Estimation
For many NLP applications, capturing the global
context information can be a crucial component to
develop successful systems. This is mainly due to
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Figure 4: Block diagram of the recurrent module of an LSRC

network.

the inherent nature of languages, where a single idea
or topic can span over few sentences, paragraphs or
a complete document. LSA-like approaches take ad-
vantage of this property, and aim at extracting some
hidden “concepts” that best explain the data in a low-
dimension “semantic space”. To some extent, the
hidden layer of LSRC/LSTM can be seen as a vec-
tor in a similar space. The information stored in this
vector, however, changes continuously based on the
processed words. Moreover, interpreting its content
is generally difficult. As an alternative, measuring
the temporal correlation of this hidden vector can
be used as an indicator of the ability of the network
to model short and long context dependencies. For-
mally, the temporal correlation of a hidden state H
over a distance d is given by

cd =
1

D

t=D∑

t=1

SM(Ht, Ht+d) (17)

where D is the test data size in words and SM is
a similarity measure such as the cosine similarity.
This measure allows us to evaluate how fast does the
information stored in the hidden state change over
time.

In Figure 5, we show the variation of this tempo-
ral correlation for the local and global states of the
proposed LSRC network in comparison to RNN and
LSTM for various values of the distance d (up to
3000). This figure was obtained on the test set of
the Penn Treebank (PTB) corpus, described in Sec-
tion (4). The main conclusion we can draw from this
figure is the ability of the LSRC local and global
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Figure 5: Temporal correlation of the proposed network in

comparison to LSTM and RNN.

states (trained jointly) to behave in a similar fash-
ion to RNN and LSTM states (trained separately),
respectively. We can also conclude that the LSRC
global state and LSTM are able to capture long range
correlations, whereas the context changes rapidly
over time in RNN and LSRC local state.

4 Experiments and Results

4.1 Experimental Setup

We evaluated the proposed architecture on two dif-
ferent benchmark tasks. The first set of experi-
ments was conducted on the commonly used Penn
Treebank (PTB) corpus using the same experimental
setup adopted in (Mikolov et al., 2011) and (Zhang
et al., 2015). Namely, sections 0-20 are used for
training while sections 21-22 and 23-24 are used for
validation an testing, respectively. The vocabulary
was limited to the most 10k frequent words while the
remaining words were mapped to the token <unk>.

In order to evaluate how the proposed approach
performs on large corpora in comparison to other
methods, we run a second set of experiments on the
Large Text Compression Benchmark (LTCB) (Ma-
honey, 2011). This corpus is based on the enwik9
dataset which contains the first 109 bytes of enwiki-
20060303-pages-articles.xml. We adopted the same
training-test-validation data split as well as the the
same data processing1 which were used in (Zhang et
al., 2015). The vocabulary is limited to the most 80k

1All the data processing steps described here for
PTB and LTCB were performed using the FOFE
toolkit in (Zhang et al., 2015), which is available at
https://wiki.eecs.yorku.ca/lab/MLL/_media/
projects:fofe:fofe-code.zip
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frequent words with all remaining words replaced by
<unk>. Details about the sizes of these two corpora
can be found in Table 1.

Corpus Train Dev Test
PTB 930K 74K 82K

LTCB 133M 7.8M 7.9M
Table 1: Corpus size in number of words.

Similarly to the RNN LM toolkit2 (Mikolov et al.,
2011), we have used a single end sentence tag be-
tween each two consecutive sentences, whereas the
begin sentence tag was not included3.

4.2 Baseline Models

The proposed LSRC architecture is compared to
different LM approaches that model short or long
range context. These include the commonly used
N -gram Kneser-Ney (KN) (Kneser and Ney, 1995)
model with and without cache (Kuhn and De Mori,
1990), as well as different feedforward and recurrent
neural architectures. For short (fixed) size context
models, we compare our method to 1) the FFNN-
based LM (Bengio et al., 2003), as well as 2) the
Fixed-size Ordinally Forgetting Encoding (FOFE)
approach, which is implemented in (Zhang et al.,
2015) as a sentence-based model. For these short
size context models, we report the results of dif-
ferent history window sizes (1, 2 and 4). The 1st,
2nd and 4th-order FOFE results were either reported
in (Zhang et al., 2015) or obtained using the freely
available FOFE toolkit 1.

For recurrent models that were designed to cap-
ture long term context, we compared the pro-
posed approach to 3) the full RNN (without
classes) (Mikolov et al., 2011), 4) to a deep RNN
(D-RNN)4 (Pascanu et al., 2013), which investigates
different approaches to construct mutli-layer RNNs,
and finally 5) to the LSTM model (Sundermeyer et
al., 2012), which explicitly regulates the amount of

2The RNN LM toolkit is available at http://www.
rnnlm.org/

3This explains the difference in the corpus size compared to
the one reported in (Zhang et al., 2015).

4The deep RNN results were obtained using Lp and maxout
units, dropout regularization and gradient control techniques,
which are known to significantly improve the performance.
None of these techniques, however, were used in our experi-
ments.

information that propagates in the network. The
recurrent models results are reported for different
numbers of hidden layers (1 or 2). In order to inves-
tigate the impact of deep models on the LSRC ar-
chitecture, we added a single hidden, non-recurrent
layer (of size 400 for PTB and 600 for the LTCB ex-
periments) to the LSRC model (D-LSRC). This was
sufficient to improve the performance with a negli-
gible increase in the number of model parameters.

4.3 PTB Experiments

For the PTB experiments, the FFNN and FOFE
models use a word embedding size of 200, whereas
the hidden layer(s) size is fixed at 400, with all hid-
den units using the Rectified Linear Unit (ReLu)
i.e., f(x) = max(0, x) as activation function. We
also use the same learning setup adopted in (Zhang
et al., 2015). Namely, we use the stochastic gra-
dient descent algorithm with a mini-batch size of
200, the learning rate is initialized to 0.4, the mo-
mentum is set to 0.9, the weight decay is fixed at
4×10−5, whereas the training is done in epochs. The
weights initialization follows the normalized initial-
ization proposed in (Glorot and Bengio, 2010). Sim-
ilarly to (Mikolov et al., 2010), the learning rate is
halved when no significant improvement of the val-
idation data log-likelihood is observed. Then, we
continue with seven more epochs while halving the
learning rate after each epoch.

Regarding the recurrent models, we use f =
tanh(·) as activation function for all recurrent lay-
ers, whereas ”f = sigmoid(·)” is used for the input,
forget and output gates of LSTM and LSRC. The
additional non-recurrent layer in D-LSRC, however,
uses the ReLu activation function. The word em-
bedding size was set to 200 for LSTM and LSRC
whereas it is the same as the hidden layer size for
RNN (result of the RNN equation 4). In order to
illustrate the effectiveness of the LSRC model, we
also report the results when the embedding size is
fixed at 100, LSRC(100). The training uses the
BPTT algorithm for 5 time steps. Similarly to short
context models, the mini-batch was set to 200. The
learning rate, however, was set to 1.0 and the weight
decay to 5 × 10−5. The use of momentum did not
lead to any additional improvement. Moreover, the
data is processed sequentially without any sentence
independence assumption. Thus, the recurrent mod-
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els will be able to capture long range dependencies
that exist beyond the sentence boundary.

In order to compare the model sizes, we also re-
port the Number of Parameters (NoP) to train for
each of the models above.

model model+KN5 NoP
N-1= 1 2 4 1 2 4 4
KN 186 148 141 — — — —

KN+cache 168 134 129 — — — —
1 Hidden Layer

FFNN 176 131 119 132 116 107 6.32M
FOFE 123 111 112 108 100 101 6.32M

Recurrent Models (1 Layer)
RNN 117 104 8.16M

LSTM (1L) 113 99 6.96M
LSRC(100) 109 96 5.81M
LSRC(200) 104 94 7.0M

2 Hidden Layers
FFNN 176 129 114 132 114 102 6.96M
FOFE 116 108 109 104 98 97 6.96M

Deep Recurrent Models
D-LSTM (2L) 110 97 8.42M
D-RNN4 (3L) 107.5 NR 6.16M
D-LSRC(100) 103 93 5.97M
D-LSRC(200) 102 92 7.16M

Table 2: LMs performance on the PTB test set.

Table 2 shows the perplexity evaluation on the
PTB test set. As a first observation, we can clearly
see that the proposed approach outperforms all other
models for all configurations, in particular, RNN and
LSTM. This observation includes other models that
were reported in the literature, such as random for-
est LM (Xu and Jelinek, 2007), structured LM (Fil-
imonov and Harper, 2009) and syntactic neural net-
work LM (Emami and Jelinek, 2004). More partic-
ularly, we can conclude that LSRC, with an embed-
ding size of 100, achieves a better performance than
all other models while reducing the number of pa-
rameters by ≈ 29% and ≈ 17% compared to RNN
and LSTM, respectively. Increasing the embedding
size to 200, which is used by the other models, im-
proves significantly the performance with a resulting
NoP comparable to LSTM. The significance of the
improvements obtained here over LSTM were con-
firmed through a statistical significance t-test, which

led to p-values ≤ 10−10 for a significance level of
5% and 0.01%, respectively.

The results of the deep models in Table 2 also
show that adding a single non-recurrent hidden layer
to LSRC can significantly improve the performance.
In fact, the additional layer bridges the gap between
the LSRC models with an embedding size of 100
and 200, respectively. The resulting architectures
outperform the other deep recurrent models with a
significant reduction of the number of parameters
(for the embedding size 100), and without usage
of dropout regularization, Lp and maxout units or
gradient control techniques compared to the deep
RNN4(D-RNN).

We can conclude from these experiments that the
explicit modeling of short and long range dependen-
cies using two separate hidden states improves the
performance while significantly reducing the num-
ber of parameters.
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Figure 6: Perplexity of the different NN-based LMs with dif-

ferent hidden layer sizes on the PTB test set.

In order to show the consistency of the LSRC im-
provement over the other recurrent models, we re-
port the variation of the models performance with
respect to the hidden layer size in Figure 6. This fig-
ure shows that increasing the LSTM or RNN hidden
layer size could not achieve a similar performance to
the one obtained using LSRC with a small layer size
(e.g., 300). It is also worth mentioning that this ob-
servation holds when comparing a 2-recurrent lay-
ers LSTM to LSRC with an additional non-recurrent
layer.
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4.4 LTCB Experiments

The LTCB experiments use the same PTB setup
with minor modifications. The results shown in Ta-
ble 3 follow the same experimental setup proposed
in (Zhang et al., 2015). More precisely, these results
were obtained without use of momentum or weight
decay (due to the long training time required for
this corpus), the mini-batch size was set to 400, the
learning rate was set to 0.4 and the BPTT step was
fixed at 5. The FFNN and FOFE architectures use 2
hidden layers of size 600, whereas RNN, LSTM and
LSRC have a single hidden layer of size 600. More-
over, the word embedding size was set to 200 for all
models except RNN, which was set to 600. We also
report results for an LSTM with 2 recurrent layers as
well as for LSRC with an additional non-recurrent
layer. The recurrent layers are marked with an “R”
in Table 3.

model NoP
Context Size M=N-1 1 2 4 4

KN 239 156 132 —
KN+cache 188 127 109 —

FFNN [M*200]-600-600-80k 235 150 114 64.84M
FOFE [M*200]-600-600-80k 112 107 100 64.84M

RNN [600]-R600-80k 85 96.36M
LSTM [200]-R600-80k 66 65.92M

LSTM [200]-R600-R600-80k 61 68.80M
LSRC [200]-R600-80k 63 65.96M

LSRC [200]-R600-600-80k 59 66.32M
Table 3: LMs performance on the LTCB test set.

The results shown in Table 3 generally confirm
the conclusions we drew from the PTB experiments
above. In particular, we can see that the proposed
LSRC model largely outperforms all other models.
In particular, LSRC clearly outperforms LSTM with
a negligible increase in the number of parameters
(resulting from the additional 200 × 200 = 0.04M
local connection weights U c

l ) for the single layer
results. We can also see that this improvement is
maintained for deep models (2 hidden layers), where
the LSRC model achieves a slightly better perfor-
mance while reducing the number of parameters
by ≈ 2.5M and speeding up the training time by
≈ 20% compared to deep LSTM.

The PTB and LTCB results clearly highlight the

importance of recurrent models to capture long
range dependencies for LM tasks. The training of
these models, however, requires large amounts of
data to significantly outperform short context mod-
els. This can be seen in the performance of RNN
and LSTM in the PTB and LTCB tables above. We
can also conclude from these results that the explicit
modeling of long and short context in a multi-span
model can lead to a significant improvement over
state-of-the are models.

5 Conclusion and Future Work

We investigated in this paper the importance, fol-
lowed by the ability, of standard neural networks to
encode long and short range dependencies for lan-
guage modeling tasks. We also showed that these
models were not particularly designed to, explicitly
and separately, capture these two linguistic informa-
tion. As an alternative solution, we proposed a novel
long-short range context network, which takes ad-
vantage of the LSTM ability to capture long range
dependencies, and combines it with a classical RNN
network, which typically encodes a much shorter
range of context. In doing so, this network is able
to encode the short and long range linguistic de-
pendencies using two separate network states that
evolve in time. Experiments conducted on the PTB
and the large LTCB corpus have shown that the pro-
posed approach significantly outperforms different
state-of-the are neural network architectures, includ-
ing LSTM and RNN, even when smaller architec-
tures are used. This work, however, did not investi-
gate the nature of the long and short context encoded
by this network or its possible applications for other
NLP tasks. This is part of our future work.
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