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Abstract

Previous work on automatic summarization
does not thoroughly consider coherence while
generating the summary. We introduce a
graph-based approach to summarize scientific
articles. We employ coherence patterns to en-
sure that the generated summaries are coher-
ent. The novelty of our model is twofold:
we mine coherence patterns in a corpus of ab-
stracts, and we propose a method to combine
coherence, importance and non-redundancy to
generate the summary. We optimize these fac-
tors simultaneously using Mixed Integer Pro-
gramming. Our approach significantly outper-
forms baseline and state-of-the-art systems in
terms of coherence (summary coherence as-
sessment) and relevance (ROUGE scores).

1 Introduction

The growth in the scientific output of many differ-
ent fields makes the task of automatic summariza-
tion imperative. Automatic summarizers assist re-
searchers to have an informative and coherent gist
of long scientific articles. An automatic summarizer
produces summaries considering three properties:
Importance: The summary should contain the im-
portant information of the input document.
Non-redundancy: The summary should contain
non-redundant information. The information should
be diverse in the summary.
Coherence: Though the summary should comprise
diverse and important information of the input doc-
ument, its sentences should be connected to one an-
other such that it becomes coherent and easy to read.

If we do not ensure that a summary is coher-
ent, its sentences may not be properly connected.
This results in an obscure summary. In previous
work coherence has not been thoroughly considered.
Parveen and Strube (2015) use single sentence con-
nectivity in the input document as a coherence mea-
sure. They measure coherence by calculating the
outdegree of a sentence in a graph representation
of an input document. This has two disadvantages:
first, since it is computed only based on one sen-
tence, it is not sufficient to generate coherent sum-
maries; second, it is obtained based on sentence con-
nectivity in the input document rather than in the
summary.

In this work, we focus on the coherence aspect of
summarization. We use discourse entities as the unit
of information that relate sentences. Here, discourse
entities are referred to as head nouns of noun phrases
(see Section 2). The main goal is to extract sentences
which refer to those entities which are important and
unique, and also to entities which connect the ex-
tracted sentences in a coherent manner. Entities in
connected sentences can be used to create linguis-
tically motivated coherence patterns (Daneš, 1974).
Recently, Mesgar and Strube (2015) modeled these
coherence patterns by subgraphs of the graph repre-
sentation (nodes represent sentences and edges rep-
resent entity connections among sentences) of doc-
uments. They show that the frequency of coherence
patterns can be used as features for coherence.

The key idea of this paper is to apply coherence
patterns to long scientific articles to extract (possi-
bly) non-adjacent sentences which, however, are al-
ready coherent. Based on the assumption that ab-
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(i)

S1 Cardiometabolic  diseases  are a growing concern across sub-Saharan Africa (SSA). 

S2  According to current estimates, the prevalence of diabetes among adults aged 20–79 y in Africa is 3.8% and 
      will increase to 4.6% by 2030. 
S3 Urban environments and associated lifestyles, including diets high in salt, sugar, and fat, and physical inactivity, have been  
      widely implicated as leading causes of the rise in cardiometabolic diseases.

S4  If and how these changes affect the health of rural residents, however, remains poorly understood.
S5  Existing research on lifestyle risk factors for cardiometabolic diseases has almost exclusively focused on exposures 
      to urban environments.

a

b

c

(ii)

Figure 1: (i) A sample of mined coherence patterns from abstracts; nodes are sentences and edges are entity connections; (ii)

Sentences S1, S3 and S5 constitute the pattern in an input document.

stracts of scientific articles are similar in style to co-
herent summaries, we obtain coherence patterns by
analyzing a corpus of abstracts of articles from bio-
medicine (PubMed corpus). Then we apply the most
frequent coherence patterns to input documents, i.e.
long scientific articles from bio-medicine (PLOS
Medicine dataset), extract corresponding sentences
to generate coherent summaries, and evaluate them
by comparing with summaries written by a PLOS
Medicine editor. Figure 1 illustrates the extraction
of sentences from an input document (Figure 1, (ii))
which constitute a coherence pattern (Figure 1, (i)).
If we overlay the input document with coherence
patterns and extract the sentences which constitute
those patterns, then the extracted sentences are al-
ready coherent. We also take into account impor-
tance and non-redundancy. We capture all three fac-
tors in an objective function maximized by Mixed
Integer Programming (MIP) (Section 2).

We evaluate our method on two different datasets:
PLOS Medicine (Parveen and Strube, 2015) and
DUC 2002. We extract frequent coherence patterns
from all abstracts in the PubMed corpus, and gen-
erate summaries of unseen scientific articles of the
PLOS Medicine dataset (Section 3.1). For DUC
2002 we extract coherence patterns from the human
summaries of DUC 2005 (Dang, 2005). We evaluate
our model on DUC 2002 to compare with state-of-
the-art systems.

Our experimental results show that using coher-
ence patterns for summarization produces more in-
formative (but not redundant) and coherent sum-
maries as compared to several baseline methods and
state-of-the-art methods based on ROUGE scores
and human judgements.

2 Method

We solve the task of creating coherent summaries by
employing coherence patterns. We tightly integrate
determining importance, non-redundancy and co-
herence by applying global optimization, i.e., MIP.

2.1 Document Representation
We use the entity graph (Guinaudeau and Strube,
2013) to represent scientific articles. The entity
graph is a bipartite graph which consists of entities
and sentences as two disjoint sets of nodes (Figure 2,
ii). Entity nodes are connected only with sentence
nodes and not among each other. An entity node is
connected with a sentence node if and only if the en-
tity is present in the sentence. Entities are the head
nouns of noun phrases.

We perform a one-mode projection on sentence
nodes to create a directed one-mode projection
graph (Figure 2, iii). Two sentence nodes in the one-
mode projection graph are connected if they share at
least one entity in the entity graph. Edge directions
encode the sentence order in the input document.

2.2 Mining Coherence Patterns
We use one-mode projection graphs of abstracts in
the PubMed corpus (see Section 3.1) to mine coher-
ence patterns. The weight of a coherence pattern,
weight(patu), is its frequency in the PubMed cor-
pus normalized by the maximum number of its oc-
currence in abstracts in the PubMed corpus (Equa-
tion 1).

weight(patu) =

∑q
k=1 freq(patu, gk)

maxqk=1freq(patu, gk)
, (1)

where q is the number of graphs associated with ab-
stracts in the corpus, and gk represents the graph of
the kth abstract in the PubMed corpus.
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S1 The overall [rates]e1 of cesarean [delivery]e2 are increasing signifi-
cantly in the [world]e3 .

S2 In [parts]e4 of [England]e5 in 2010, the [proportion]e6 of total
[births]e7 by cesarean [section]e8 was almost 25%, compared with
just 2% in the 1950s.

S3 In the United States and Australia rates of greater than 33% have been
reported and in [China]e9 and [parts]e4 of South [America]e10 ,
including Brazil and [Paraguay]e11 , cesarean [rates]e1 of between
40% and 50% are common.

S4 [Concerns]e12 have been expressed regarding the [impact]e13
of a cesarean [section]e8 on subsequent [pregnancy]e14
[outcome]e15 particularly the [rate]e16 of subsequent
[stillbirth]e17 , [miscarriage]e18 , and ectopic pregnancy.

S5 Hypothesized biological [mechanisms]e19 include placental
[abnormalities]e20 , prior [infection]e21 , and adhesion
[formation]e22 due to cesarean [section]e8 .

(i)

s1 s2 s3 s4 s5

e2 e3 e4 e5 e6 e7 e8e1 e22....

(ii)

s1 s2

s3 s4

s5

(iii)

Figure 2: (i) A sample text from PLOS Medicine; (ii) entity

graph; (iii) projection graph of the text.

The weights of the coherence patterns are not on
the same scale. We normalize the weights using the
standard score

(x−µ
σ

)
, where µ is the mean and σ

is the standard deviation. A sigmoid function scales
weights to the interval [0, 1].

2.3 Summary Generation

We maximize importance, non-redundancy and
pattern-based coherence with their respective
weights λ to generate coherent summaries. The
objective function is:

max(λIfI(S) + λRfR(E) + λCfC(P )), (2)

where S is a set of binary variables for sentences in
an article, E is a set of binary variables for entities
and P is a set of binary variables for coherence pat-
terns.

Importance (fI(S)): The importance function
quantifies the overall importance of information in
the summary, which is calculated by considering the

ranks of selected sentences for the summary:

fI(S) =

n∑

i=1

Rank(senti) · si. (3)

In Equation 3, Rank (senti) represents the rank of
sentence senti and si is the binary variable of sen-
tence senti. n is the number of sentences.

Kleinberg (1999) develops the Hubs and Author-
ities algorithm (HITS) to rank web pages. He di-
vides web pages into two sets: Hubs, pages which
contain links to informative web pages, and Author-
ities, informative web pages. Here, Hubs are entities
and Authorities are sentences. We calculate the rank
of sentences using the HITS algorithm (Parveen and
Strube, 2015). Initial ranks for sentences and enti-
ties are computed by Equations 4 and 5 in an entity
graph:

Rankinit(senti) = 1 + sim(senti, title), (4)

Rankinit(entj) = 1. (5)

In Equation 4, sim(senti, title) is the cosine sim-
ilarity between the scientific article’s title and sen-
tence senti. In Equation 5, entj refers to the jth

entity in the entity graph. After applying the HITS
algorithm on the entity graph using the above initial-
ization, the final rank of a sentence is its importance.

Non-redundancy (fR (E)): In the objective func-
tion, fR(E) represents the non-redundancy of in-
formation in the summary. Intuitively, if the sum-
mary has unique information in every sentence then
the summary is non-redundant. We measure non-
redundancy as follows:

fR(E) =

m∑

j=1

ej , (6)

where m is the number of entities and ej is a binary
variable for each entity. The summary becomes non-
redundant if we include only unique entities.

On the basis of fI(S) and fR(E) we define the
following optimization constraints:

n∑

i=1

|Senti| · si ≤ lmax, (7)

∑

j∈Ei

ej ≥ |Ei| · si for i = 1, . . . , n, (8)
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∑

si∈Sj

si ≥ ej for j = 1, . . . ,m. (9)

The constraint in Equation 7 limits the length of the
summary. lmax is the maximal length of the sum-
mary and |Senti| is the length of sentence senti.

In Equation 8, the constraint ensures that if sen-
tence senti is selected (si = 1), then all entities
Ei present in sentence senti must also be selected.
In Equation 9, Sj represents the set of binary vari-
ables of sentences which contain entity entj . This
constraint prescribes that if entity entj is selected
(ej = 1), then at least one of the sentences in Sj
must be selected, too.

Coherence (fC(P)): We use the mined patterns
to extract sentences from the input document of
PLOS Medicine to create a coherent summary. We
extract sentences, if the connectivity among nodes
in their projection graph matches the connectivity
among nodes in a coherence pattern. In Figure 3 we
overlay the projection graph from Figure 2, ii with
the coherence pattern from Figure 1, i. This results
in three instances of this coherence pattern. How-
ever, we select only one since we simultaneously op-
timize for importance and non-redundancy.

s2

s3 s4

s2

s5

s4

s2

s5

s3

s1 s2

s3 s4

s5

(i)

(ii)

Figure 3: (i) A projection graph; (ii) several instances of a

coherence pattern in Figure 1, ii.

In the objective function, fC(P ) measures the co-
herence of the summary based on the weights of the

coherence patterns occurring in it (Section 2.2):

fC(P ) =
U∑

u=1

weight(patu) · pu, (10)

where pu is a boolean variable associated with co-
herence pattern patu.

The optimization considers pattern patu for sum-
marizing the input article, if patu is a subgraph of
the projection graph of the article. To find the coher-
ence pattern in a projection graph we apply a graph
matching algorithm (Lerouge et al., 2015).

g
patu

xa,s
    

=1
2

xa,s
    

=0
4

xc,s
    

=0
2

xc,s =1
4

yac,s s
    

=1
42

s1 s2

s3 s4

s5

Figure 4: An illustration of mapping variables to overlay graph

g with coherence pattern patu.

To model the graph matching problem between
projection graph g = (Vg, Eg) and patterns patu =
(Vpatu , Epatu), two kinds of mapping binary vari-
ables are used: xi,k for the node map, and yij,kl for
the edge map. xi,k, = 1, if vertices i ∈ Vpatu and
k ∈ Vg match. yij,kl = 1, if for each pair of edges
ij ∈ Epatu and kl ∈ Eg match (Figure 4). Con-
straints for graph matching are as follows:

• Every node of the pattern matches at most one
unique node of the graph:

∑

k∈Vg
xi,k ≤ 1 ∀i ∈ Vpatu . (11)

• Every edge of the pattern matches at most one
unique edge of the graph:

∑

kl∈Eg

yij,kl ≤ 1 ∀ij ∈ Epatu . (12)
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• Every node of the graph matches at most one
node of the pattern:

∑

i∈Vpatu
xi,k ≤ 1 ∀k ∈ Vg. (13)

• A node of pattern patu matches a node of graph
g if an edge originating from the node of patu
matches an edge originating from the node of g:

∑

kl∈Eg

yij,kl = xi,k ∀k ∈ Vg, ∀ij ∈ Epatu . (14)

• A node of pattern patu matches a node of graph
g if an edge targeting the node of patu matches
an edge targeting the node of g:

∑

kl∈Eg

yij,kl = xj,l ∀l ∈ Vg, ∀ij ∈ Epatu . (15)

• We need a constraint to extract induced pat-
terns1:

∑

i∈Vpatu
xi,k +

∑

j∈Vpatu
xj,l

−
∑

ij∈Epatu

yij,kl ≤ 1 ∀kl ∈ Eg. (16)

The constraints in Equations 11 − 16 are defined
to find pattern patu in projection graph g of the input
article. However these constraints do not ensure that
the pattern is in the summary. For this, we define
constraints in Equations 17 − 19 to assure that an
existing pattern in an article is selected if there are
some sentences in the summary which constitute the
pattern.

• The constraint in Equation 17 ensures that if
sentences sk and sl are selected for the sum-
mary then the edge between them is selected
(zkl = 1), too:

sk · sl = zkl ∀k, l ∈ Vg. (17)

• Pattern patu is present in the summary (pu = 1)
if and only if one of its instances in the projec-
tion graph is included in the summary, i.e., some

1Pattern patu is an induced subgraph of graph g if patu con-
tains all possible edges which appear in g.

of the selected sentence nodes must be present in
an instance of pattern patu. |Vpatu | is the num-
ber of nodes in pattern patu, and |Epatu | is the
number of edges in pattern patu. This constraint
is shown below:

∑

i∈vpatu

∑

k∈vg
sk · xi,k +

∑

ij∈epatu

∑

kl∈eg
zkl · yij,kl

= pu(|Vpatu |+ |Epatu |). (18)

• If a sentence is selected then it has to match a
node of at least one of the patterns:

∑

patu∈P

∑

i∈Vpatu
xi,k ≥ sk ∀k ∈ Vg. (19)

3 Experiments

In this section we discuss the datasets and the experi-
mental setup. We evaluate our model using ROUGE
scores and human judgements.

3.1 Datasets
PLOS Medicine: This dataset contains 50 scien-
tific articles. In this dataset every scientific article
is accompanied by a summary written by an editor
of the month. This editor’s summary has a broader
perspective than the authors’ abstract. We use the
editor’s summary as a gold summary for calculat-
ing the ROUGE scores. We use 700 different PLOS
Medicine articles from the PubMed2 corpus to mine
coherence patterns from their abstracts and to calcu-
late patterns’ weights.
DUC: The DUC 2002 dataset has been annotated
for the Document Understanding Conference 2002.
It contains 567 news articles for summarization.
Every article is accompanied by at least two gold
summaries. DUC 2002 articles are shorter than
PLOS Medicine articles (25 vs. 154 sentences av-
erage length). We use all (300) DUC 2005 human
summaries to mine coherence patterns and to calcu-
late their weights.

3.2 Experimental Setup
First, we extract the text of an article. We remove
figures, tables, references and non-alphabetical char-
acters. Then we use the Stanford parser (Klein and

2http://www.ncbi.nlm.nih.gov/pmc/tools/
ftp/
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Manning, 2003) to determine sentence boundaries.
We apply the Brown coherence toolkit (Elsner and
Charniak, 2011) to convert the articles into entity
grids (Barzilay and Lapata, 2008) which then are
transformed into entity graphs. We use gSpan (Yan
and Han, 2002) to extract all subgraphs from the pro-
jection graphs of the abstracts of the PubMed cor-
pus.

It is possible that patterns with a large number
of nodes are not at all present in the projection
graph. Hence, we use coherence patterns with 3 and
4 nodes, referred to as CP3 and CP4, respectively.
We use Gurobi (Gurobi Optimization, Inc., 2014) to
solve the MIP problem. We use a pronoun resolution
system (Martschat, 2013) to replace all pronouns in
the summary with their antecedents.

We determine the best values for λI , λR, and λc
on the development sets. λI = 0.4, λR = 0.3, and
λc = 0.3 are the best weights for the PLOS Medicine
development set. Weights for the DUC 2002 devel-
opment set are λI = 0.5, λR = 0.2 and λc = 0.3.

3.3 Results

We evaluate our model in two ways. First, we use
ROUGE scores to compare our model with other
models. Second, we explicitly evaluate the coher-
ence of the summaries by human judgements.

3.3.1 ROUGE Assessment
The ROUGE score (Lin, 2004) is a standard evalua-
tion score in automatic text summarization. It calcu-
lates the overlap between gold summary and system
summary. In automatic text summarization ROUGE
1, ROUGE 2 and ROUGE SU4 are usually reported
(see Graham (2015) for an assessment of evaluation
metrics for summarization).

We compare our system (CP3 andCP4) with four
baselines: Lead, Random, Maximal Marginal Rel-
evance (MMR) and TextRank. Lead selects adja-
cent sentences from the beginning of an input ar-
ticle. Random selects sentences randomly. MMR
(Carbonell and Goldstein, 1998) uses a trade-off
between relevance and redundancy. TextRank is a
graph-based system using sentences as nodes and
edges weighted by cosine similarity between sen-
tences (Mihalcea and Tarau, 2004).

We compare our system with three state-of-the-art
systems: ECoh (Parveen and Strube, 2015), TCoh

Systems R-SU4 R-2
Baselines
Lead 0.067 0.055
Random 0.048 0.031
MMR 0.069 0.048
TextRank 0.068 0.048
State-of-the-art
ECoh 0.131 0.098
TCoh 0.129 0.095
Mead 0.084 0.068
Our Model
CP3 0.135 0.103

Table 1: PLOS Medicine, editor’s summaries with 5 sentences.

(Parveen et al., 2015), and Mead (Radev et al.,
2004). ECoh uses entity graphs which consists of
entities and sentences, and TCoh uses topical graphs
where entities are replaced by the topics. They
both use the outdegree of sentence nodes in the un-
weighted and the weighted projection graph, respec-
tively, as the coherence measure of each sentence.
Mead employs a linear combination of three fea-
tures: centroid score, position score and overlap
score. The linear combination is used to add sen-
tences to the summary up to the required length. The
centroid score gives the highest score to the most
central sentence in the cluster of sentences, the po-
sition score gives a higher score to the sentences
which are in the beginning of the document, and the
overlap score computes the similarity between the
sentences of a document. All three features do not
take care of the coherence of a summary as they do
not have any notion of the order and the structure of
a summary.

To compare with the state-of-the-art systems on
PLOS Medicine, ECoh (Parveen and Strube, 2015)
and TCoh (Parveen et al., 2015), we limit the length
of summaries to 5 sentences. Table 1 reports
ROUGE scores of different systems. Our system
outperforms baselines and state-of-the-art systems.

Since the word length limit of a summary is more
meaningful than the sentence length limit of a sum-
mary, we limit the length of a summary to the av-
erage length of editor’s summaries in the dataset
(750 words). Table 2 shows the performance of
different systems with 750 words limit for a sum-
mary. In Table 2, we use different versions of
ROUGE-SU4 and ROUGE-2 where W/WO stands
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PLOS Medicine WOStop WOStop WStop WStop WOStop WOStop WStop WStop

Editor’s summaries WStem WOStem WStem WOStem WStem WOStem WStem WOStem

ROUGE SU4 (*pvalue < 0.05) ROUGE 2 (*pvalue < 0.01)
Upper Bound 0.423 0.354 0.519 0.470 0.344 0.304 0.430 0.399
Baselines
Lead 0.191 0.158 0.246 0.222 0.158 0.140 0.185 0.171
Random 0.140 0.113 0.169 0.153 0.102 0.088 0.125 0.116
MMR 0.183 0.149 0.240 0.215 0.141 0.125 0.171 0.157
TextRank 0.148 0.104 0.161 0.159 0.115 0.084 0.126 0.118
State-of-the-art
ECoh 0.204* 0.167 0.254 0.228 0.160* 0.145 0.187 0.173
TCoh 0.195 0.161 0.231 0.206 0.157 0.140 0.169 0.165
Mead 0.197 0.165 0.246 0.222 0.156 0.139 0.186 0.172
Our Model
CP3 0.215* 0.178 0.268 0.241 0.172* 0.153 0.200 0.184
CP4 0.218 0.179 0.270 0.245 0.175 0.156 0.201 0.187

Table 2: ROUGE scores on PLOS Medicine with 750 words.

for With/Without. Here, WOStop means without
considering stopwords while calculating ROUGE
scores, and WOStem means without applying the
Porter Stemmer on summaries while calculating
ROUGE scores. Our models outperform baseline
and state-of-the-art systems (Table 2). We compute
statistical significance between ECoh and CP3 on
both scores, ROUGE SU4 is significantly different
by 95%. ROUGE 2 is significantly different by 99%.

Upper Bound in Table 2 represents maximum
ROUGE scores that can be achieved in extractive
summarization on the PLOS Medicine dataset. It is
calculated by considering the whole scientific article
as a summary and the corresponding editor’s sum-
mary as the gold standard. The Upper Bound scores
are not very high showing that a significant im-
provement in ROUGE scores on the PLOS Medicine
dataset is difficult. Thus, the performance achieved
by our systems, CP3 and CP4, is a considerable im-
provement on the PLOS Medicine dataset.

Furthermore, we apply CP3 on the dataset intro-
duced by Liakata et al. (2013). The dataset con-
sists of 28 scientific articles from the chemistry do-
main. The state-of-the-art system on this dataset is
CoreSC, which is developed by Liakata et al. (2013).
CoreSC considers discourse information while sum-
marizing a scientific article. The ROUGE-1 score
of CP3 (0.96) is significantly better than CoreSC
(0.75) and Microsoft Office Word 2007 AutoSuma-
rize (0.73) (Garcı́a-Hernández et al., 2009), in re-
spect of abstracts. This shows that our system per-

forms well in other domains.
We further calculate the average number of sen-

tences per summary obtained by Mead andCP3. On
average Mead produces 17.5 sentences per summary
whereasCP3 produces 27.2 sentences per summary.
The possibility of longer sentences containing more
topic irrelevant entities is higher than shorter sen-
tences (Jin et al., 2010).

We calculate the average percentage of sentences
selected from the sections Introduction, Method, Re-
sults and Discussion by different systems. CP3 ex-
tracts sentences mainly from Introduction (32.5%)
and Method (38.5%), but also a considerable num-
ber of sentences from Results (17.67%) and Discus-
sion (11.33%). The distribution is quite similar to
TextRank and MMR. Lead, obviously, extracts only
from Introduction (80.59%) and Method (19.41%).
Mead extracts maximum sentences from the begin-
ning of the document using its positional feature.
The sentences in a summary extracted by CP3 are
evenly distributed indicating that they are not biased
to any sections. This clearly represents that coher-
ence patterns not only seeks for nearby sentences but
also for any distant sentences of a scientific article.

Table 3 shows the results on DUC 2002 to com-
pare the results with state-of-the-art systems. There
is no significant difference between the ROUGE
scores of using CP3 and CP4 on DUC 2002. Thus,
we only report the results of using CP3 on DUC
2002.

In Table 3, LREG is a baseline system us-
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Systems R-1 R-2 R-SU4
Baselines
Lead 0.459 0.180 0.201
DUC 2002 Best 0.480 0.228
TextRank 0.470 0.195 0.217
LREG 0.438 0.207
State-of-the-art
Mead 0.445 0.200 0.210
ILPphrase 0.454 0.213
URANK 0.485 0.215
UniformLink (k = 10) 0.471 0.201
ECoh 0.485 0.230 0.253
TCoh 0.481 0.243 0.242
NN-SE 0.474 0.230
Our Model
CP3 0.490 0.247 0.258

Table 3: ROUGE scores on DUC 2002.

ing logistic regression and hand-made features
(Cheng and Lapata, 2016). We compare our
model to previously published state-of-the-art sys-
tems. These systems show reasonable performance
on the DUC 2002 summarization task. ILPphrase
is a phrase-based extraction model, which selects
important phrases and combines them via inte-
ger linear programming (Woodsend and Lapata,
2010). URANK utilizes a unified ranking process for
single-document and multi-document summariza-
tion tasks (Wan, 2010). UniformLink (k=10), con-
siders similar documents for document expansion in
the single-document summarization task (Wan and
Xiao, 2010). The more recent system, NN-SE, uti-
lizes a neural network hierarchical document en-
coder and an attention-based extractor to extract sen-
tences from a document for a summary (Cheng and
Lapata, 2016). ROUGE scores of our approach on
this dataset are better than baselines and state-of-the-
art systems. This shows that our system performs
well even in a different genre (robust) and with con-
siderably shorter input documents (scalable).

3.3.2 Coherence Assessment

ROUGE scores do not evaluate summary coher-
ence, since ROUGE only calculates overlapping re-
call scores and does not consider the structure of the
summary. Haghighi and Vanderwende (2009), Ce-
likyilmaz and Hakkani-Tür (2010) and Christensen
et al. (2013) evaluate the overall summary quality
by asking human subjects to rank system generated

summaries. Parveen and Strube (2015) and Parveen
et al. (2015) assess the coherence by asking human
assessors to rank system generated summaries and
compare their system with baseline systems.

We perform summary coherence assessment by
asking one Postdoc, two PhD students and one Mas-
ters student from the field of natural language pro-
cessing. We provide them with the output sum-
maries of four different systems for ten articles. We
ask them to rank the summaries, i.e., the best sum-
mary gets rank 1, the second best gets rank 2, the
third best gets rank 3, and the worst gets rank 4.

The four systems assessed are CP3, ECoh, Text-
Rank, and Lead. We apply the Kendall concordance
coefficient (W) (Siegel and Castellan, 1988) to mea-
sure whether the human assessors agree in ranking
the four systems. With W = 0.6725 the correla-
tion between the human assessors is high. Applying
the χ2 test shows that W is significant at least at the
99% level indicating that the ranks provided by the
human assessors are reliable and informative. Table
4 shows the overall average rank of a system given
by the four human assessors. The lower the value of
average human scores the more coherent the sum-
mary. Unsurprisingly Lead gets the best overall av-

PLOS Medicine
System Average Human Score
TextRank 3.950
ECoh 2.325
CP3 1.875
Lead 1.625

Table 4: The average human scores.

erage rank. Lead extracts adjacent sentences from
the beginning of the document. Hence, these sum-
maries are as coherent as the author intends them
to be, but they are not informative. However, CP3

is very close in coherence to Lead indicating that
our strategy is successful. It also performs substan-
tially better than TextRank and ECoh. This confirms
that using coherence patterns for sentence extraction
yields more coherent summaries.

4 Related Work

Summarizing scientific articles is as difficult as
multi-document summarization because scientific
articles are tend to be long and the important infor-
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mation is spread all over the article unlike informa-
tion in news articles (Teufel and Moens, 2002).

There are various approaches for summarizing
scientific articles. Citations have been used by many
researchers for summarization in this domain (Elkiss
et al., 2008; Mohammad et al., 2009; Qazvinian and
Radev, 2008; Abu-Jbara and Radev, 2011). Nanba
and Okumura (2000) develop rules for categoriz-
ing citations by analyzing citation sentences. New-
man (2001) analyzes the structure using a citation
network. Similarly, Siddharthan and Teufel (2007)
discover scientific attributions using citations. Dis-
course structure (but not necessarily coherence) has
been used by Teufel and Moens (2002), Liakata et
al. (2013) and others for summarizing scientific arti-
cles.

Several state-of-the-art extractive summarization
systems implement summarization as maximizing
an objective function using constraints. McDonald
(2007) interprets text summarization as a global in-
ference problem, where he is maximizing the im-
portance score of a summary by considering the
length constraint. Similarly, various approaches for
summarization are based on optimization using ILP
(Gillick et al., 2009; Nishikawa et al., 2010; Galanis
et al., 2012; Parveen and Strube, 2015).

Until now, only few works have considered co-
herence while summarizing scientific articles. Abu-
Jbara and Radev (2011) work on citation based
summarization. They preprocess the citation sen-
tences to filter out irrelevant sentences or sentence
fragments, then extract sentences for the summary.
Eventually, they refine the summary sentences to im-
prove readability. Jha et al. (2015) consider Min-
imum Independent Discourse Contexts (MIDC) to
solve the problem of non-coherence in extractive
summarization. However, none of them deals with
the problem of coherence within the task of sentence
selection. Sentence selection and ensuring the co-
herence of summaries are not tightly integrated in
their techniques. They model coherence in summa-
rization by only considering adjacent sentences.

There are few methods (Hirao et al., 2013;
Parveen and Strube, 2015; Gorinski and Lapata,
2015) which integrate coherence in optimization.
These methods do not take into account the overall
structure of the summary. Unlike earlier methods,
we incorporate coherence patterns in optimization.

5 Conclusion

We introduce a novel graph-based approach to gen-
erate coherent summaries of scientific articles. Our
approach takes care of coherence distinctively by co-
herence patterns. We have experimented with PLOS
Medicine and DUC 2002. The results show that
the approach is robust, works on both scientific and
news documents and with input documents of dif-
ferent length. It considerably outperforms state-of-
the-art systems on both datasets. We collected hu-
man assessments to evaluate the coherence of sum-
maries. Our system substantially outperforms base-
lines and state-of-the-art systems, i.e., incorporat-
ing coherence patterns produces more coherent sum-
maries. The results show that our approach performs
well in human summary coherence assessment and
relevance evaluation (ROUGE scores).
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