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Abstract

Canonical morphological segmentation aims
to divide words into a sequence of stan-
dardized segments. In this work, we
propose a character-based neural encoder-
decoder model for this task. Additionally,
we extend our model to include morpheme-
level and lexical information through a neural
reranker. We set the new state of the art for
the task improving previous results by up to
21% accuracy. Our experiments cover three
languages: English, German and Indonesian.

1 Introduction

Morphological segmentation aims to divide words
into morphemes, meaning-bearing sub-word units.
Indeed, segmentations have found use in a diverse
set of NLP applications, e.g., automatic speech
recognition (Afify et al., 2006), keyword spot-
ting (Narasimhan et al., 2014), machine transla-
tion (Clifton and Sarkar, 2011) and parsing (Seeker
and Çetinoğlu, 2015). In the literature, most re-
search has traditionally focused on surface segmen-
tation, whereby a word w is segmented into a se-
quence of substrings whose concatenation is the en-
tire word; see Ruokolainen et al. (2016) for a sur-
vey. In contrast, we consider canonical segmenta-
tion: w is divided into a sequence of standardized
segments. To make the difference concrete, con-
sider the following example: the surface segmen-
tation of the complex English word achievability is
achiev+abil+ity, whereas its canonical segmenta-
tion is achieve+able+ity, i.e., we restore the alter-
ations made during word formation.

Canonical versions of morphological segmenta-
tion have been introduced multiple times in the lit-
erature (Kay, 1977; Naradowsky and Goldwater,
2009; Cotterell et al., 2016). Canonical segmen-
tation has several representational advantages over
surface segmentation, e.g., whether two words share
a morpheme is no longer obfuscated by orthogra-
phy. However, it also introduces a hard algorith-
mic challenge: in addition to segmenting a word,
we must reverse orthographic changes, e.g., map-
ping achievability7→achieveableity.

Computationally, canonical segmentation can be
seen as a sequence-to-sequence problem: we must
map a word form to a canonicalized version with
segmentation boundaries. Inspired by the re-
cent success of neural encoder-decoder models
(Sutskever et al., 2014) for sequence-to-sequence
problems in NLP, we design a neural architecture
for the task. However, a naı̈ve application of the
encoder-decoder model ignores much of the linguis-
tic structure of canonical segmentation—it cannot
directly model the individual canonical segments,
e.g., it cannot easily produce segment-level embed-
dings. To solve this, we use a neural reranker on
top of the encoder-decoder, allowing us to embed
both characters and entire segments. The combined
approach outperforms the state of the art by a wide
margin (up to 21% accuracy) in three languages: En-
glish, German and Indonesian.

2 Neural Canonical Segmentation

We begin by formally describing the canonical
segmentation task. Given a discrete alphabet
Σ (e.g., the 26 letters of the English alphabet),
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Figure 1: Detailed view of the attention mechanism of the neu-

ral encoder-decoder.

our goal is to map a word w ∈ Σ∗ (e.g.,
w=achievability), to a canonical segmentation c ∈
Ω∗ (e.g., c=achieve+able+ity). We define Ω =
Σ∪{+}, where + is a distinguished separation sym-
bol. Additionally, we will write the segmented form
as c=σ1+σ2+. . .+σn, where each segment σi ∈ Σ∗

and n is the number of canonical segments.
We take a probabilistic approach and, thus, at-

tempt to learn a distribution p(c | w). Our model
consists of two parts. First, we apply an encoder-
decoder recurrent neural network (RNN) (Bahdanau
et al., 2014) to the sequence of characters of the
input word to obtain candidate canonical segmen-
tations. Second, we define a neural reranker that
allows us to embed individual morphemes and
chooses the final answer from within a set of can-
didates generated by the encoder-decoder.

2.1 Neural Encoder-Decoder
Our encoder-decoder is based on Bahdanau et al.
(2014)’s neural machine translation model.1 The en-
coder is a bidirectional gated RNN (GRU) (Cho et
al., 2014b). Given a word w ∈ Σ∗, the input to

1
github.com/mila-udem/blocks-examples/tree/master/machine_

translation

the encoder is the sequence of characters of w, rep-
resented as one-hot vectors. The decoder defines
a conditional probability distribution over c ∈ Ω∗

given w:

pED(c |w) =

|c|∏

t=1

p(ct|c1, . . . , ct−1, w)

=

|c|∏

t=1

g(ct−1, st, at)

where g is a nonlinear activation function, st is the
state of the decoder at t and at is a weighted sum of
the |w| states of the encoder. The state of the encoder
for wi is the concatenation of forward and backward
hidden states

−→
hi and

←−
hi for wi. An overview of how

the attention weight and the weighted sum at are
included in the architecture can be seen in Figure
1. The attention weights αt,i at each timestep t are
computed based on the respective encoder state and
the decoder state st. See Bahdanau et al. (2014) for
further details.

2.2 Neural Reranker
The encoder-decoder, while effective, predicts each
output character in Ω sequentially. It does not use
explicit representations for entire segments and is in-
capable of incorporating simple lexical information,
e.g., does this canonical segment occur as an inde-
pendent word in the lexicon? Therefore, we extend
our model with a reranker.

The reranker rescores canonical segmentations
from a candidate set, which in our setting is sampled
from pED. Let the sample set be Sw = {k(i)}Ni=1

where k(i) ∼ pED(c | w). We define the neural
reranker as

pθ(c |w)=
exp

(
u> tanh(Wvc) + τ log pED(c |w)

)

Zθ

where vc=
∑n

i=1 vσi (recall c = σ1+σ2+. . .+σn)
and vσi is a one-hot morpheme embedding of σi
with an additional binary dimension marking if σi
occurs independently as a word in the language.2

The partition function is Zθ(w) and the parame-
ters are θ = {u,W, τ}. The parameters W and u

2To determine if a canonical segment is in the lexicon, we
check its occurrence in ASPELL. Alternatively, one could ask
whether it occurs in a large corpus, e.g., Wikipedia.
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are projection and hidden layers, respectively, of a
multi-layered perceptron and τ can be seen as a tem-
perature parameter that anneals the encoder-decoder
model pED (Kirkpatrick, 1984). We define the parti-
tion function over the sample set Sw:

Zθ =
∑

k∈Sw
exp

(
u>tanh(Wvk)+τ log pED(k |w)

)
.

The reranking model’s ability to embed mor-
phemes is important for morphological segmenta-
tion since we often have strong corpus-level signals.
The reranker also takes into account the character-
level information through the score of the encoder-
decoder model. Due to this combination we expect
stronger performance.

3 Related Work

Various approaches to morphological segmentation
have been proposed in the literature. In the un-
supervised realm, most work has been based on
the principle of minimum description length (Cover
and Thomas, 2012), e.g., LINGUISTICA (Goldsmith,
2001; Lee and Goldsmith, 2016) or MORFESSOR

(Creutz and Lagus, 2002; Creutz et al., 2007; Poon
et al., 2009). MORFESSOR was later extended to a
semi-supervised version by Kohonen et al. (2010).
Supervised approaches have also been considered.
Most notably, Ruokolainen et al. (2013) developed
a supervised approach for morphological segmen-
tation based on conditional random fields (CRFs)
which they later extended to work also in a semi-
supervised way (Ruokolainen et al., 2014) using
letter successor variety features (Hafer and Weiss,
1974). Similarly, Cotterell et al. (2015) improved
performance with a semi-Markov CRF.

More recently, Wang et al. (2016) achieved state-
of-the-art results on surface morphological segmen-
tation using a window LSTM. Even though Wang et
al. (2016) also employ a recurrent neural network,
we distinguish our approach, in that we focus on
canonical morphological segmentation, rather than
surface morphological segmentation.

Naturally, our approach is also relevant to other
applications of recurrent neural network transduc-
tion models (Sutskever et al., 2014; Cho et al.,
2014a). In addition to machine translation (Bah-
danau et al., 2014), these models have been success-

fully applied to many areas of NLP, including pars-
ing (Vinyals et al., 2015), morphological reinflec-
tion (Kann and Schütze, 2016) and automatic speech
recognition (Graves and Schmidhuber, 2005; Graves
et al., 2013).

4 Experiments

To enable comparison to earlier work, we use a
dataset that was prepared by Cotterell et al. (2016)
for canonical segmentation.3

4.1 Languages

The dataset we work on covers 3 languages: En-
glish, German and Indonesian. English and German
are West Germanic Languages, with the former be-
ing an official languages in nearly 60 different states
and the latter being mainly spoken in Western Eu-
rope. Indonesian — or Bahasa Indonesia— is the
official language of Indonesia.

Cotterell et al. (2016) report the best experimental
results for Indonesian, followed by English and fi-
nally German. The high error rate for German might
be caused by it being rich in orthografic changes. In
contrast, Indonesian morphology is comparatively
simple.

4.2 Corpora

The data for the English language was extracted
from segmentations derived from the CELEX
database (Baayen et al., 1993). The German data
was extracted from DerivBase (Zeller et al., 2013),
which provides a collection of derived forms to-
gether with the transformation rules, which were
used to create the canonical segmentations. Finally,
the data for Bahasa Indonesia was collected by us-
ing the output of the MORPHIND analyzer (Larasati
et al., 2011), together with an open-source corpus of
Indonesian. For each language we used the 10,000
forms that were selected at random by Cotterell et
al. (2016) from a uniform distribution over types to
form the corpus. Following them, we perform our
experiments on 5 splits of the data into 8000 train-
ing forms, 1000 development forms and 1000 test
forms and report averages.

3
ryancotterell.github.io/canonical-segmentation
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4.3 Training

We train an ensemble of five encoder-decoder mod-
els. The encoder and decoder RNNs each have
100 hidden units. Embedding size is 300. We use
ADADELTA (Zeiler, 2012) with a minibatch size of
20. We initialize all weights (encoder, decoder, em-
beddings) to the identity matrix and the biases to
zero (Le et al., 2015). All models are trained for 20
epochs. The hyperparameter values are taken from
Kann and Schütze (2016) and kept unchanged for
the application to canonical segmentation described
here.

To train the reranking model, we first gather the
sample set Sw on the training data. We take 500
individual samples, but (as we often sample the
same form multiple times) |Sw| ≈ 5. We op-
timize the log-likelihood of the training data using
ADADELTA. For generalization, we employ L2 reg-
ularization and we perform grid search to determine
the coefficient λ ∈ {0.0, 0.1, 0.2, 0.3, 0.4, 0.5}. To
decode the model, we again take 500 samples to
populate Sw and select the best segmentation.
Baselines. Our first baseline is the joint transduction
and segmentation model (JOINT) of Cotterell et al.
(2016). It is the current state of the art on the datasets
we use and the task of canonical segmentation in
general. This model uses a jointly trained, separate
transduction and segmentation component. Impor-
tantly, the joint model of Cotterell et al. (2016) al-
ready contains segment-level features. Thus, rerank-
ing this baseline would not provide a similar boost.

Our second baseline is a weighted finite-state
transducer (WFST) (Mohri et al., 2002) with a log-
linear parameterization (Dreyer et al., 2008), again,
taken from Cotterell et al. (2016). The WFST
baseline is particularly relevant because, like our
encoder-decoder, it formulates the problem directly
as a string-to-string transduction.
Evaluation Metrics. We follow Cotterell et al.
(2016) and use the following evaluation measures:
error rate, edit distance and morpheme F1. Error
rate is defined as 1 minus the proportion of guesses
that are completely correct. Edit distance is the Lev-
enshtein distance between guess and gold standard.
For this, guess and gold are each represented as one
string with a distinguished character denoting the
segment boundaries. Morpheme F1 compares the

RR ED Joint WFST UB

er
ro

r en .19 (.01) .25 (.01) 0.27 (.02) 0.63 (.01) .06 (.01)
de .20 (.01) .26 (.02) 0.41 (.03) 0.74 (.01) .04 (.01)
id .05 (.01) .09 (.01) 0.10 (.01) 0.71 (.01) .02 (.01)

ed
it

en .21 (.02) .47 (.02) 0.98 (.34) 1.35 (.01) .10 (.02)
de .29 (.02) .51 (.03) 1.01 (.07) 4.24 (.20) .06 (.01)
id .05 (.00) .12 (.01) 0.15 (.02) 2.13 (.01) .02 (.01)

F
1

en .82 (.01) .78 (.01) 0.76 (.02) 0.53 (.02) .96 (.01)
de .87 (.01) .86 (.01) 0.76 (.02) 0.59 (.02) .98 (.00)
id .96 (.01) .93 (.01) 0.80 (.01) 0.62 (.02) .99 (.00)

Table 1: Error rate (top), edit distance (middle), F1 (bottom)

for canonical segmentation. Each double column gives the mea-

sure and its standard deviation. Best result on each line (exclud-

ing UB) in bold. RR: encoder-decoder+reranker. ED: encoder-

decoder. JOINT, WFST: baselines (see text). UB: upper bound,

the maximum score our reranker could obtain, i.e., considering

the best sample in the predictions of ED.

morphemes in guess and gold. Precision (resp. re-
call) is the proportion of morphemes in guess (resp.
gold) that occur in gold (resp. guess).

5 Results

The results of the canonical segmentation experi-
ment in Table 1 show that both of our models im-
prove over all baselines. The encoder-decoder alone
has a .02 (English), .15 (German) and .01 (Indone-
sion) lower error rate than the best baseline. The
encoder-decoder improves most for the language for
which the baselines did worst. This suggests that, for
more complex languages, a neural network model
might be a good choice.

The reranker achieves an additional improvement
of .04 to .06. for the error rate. This is likely due
to the additional information the reranker has access
to: morpheme embeddings and existing words.

Important is also the upper bound we report. It
shows the maximum performance the reranker could
achieve, i.e., evaluates the best solution that appears
in the set of candidate answers for the reranker. The
right answer is contained in≥ 94% of samples. Note
that, even though the upper bound goes up with the
number of samples we take, there is no guarantee
for any finite number of samples that they will con-
tain the true answer. Thus, we would need to take
an infinite number of samples to get a perfect upper
bound. However, as the current upper bound is quite
high, the encoder-decoder proves to be an appropri-
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ate model for the task. Due to the large gap between
the performance of the encoder-decoder and the up-
per bound, a better reranker could further increase
performance. We will investigate ways to improve
the reranker in future work.
Error analysis. We give for representative samples
the error (E for the segmentation produced by our
method) and the correct analysis (G for gold).

We first analyze cases in which the right an-
swer does not appear at all in the samples
drawn from the encoder-decoder. Those in-
clude problems with umlauts in German (G:
verflüchtigen7→ ver+flüchten+ig, E: verflucht+ig)
and orthographic changes at morpheme boundaries
(G:cutter7→cut+er, E: cutter or cutt+er, sampled
with similar frequency). There are also errors that
are due to problems with the annotation, e.g., the fol-
lowing two gold segmentations are arguably incor-
rect: tec7→detective and syrerin7→syr+er+in (syr is
neither a word nor an affix in German).

In other cases, the encoder-decoder does find the
right solution (G), but gives a higher probability
to an incorrect analysis (E). Examples are a wrong
split into adjectives or nouns instead of verbs (G:
fügsamkeit7→fügen+sam+keit, E: fügsam+keit),
the other way around (G: zähler7→zahl+er, E:
zählen+er), cases where the wrong morphemes
are chosen (G: precognition7→pre+cognition, E:
precognit+ion), difficult cases where letters have
to be inserted (G: redolence7→redolent+ence, E:
re+dolence) or words the model does not split
up, even though they should be (G: additive7→
addition+ive, E: additive).

Based on its access to lexical information and
morpheme embeddings, the reranker is able to
correct some of the errors made by the encoder-
decoder. Samples are G: geschwisterpärchen7→
geschwisterpaar+chen, E: geschwisterpar+chen
(geschwisterpaar is a word in German but geschwis-
terpar is not) or G: zickig 7→ zicken+ig, E: zick+ig
(with zicken, but not zick, being a German word).

Finally, we want to know if segments that appear
in the test set without being present in the training
set are a source of errors. In order to investigate
that, we split the test samples into two groups: The
first group contains the samples for which our sys-
tem finds the right answer. The second one contains
all other samples. We compare the percentage of

wrong samples right samples
27.33 (.02) 36.60 (.01)

Table 2: Percentage of segments in the solutions for the test

data that do not appear in the training set - split by samples that

our system does or does not get right. We use the German data

and average over the 5 splits. Standard deviation in parenthesis.

samples that do not appear in the training data for
both groups. We exemplarily use the German data
and the results results are shown in Table 2. First,
it can be seen that very roughly about a third of all
segments does not appear in the training data. This
is mainly due to unseen lemmas as their stems are
naturally unknown to the system. However, the cor-
rectly solved samples contain nearly 10% more un-
seen segments. As the average number of segments
per word for wrong and right solutions — 2.44 and
2.11, respectively — does not differ by much, it
seems unlikely that many errors are caused by un-
known segments.

6 Conclusion and Future Work

We developed a model consisting of an encoder-
decoder and a neural reranker for the task of canoni-
cal morphological segmentation. Our model com-
bines character-level information with features on
the morpheme level and external information about
words. It defines a new state of the art, improv-
ing over baseline models by up to .21 accuracy, 16
points F1 and .77 Levenshtein distance.

We found that ≥ 94% of correct segmentations
are in the sample set drawn from the encoder-
decoder model, demonstrating the upper bound on
the performance of our reranker is quite high; in fu-
ture work, we hope to develop models to exploit this.
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danau, and Yoshua Bengio. 2014a. On the proper-
ties of neural machine translation: Encoder-decoder
approaches. arXiv preprint arXiv:1409.1259.

Kyunghyun Cho, Bart Van Merriënboer, Çalar Gülçehre,
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