Keyphrase Extraction Using Deep Recurrent Neural Networks on Twitter

Qi Zhang, Yang Wang, Yeyun Gong, Xuanjing Huang
Shanghai Key Laboratory of Data Science
School of Computer Science, Fudan University
Shanghai, P.R. China
{qz, ywangl14, yygong12, xjhuang } @fudan.edu.cn

Abstract

Keyphrases can provide highly condensed
and valuable information that allows users to
quickly acquire the main ideas. The task of
automatically extracting them have received
considerable attention in recent decades.
Different from previous studies, which are
usually focused on automatically extracting
keyphrases from documents or articles, in
this study, we considered the problem of
automatically extracting keyphrases from
tweets. Because of the length limitations
of Twitter-like sites, the performances of
existing methods usually drop sharply. We
proposed a novel deep recurrent neural
network (RNN) model to combine keywords
and context information to perform this
problem. To evaluate the proposed method,
we also constructed a large-scale dataset
collected from Twitter. The experimental
results showed that the proposed method
performs significantly better than previous
methods.

1 Introduction

Keyphrases are usually the selected phrases that can
capture the main topics described in a given docu-
ment (Turney, 2000). They can provide users with
highly condensed and valuable information, and
there are a wide variety of sources for keyphrases,
including web pages, research articles, books, and
even movies. In contrast to keywords, keyphrases
usually contain two or more words. Normally, the
meaning representations of these phrases are more
precise than those of single words. Moreover, along

836

with the increasing development of the internet,
this kind of summarization has received continuous
consideration in recent years from both the academic
and entiprise communities (Witten et al., 1999; Wan
and Xiao, 2008; Jiang et al., 2009; Zhao et al., 2011;
Tuarob et al., 2015).

Because of the of
keyphrases, various studies have been conducted on
the automatic extraction of keyphrases using
different methods, including rich linguistic
features (Barker and Cornacchia, 2000; Paukkeri
et al., 2008), supervised -classification-based
methods (Witten et al., 1999; Wu et al., 2005;
Wang et al., 2006), ranking-based methods (Jiang
et al., 2009), and clustering-based methods (Mori
et al., 2007; Danilevsky et al., 2014). These
methods usually focus on extracting keyphrases
from a single document or multiple documents.
Typically, a large number of words exist in even a
document of moderate length, where a few hundred
words or more is common. Hence, statistical and
linguistic features can be considered to determine
the importance of phrases.

enormous usefulness

In addition to the previously mentioned methods,
a few researchers have studied the problem of
extracting keyphrases from collections of tweets
(Zhao et al., 2011; Bellaachia and Al-Dhelaan,
2012). In contrast to traditional web applications,
Twitter-like services usually limit the content length
to 140 characters. In (Zhao et al., 2011), the context-
sensitive topical PageRank method was proposed
to extract keyphrases by topic from a collection
of tweets. NE-Rank was also proposed to rank
keywords for the purpose of extracting topical

Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pages 836845,
Austin, Texas, November 1-5, 2016. (©2016 Association for Computational Linguistics

keyphrases (Bellaachia and Al-Dhelaan, 2012). Be-
cause multiple tweets are usually organized by
topic, many document-level approaches can also
be adopted to achieve the task. In contrast with
the previous methods, Marujo et al. (2015) focused
on the task of extracting keywords from single
tweets. They used several unsupervised methods and
word embeddings to construct features. However,
the proposed method worked on the word level.

In this study, we investigated the problem of
automatically extracting keyphrases from single
tweets. Compared to the problem of identifying
keyphrases from documents containing hundreds of
words, the problem of extracting keyphrases from a
single short text is generally more difficult. Many
linguistic and statistical features (e.g., the number
of word occurrences) cannot be determined and
used. Moreover, the standard steps of keyphrase
extraction usually include keyword ranking, candi-
date keyphrase generation, and keyphrase ranking.
Previous works usually used separate methods to
handle these steps. Hence, the error of each step
is propagated, which may highly impact the final
performance. Another challenge of keyphrase ex-
traction on Twitter is the lack of training and eval-
uation data. Manual labelling is a time-consuming
procedure. The labelling consistency of different
labellers cannot be easily controlled.

To meet these challenges, in this paper, we
propose a novel deep recurrent neural network
(RNN) model for the joint processing of the key-
word ranking, keyphrase generation, and keyphrase
ranking steps. The proposed RNN model contains
two hidden layers. In the first hidden layer, we
capture the keyword information. Then, in the
second hidden layer, we extract the keyphrases
based on the keyword information using a sequence
labelling method. In order to train and evaluate the
proposed method, we also proposed a novel method
to construct a dataset that contained a large number
of tweets with golden standard keyphrases. The
proposed dataset construction method was based on
the hashtag definitions in Twitter and how these
were used in specific tweets.

The main contributions of this work can be
summarized as follows:

e We proposed a two-hidden-layer RNN-based

837

method to jointly model the keyword ranking,
keyphrase generation, and keyphrase ranking
steps.

e To train and evaluate the proposed method, we
proposed a novel method for constructing a
large dataset, which consisted of more than one
million words.

e Experimental results demonstrated that the pro-
posed method could achieve better results than
the current state-of-the-art methods for these
tasks.

2 Proposed Methods

In this paper, we will first describe the deep recur-
rent neural network (RNN). Then, we will discuss
the proposed joint-layer recurrent neural network
model, which jointly processes the keyword ranking,
keyphrase generation, and keyphrase ranking.

2.1 Deep Recurrent Neural Networks

One way to capture the contextual information of
a word sequence is to concatenate neighboring
features as input features for a deep neural net-
work. However, the number of parameters rapidly
increases according to the input dimension. Hence,
the size of the concatenating window is limited.
A recurrent neural network (RNN) can be con-
sidered to be a deep neural network (DNN) with
an indefinite number of layers, which introduces
the memory from previous time steps. A potential
weakness of a RNN is its lack of hierarchical
processing for the input at the current time step.
To further provide hierarchical information through
multiple time scales, deep recurrent neural networks
(DRNNSs) are explored (Hermans and Schrauwen,
2013). Fig. 1 (a) shows an L intermediate layer
DRNN with full temporal connections (called a
stacked RNN (sRNN) in (Pascanu et al., 2013)).

2.2 Joint-layer Recurrent Neural Networks

The proposed joint-layer recurrent neural network
(joint-layer RNN) is a variant of an SRNN with two
hidden layers. The joint-layer RNN has two output
layers, which are combined into a objective layer.
Suppose there is an L intermediate layer SRNN that
has an output layer for each hidden layer. The [-th

L-layer sSRNN
Joint-layer RNN

objective

(a)

(d)

Figure 1: Deep recurrent neural network (DRNN) architectures: arrows represent connection matrices; white, black, and grey circles

represent input frames, hidden states, and output frames, respectively; (a): L intermediate layer DRNN with recurrent connections
at all levels (called stacked RNN); (b): joint-layer RNN folded out in time. Each hidden layer can be interpreted to be an RNN that

receives the time series of the previous layer as input, where the hidden layer transforms into an output layer. Two output layers are

combined via linear superposition into the objective function.

hidden activation is defined as:

hi = fu(hi ' hi_,)

= ¢(U'hl_; + W'h[™), (1)

where hl is the hidden state of the [-th layer at
time ¢. U’ and W' are the weight matrices for
the hidden activation at time ¢ — 1 and the lower
level activation hffl, respectively. When [= 1,
the hidden activation is computed using hY = x;.
¢ is an element-wise non-linear function, such as
the sigmoid function. The I-th output activation is
defined as:

yzlf = f O(hf&)

o1 (V'h),)
where V! is the weight matrix for the {-th hidden
layer hi. (; is also an element-wise non-linear
function, such as the softmax function.

A joint-layer recurrent neural network is an
extension of a stacked RNN with two hidden layers.
At time ¢, the training input, x;, of the network is
the concatenation of features from a mixture within
a window. We use word embedding as a feature in
this paper. The output targets, y; and y? , and output

838

predictions, §; and y7 , of the network indicate
whether the current word is a keyword and part of a
keyphrase, respectively. §; just has two values T'rue
and False indicating whether the current word is
keyword. yf has 5 values Single, Begin, Middle,
FEnd and N ot indicating the current word is a single
keyword, the beginning of a keyphrase, the middle
(neither beginning nor ending) of a keyphrase, the
ending of a keyphrase or not a part of a keyphrase.

Since our goal is to extract a keyphrase from a
word sequence, we adopt a framework to simul-
taneously model keyword finding and keyphrase
extraction. Figure 1 (b) shows the architecture of our
model. The hidden layer formulation is defined as:

hi = fa(xhiy) 3)
hi = fu(hihi) @)
The output layer formulation is defined as:
yi = folb (5)
yi = fo(hi) (6)

2.3 Training

In this work, we joined learning the parameters 6 in
the deep neural network.

6= {X, Wi, wW? Ul U2 v Vv?},

where X are the words embeddings, the other
parameters are defined before. Once give a la-
beled sentence we can know both the keyword and
keyphrase (keyphrase is made of keywords). At the
first output layer we use our model to discriminate
keyword and at the second output layer we use
our model to discriminate keyphrase. Then we
combine these two sub-objective which at different
discrimination level into the final objective. The final
objection is defined as:

J(0) = aJi(0) + (1 —a)a(8), (7)

where « is linear weighted factor. Given N training

N
sequences D = {(xt,y%,y%)zl} x the sub-
n=

objective formulation is defined as:
1 NI
a1 1
N Z Z d(§:,y¢)
n=1 t=1
N Tn

TNy,

n=1 t=1

Ji1(6) = (®)

J2(0) = ©))

where d(a,b) is a predefined divergence measure
between a and b, such as Euclidean distance or
Cross-entropy.

Eq. (8) and Eq. (9) show that we discover keyword
and extract keyphrase at different level simulta-
neously. The experimental results will show that
combination of different granularity discrimination
can significantly improve the performance.

To minimize the objective function, we optimize
our models by back-propagating the gradients with
respect to the training objectives. The stochastic
gradient descent (SGD) algorithm is used to train the
models. The update rule for the ¢-th parameter 6; at
epoch e is as follows:

Oci = 0c—1,; — AGe,i> (10)

where the X is a global learning rate shared by all
dimensions. g. is the gradient of the parameters at
the e-th iteration. We select the best model according
to the validation set.

839

#tweets 4 T Ny N,
41,644,403 | 147,377 | 112,515 | 13.22 | 1.0

Table 1: Statistical information of dataset. W, T', N,,, and N,

are the vocabulary of words, number of tweets with hashtags,
average number of words in each tweet, and average number of

hashtags in each tweet, respectively.

3 Experiments

3.1 Data Construction

To analyze the effectiveness of our model for
keyphrase extraction on Twitter, we constructed an
evaluation dataset. We crawled a large number of
tweets. Generally, for each user, we gathered about
3K tweets, with a final total of more than 41 million
tweets.

From analyzing these tweets, we found that
some of the hashtags can be considered as the
keyphrases of the tweet. For example: “The Warriors
take Game 1 of the #NBAFinals 104-89 behind
a playoff career-high 20 from Shaun Livingston.”.
“NBA Finals” can be considered as the keyphrase
of the twitter. Based on this intuition, to construct
the dataset, we firstly filtered out all non-Latin
tweets using regular expressions. Then, we removed
any URL links from the tweets since we were
focusing on the textual content. Tweets that start
with the “@username” are generally considered
replies and have a conversational nature more than
topical nature. Therefore, we also removed any
tweets that start with “@username” to focus on
topical tweets only. Moreover, we designed some
rules about the hashtags in tweets to filter the
remaining tweets. First, one tweet could have only
one hashtag. Second, the position of the hashtag had
to be inside the tweet because we needed the hashtag
and tweet to be semantically inseparable. When a
hashtag appears inside a tweet, it is most likely to
be an inseparable semantical part of the tweet and
has important meaning. Therefore, we regarded this
hashtag as a keyphrase of the tweet.

Each hashtag was split into keywords if it en-
compassed more than one word, for example “Old-
StockCanadians” for “Old Stock Canadians”. After
an effort to filter the tweets we finally had 110K
tweets with the hashtags which could meet our

Algorithm 1 Twitter Dataset Construction
Require: Tweets list ¢t List
Ensure: Filtered Tweets and hashtags

1: resultList < ()

2: while ¢ in tList do

3: if ¢ not contains latin letters then

4: continue

5: end if

6: if ¢ starts with “@username” then

7: continue

8: end if

9: removed any URL links from ¢
10: if ¢ not exactly contains one hashtag then
11: continue
12: end if

13: get hashtag from ¢

14: split hashtag into keywords

15: result List.append((t, hashtag))
16: end while

17: return resultList

needs. The pseudocode is defined in Alg. 1. The
statistical information of the dataset can be seen
in Table 1. To evaluate the quality of the tweets
in our dataset, we randomly selected 1000 tweets
from our dataset and chose three volunteers. Every
tweet was assigned a score of 2 (perfectly suitable),
1 (suitable), or O (unsuitable) to indicate whether the
hashtag of the tweet was a good keyphrase for it.
The results showed that 90.2% were suitable and
66.1% were perfectly suitable. This demonstrated
that our constructed dataset was good for keyphrase
extraction on Twitter.

3.2 Experiment Configurations

To perform an experiment on extracting keyphrases,
we used 70% as a training set, 10% as a development
set, and 20% as a testing set. For evaluation metrics,
we used the precision (P), recall (R), and F1-score
(F1) to evaluate the performance. The precision was
calculated based on the percentage of keyphrases
truly identified among the keyphrases labeled by
the system. Recall was calculated based on the
keyphrases truly identified among the golden stan-
dard keyphrases.

In the experiments, we use word embeddings as
input to the neural network. The word embeddings

840

we used in this work were pre-trained vectors trained
on part of a Google News dataset (about 100 billion
words). A skip-gram model (Mikolov et al., 2013)
was used to generate these 300-dimensional vectors
for 3 million words and phrases. We used the word
embeddings to initialize our word weight matrix.
The matrix was updated in the training process.

The default parameters of our model are as
follows: The window size is 3, number of neurons
in the hidden layer is 300, and « is 0.5, which were
chosen based on the performance using the valid set.

3.3

Several algorithms were implemented and used to
evaluate the validity of the proposed approach.
Among these algorithms, CRF, RNN, LSTM, and
R-CRF treat the keyphrase extraction task as a
sequence labelling task. Automatic keyword ex-
traction on Twitter (AKET) uses an unsupervised
method to extract keywords on Twitter.

Methods for Comparison

e CRF: The keyphrase extraction task can be
formalized as a sequence labeling task that
involves the algorithmic assignment of a cat-
egorical label to each word of a tweet. CRF is a
type of discriminative undirected probabilistic
graphical model and can process a sequence
labeling task. Hence, we applied CRF to extract
keyphrases on Twitter.

e RNN: A recurrent neural network (RNN) is a
type of artificial neural network where the con-
nections between units form a directed cycle.
This creates an internal state of the network
that allows it to exhibit dynamic temporal
behavior. In an RNN model, word embedding
is introduced to represent the semantics of
words.

e LSTM: Long short-term memory (LSTM) is
a recurrent neural network (RNN) architecture.
Unlike traditional RNNs, an LSTM network is
well-suited to learn from experience to classify,
process, and predict time series when there are
very long time lags of unknown size between
important events.

e R-CRF: A recurrent conditional random field
(R-CRF)(Yao et al., 2014) is a mixture model

Table 2: Keyphrase Extraction on Twitter

combining an RNN and a CRF. This model has
the advantages of both the CRF and RNN. The
previous work showed that the performance of
R-CREF can be significantly improved.

e AKET (Automatic Keyword Extraction on
Twitter) (Marujo et al., 2015): Several unsuper-
vised methods and word embeddings were used
to construct features to obtain keyword.

3.4 Experiment Results

Table 2 shows the performances of different meth-
ods on the dataset for keyphrase extraction. From
the results, we observe that the joint-layer RNN
achieved a better performance than the state-of-the-
art methods. The relative improvement in the F-
score of the joint-layer RNN over the second best
result was 6.1%. AKET performed the worst. This
was because AKET worked on the word level. Of the
other methods, CRF performed the worst, RNN and
LSTM were almost the same but better than CRF,
and R-CRF was the best of these methods, with the
exception of our joint-layer RNN. The results can be
explained by the word embedding and long short-
term memory cell providing some benefits. The best
result was found with our joint-layer RNN. This
indicated that the joint processing of the keyword
finding and keyphrase extraction worked well and
could to some degree demonstrate the effectiveness
of our model in keyphrase extraction on Twitter.

To further analyze the keyword extraction results
on Twitter, we compared AKET and our method.
In Table 3, we can see that except for the recall,
AKET is a little better than our method, but our
method performed significantly better than AKET
in the precision and F-score. This indicates that our

841

P R F1 P R F1
CRF 72.37% | 71.82% | 72.09% AKET 20.68% | 87.56% | 33.46%
RNN 78.65% | 70.08% | 74.14% Joint-layer RNN | 87.45% | 85.38% | 86.40%
LSTM 77.52% | 71.19% | 74.22% Table 3: Keyword Extraction on Twitter
R-CRF 79.29% | 73.15% | 76.10%
AKET 11.00% | 46.10% | 17.80% model indeed has better performance in keyword
Joint-layer RNN | 80.74% | 81.19% | 80.97% finding.

In summary, the experimental results conclusively
demonstrated that the proposed joint-layer RNN
method is superior to the state-of-the-art methods
when measured using commonly accepted perfor-
mance metrics on Twitter.

To analysis the sensitivity of the hyper-parameters
of the joint-layer RNN, we conducted several empir-
ical experiments on the dataset.

Fig.2(a) shows the performances of the joint-
layer RNN with different numbers of neurons in the
hidden layers. To simplify, we made hidden layer
1 and hidden layer 2 have the same number of
neurons. In the figure, the x-axis denotes the number
of neurons, and the y-axis denotes the precision,
recall, and F-score. The data used for constructing
the test set were the same as we used in the previous
section. From the figure, we can observe that the
number of neurons in the hidden layers do not highly
affect the final performance. Three performance
indicators of the joint-layer RNN change stably with
different numbers of neurons.

Fig.2(b) shows the performances of the joint-layer
RNN with different window sizes. In the figure, the
x-axis denotes the different window size, and the y-
axis denotes the precision, recall, and F-score. From
the figure, we observe that when the window size
is one, the three performance indicators of joint-
layer RNN perform badly. Then, as the window size
increases, the three performance indicators change
stably. The main reason may possibly be that when
the window size is one, the model just uses the
current word information. When the window size
increases, the model uses the context information
of the current word but the most important context
information is nearby the current word.

Fig.2(c) shows the performances of the joint-layer
RNN with different o values. In the figure, the x-
axis denotes the value of « used for training, and
the y-axis denotes the precision, recall, and F-score.

90 90

-O- Precision
- Recall
-+ Fi-score

= 0

85

85

80 80

75 75
70 70

65 65

90
] -O- Precision
-~ Recall

85 -+ F1-score

80

75

-O- Precision
- Recall
-+ Fi-score

70

65

60 60— ;

T T T T T T T T
50 100 150 200 250 300 350 400 1 3

T T T T T T T T T
01 02 03 04 05 06 07 08 09

5 7 9
of Neurons Window Size Alpha
(@) (b) (©

Figure 2: (a): Performance with varying number of neurons in the hidden layer; (b): Performance with varying window size; (c):

Performance with varying a.

P R F1
WEU | 80.74% | 81.19% | 80.97%
WENU | 74.10% | 69.30% | 71.62%
REU | 79.01% | 79.75% | 79.38%
RENU | 78.16% | 64.55% | 70.70%

Table 4: Effects of embedding on performance. WEU, WENU,
REU and RENU represent word embedding update, word
embedding without update, random embedding update and

random embedding without update respectively.

We can see that the best performance is obtained
when « is around 0.5. This indicates that our model
emphasizes the combination of keyword finding and
keyphrase extraction.

Table 4 lists the effects of word embedding. We
can see that the performance when updating the
word embedding is better than when not updating,
and the performance of word embedding is a little
better than random word embedding. The main
reason is that the vocabulary size is 147,377, but the
number of words from tweets that exist in the word
embedding trained on the Google News dataset is
just 35,133. This means that 76.2% of the words are
missing. This also confirms that the proposed joint-
layer RNN is more suitable for keyphrase extraction
on Twitter.

Fig.3(a) shows the performances of the joint-layer
RNN with different percentages of training data.
In the figure, the x-axis denotes the percentages
of data used for training, and the y-axis denotes
the precision, recall, and F-score. From the figure,

842

we observe that as the amount of training data
increases, the three performance indicators of the
joint-layer RNN consequently improve. When the
percentage of training data is greater than 60% of
the whole dataset, the performance indicators slowly
increase. The main reason may possibly be that the
number concepts included in these data sets are
small. However, on the other hand, we can say that
the proposed joint-layer RNN method can achieve
acceptable results with a few ground truths. Hence,
it can be easily adopted for other data sets.

Since the keyphrase extraction training process
is solved using an iterative procedure, we also
evaluated its convergence property. Fig.3 (b) shows
the precision, recall, and F-score performances of
the joint-layer RNN. In the figure, the x-axis denotes
the number of epochs for optimizing the model,
and the y-axis denotes the precision, recall, and F-
score. From the figure, we observe that the joint-
layer RNN can coverage with less than six iterations.
This means that the joint-layer RNN can achieve a
stable and superior performance under a wide range
of parameter values.

4 Related Work

In general, keyphrase extraction methods can be
roughly divided into two groups: supervised ma-
chine learning approaches and unsupervised ranking
approaches.

In the supervised line of research, keyphrase
extraction is treated as a classification problem,
in which a candidate must be classified as either
a keyphrase (i.e., keyphrases) or not (i.e., non-

-O- Precision -O- Precision
-4 Recall -4~ Recall
O Fi-score -0 Fi-score
JPN)

W &

T T T T T
20% 40% 60% 80% 100% 12 3 4 5 6 7 8 9 10

Percents of Training Data Number of Epochs

(@) (b)
Figure 3: (a): Effects of train size on performance; (b): Effects

of the number of epochs on performance.

keyphrases). A classifier needs to be trained using
annotated training data. The trained model is then
applied to documents for which keyphrases are
to be identified. For example (Frank et al., 1999)
developed a system called KEA that used two
features: tf-idf and first occurrence of the term and
used them as input to Naive Bayes (Hulth, 2003)
used linguistic knowledge (i.e., part-of-speech tags)
to determine candidate sets: potential pos-patterns
were used to identify candidate phrases from the
text. Tang et al. (2004) applied Bayesian decision
theory for keyword extraction. Medelyan and Witten
extended the KEA to KEA++, which uses semantic
information on terms and phrases extracted from a
domain specific thesaurus, thus enhances automatic
keyphrase extraction (Medelyan and Witten, 2006).

In the unsupervised line of research, keyphrase
extraction is formulated as a ranking problem. A
well-known approach is the Term Frequency In-
verse Document Frequency (TF-IDF) (Sparck Jones,
1972; Zhang et al., 2007; Lee and Kim, 2008).
Measures like term frequencies (Wu and Giles,
2013; Rennie and Jaakkola, 2005; Kireyev, 2009),
inverse document frequencies, topic proportions,
etc. and knowledge of specific domain are applied
to rank terms in documents which are aggregated to
score the phrases. The ranking based on tf-idf has
been shown to work well in practice (Hasan and Ng,
2010). Mihalcea et al. proposed the TextRank, which
constructs keyphrases using the PageRank values
obtained on a graph based ranking model for graphs
extracted from texts (Mihalcea and Tarau, 2004). Liu
et al. proposed to extract keyphrases by adopting
a clustering-based approach, which ensures that
the document is semantically covered by these
keyphrases (Liu et al., 2009). Ali Mehri et al. put

843

forward a method for ranking the words in texts,
which can also be used to classify the correlation
range between word-type occurrences in a text,
by using non-extensive statistical mechanics (Mehri
and Darooneh, 2011).

Recurrent neural networks(RNNs) (Elman, 1990)
has been applied to many sequential prediction
tasks, which is an important class of naturally deep
architecture. In NLP, RNNs deal with a sentence
as a sequence of tokens and have been successfully
applied to various tasks like spoken language under-
standing (Mesnil et al., 2013) and language model-
ing (Mikolov et al., 2011). Classical recurrent neural
networks incorporate information from preceding,
there are kinds of variants, bidirectional RNNs are
also useful for NLP tasks, especially when making a
decision on the current token, information provided
by the following tokens is generally useful.

5 Conclusion

In this work, we proposed a novel deep recurrent
neural network (RNN) model to combine keywords
and context information to perform the keyphrase
extraction task. The proposed model can jointly
process the keyword ranking and keyphrase gener-
ation task. It has two hidden layers to discriminate
keywords and classify keyphrases, and these two
sub-objectives are combined into a final objective
function. We evaluated the proposed method on a
dataset filtered from ten million crawled tweets. The
proposed method can achieve better results than
the state-of-the-art methods. The experimental re-
sults demonstrated the effectiveness of the proposed
method for keyphrase extraction on single tweets.

6 Acknowledgement

The authors wish to thank the anonymous reviewers
for their helpful comments. This work was partially
funded by National Natural Science Foundation of
China (No. 61532011, 61473092, and 61472088),
the National High Technology Research and Devel-
opment Program of China (No. 2015AA015408).

References

Ken Barker and Nadia Cornacchia. 2000. Using noun
phrase heads to extract document keyphrases. In
Advances in Artificial Intelligence.

Abdelghani Bellaachia and Mohammed Al-Dhelaan.
2012. Ne-rank: A novel graph-based keyphrase
extraction in twitter. In Proceedings of IEEE CS.

Marina Danilevsky, Chi Wang, Nihit Desai, Xiang Ren,
Jingyi Guo, and Jiawei Han. 2014. Automatic
construction and ranking of topical keyphrases on
collections of short documents. In Proceedings of
SDM.

Jeffrey L Elman.
Cognitive science.

Eibe Frank, Gordon W Paynter, lan H Witten, Carl
Gutwin, and Craig G Nevill-Manning. 1999. Domain-
specific keyphrase extraction.

Kazi Saidul Hasan and Vincent Ng. 2010. Conundrums
in unsupervised keyphrase extraction: making sense of
the state-of-the-art. In Proceedings of COLING.

Michiel Hermans and Benjamin Schrauwen. 2013.
Training and analysing deep recurrent neural net-
works. In Proceedings of NIPS.

1990. Finding structure in time.

Anette Hulth. 2003. Improved automatic keyword
extraction given more linguistic knowledge. In
Proceedings of EMNLP.

Xin Jiang, Yunhua Hu, and Hang Li. 2009. A ranking
approach to keyphrase extraction. In Proceedings of
SIGIR.

Kirill Kireyev. 2009. Semantic-based estimation of term
informativeness. In Proceedings of NAACL.

Sungjick Lee and Han-joon Kim. 2008. News keyword
extraction for topic tracking. In Proceedings of NCM.

Zhiyuan Liu, Peng Li, Yabin Zheng, and Maosong Sun.
2009. Clustering to find exemplar terms for keyphrase
extraction. In Proceedings of EMNLP.

Luis Marujo, Wang Ling, Isabel Trancoso, Chris Dyer,
Alan W Black, Anatole Gershman, David Martins de
Matos, Jodao Neto, and Jaime Carbonell. 2015. Auto-
matic keyword extraction on twitter. In Proceedings
of ACL.

Olena Medelyan and Ian H Witten. 2006. Thesaurus
based automatic keyphrase indexing. In Proceedings
of JCDL.

Ali Mehri and Amir H Darooneh. 2011.
extraction by nonextensivity measure.
Review E.

Grégoire Mesnil, Xiaodong He, Li Deng, and Yoshua
Bengio. 2013. Investigation of recurrent-neural-
network architectures and learning methods for spoken
language understanding. In Proceedings of INTER-
SPEECH.

Rada Mihalcea and Paul Tarau. 2004. Textrank:
Bringing order into texts. In Proceedings of ACL.

Tomas Mikolov, Stefan Kombrink, Luk4$ Burget,
Jan Honza Cernocky, and Sanjeev Khudanpur. 2011.
Extensions of recurrent neural network language
model. In Proceedings of ICASSP.

Keyword
Physical

844

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013. Distributed representations
of words and phrases and their compositionality. In
Proceedings of NIPS.

Junichiro Mori, Mitsuru Ishizuka, and Yutaka Matsuo.
2007. Extracting keyphrases to represent relations in
social networks from web. In Proceedings of IJCAL

Razvan Pascanu, Caglar Gulcehre, Kyunghyun Cho, and
Yoshua Bengio. 2013. How to construct deep
recurrent neural networks. arXiv.

Mari-Sanna Paukkeri, Ilari T Nieminen, Matti Poll4,
and Timo Honkela. 2008. A language-independent
approach to keyphrase extraction and evaluation. In
Proceedings of COLING.

Jason DM Rennie and Tommi Jaakkola. 2005. Using
term informativeness for named entity detection. In
Proceedings of SIGIR.

Karen Sparck Jones. 1972. A statistical interpretation of
term specificity and its application in retrieval. JDoc.

Jie Tang, Juan-Zi Li, Ke-Hong Wang, and Yue-Ru Cai.
2004. Loss minimization based keyword distillation.
In Advanced Web Technologies and Applications.

Suppawong Tuarob, Wanghuan Chu, Dong Chen, and
Conrad S Tucker. 2015. Twittdict: Extracting social
oriented keyphrase semantics from twitter. I/CNLP.

Peter D Turney. 2000. Learning algorithms for
keyphrase extraction. Information Retrieval.

Xiaojun Wan and Jianguo Xiao. 2008. Single document
keyphrase extraction using neighborhood knowledge.
In Proceedings of AAAI

Jiabing Wang, Hong Peng, and Jing-song Hu. 2006.
Automatic keyphrases extraction from document using
neural network. In Advances in Machine Learning and
Cybernetics.

Ian H Witten, Gordon W Paynter, Eibe Frank, Carl
Gutwin, and Craig G Nevill-Manning. 1999.
Kea: Practical automatic keyphrase extraction. In
Proceedings of DL.

Zhaohui Wu and C Lee Giles. 2013. Measuring term
informativeness in context. In Proceedings of NAACL.

Yi-fang Brook Wu, Quanzhi Li, Razvan Stefan Bot,
and Xin Chen. 2005. Domain-specific keyphrase
extraction. In Proceedings of CIKM.

Kaisheng Yao, Baolin Peng, Geoffrey Zweig, Dong Yu,
Xiaolong Li, and Feng Gao. 2014. Recurrent
conditional random field for language understanding.
In Proceedings of ICASSP.

Yongzheng Zhang, Evangelos Milios, and Nur Zincir-
Heywood. 2007. A comparative study on key
phrase extraction methods in automatic web site
summarization. JDIM.

Wayne Xin Zhao, Jing Jiang, Jing He, Yang Song,
Palakorn Achananuparp, Ee-Peng Lim, and Xiaoming

Li. 2011. Topical keyphrase extraction from twitter.
In Proceedings of ACL.

845

