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Abstract

Multiple treebanks annotated under heteroge-
neous standards give rise to the research ques-
tion of best utilizing multiple resources for im-
proving statistical models. Prior research has
focused on discrete models, leveraging stack-
ing and multi-view learning to address the
problem. In this paper, we empirically inves-
tigate heterogeneous annotations using neu-
ral network models, building a neural network
counterpart to discrete stacking and multi-
view learning, respectively, finding that neural
models have their unique advantages thanks to
the freedom from manual feature engineering.
Neural model achieves not only better accu-
racy improvements, but also an order of mag-
nitude faster speed compared to its discrete
baseline, adding little time cost compared to
a neural model trained on a single treebank.

1 Introduction

For many languages, multiple treebanks have been
annotated according to different guidelines. For ex-
ample, several linguistic theories have been used
for defining English dependency treebanks, includ-
ing Yamada and Matsumoto (2003), LTH (Johans-
son and Nugues, 2007) and Stanford dependencies
(De Marneffe et al., 2006). For German, there exist
TIGER (Brants et al., 2002) and TüBa-D/Z (Telljo-
hann et al., 2006). For Chinese, treebanks have been
made available under various segmentation granu-
larities (Sproat and Emerson, 2003; Emerson, 2005;
Xue, 2003). These give rise to the research problem

∗Work done when the first author was visiting SUTD.

of effectively making use of multiple treebanks un-
der heterogeneous annotations for improving output
accuracies (Jiang et al., 2015; Johansson, 2013; Li
et al., 2015).

The task has been tackled using two typical ap-
proaches. The first is based on stacking (Wolpert,
1992; Breiman, 1996; Wu et al., 2003). As shown in
Figure 1(a), the main idea is to have a model trained
using a source treebank, which is then used to guide
a target treebank model by offering source-style fea-
tures. This method has been used for leveraging two
different treebanks for word segmentation (Jiang et
al., 2009; Sun and Wan, 2012) and dependency pars-
ing (Nivre and McDonald, 2008; Johansson, 2013).

The second approach is based on multi-view
learning (Johansson, 2013; Li et al., 2015). The
idea is to address both annotation styles simul-
taneously by sharing common feature representa-
tions. In particular, Johansson (2013) trained depen-
dency parsers using the domain adaptation method
of Daumé III (2007), keeping a copy of shared fea-
tures and a separate copy of features for each tree-
bank. Li et al. (2015) trained POS taggers by cou-
pling the labelsets from two different treebanks into
a single combined labelset. A summary of such
multi-view methods is shown in Figure 1(b), which
demonstrates their main differences compared to
stacking (Figure 1(a)).

Recently, neural network has gained increasing
research attention, with highly competitive results
being reported for numerous NLP tasks, including
word segmentation (Zheng et al., 2013; Pei et al.,
2014; Chen et al., 2015), POS-tagging (Ma et al.,
2014; Plank et al., 2016), and parsing (Chen and
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Figure 1: Two main approaches to utilizing hetero-
geneous annotations.

Manning, 2014; Dyer et al., 2015; Weiss et al., 2015;
Zhou et al., 2015). On the other hand, the aforemen-
tioned methods on heterogeneous annotations are in-
vestigated mainly for discrete models. It remains an
interesting research question how effective multiple
treebanks can be utilized by neural NLP models, and
we aim to investigate this empirically.

We follow Li et al. (2015), taking POS-tagging
for case study, using the methods of Jiang et al.
(2009) and Li et al. (2015) as the discrete stacking
and multi-view training baselines, respectively, and
building neural network counterparts to their mod-
els for empirical comparison. The base tagger is
a neural CRF model (Huang et al., 2015; Lample
et al., 2016), which gives competitive accuracies to
discrete CRF taggers.

Results show that neural stacking allows deeper

integration of the source model beyond one-best out-
puts, and further the fine-tuning of the source model
during the target model training. In addition, the ad-
vantage of neural multi-view learning over its dis-
crete counterpart are many-fold. First, it is free
from the necessity of manual cross-labelset inter-
active feature engineering, which is far from triv-
ial for representing annotation correspondence (Li
et al., 2015). Second, compared to discrete model,
parameter sharing in deep neural network eliminates
the issue of exponential growth of search space, and
allows separated training of each label type, in the
same way as multi-task learning (Collobert et al.,
2011).

Our neural multi-view learning model achieves
not only better accuracy improvements, but
also an order of magnitude faster speed com-
pared to its discrete baseline, adding little time
cost compared to a neural model trained on
a single treebank. The C++ implementations
of our neural network stacking and multi-view
learning models are available under GPL, at
https://github.com/chenhongshen/NNHetSeq.

2 Baseline Neural Network Tagger

We adopt a neural CRF with a Long-Short-Term-
Memory (LSTM) (Hochreiter and Schmidhuber,
1997) feature layer for baseline POS tagger. As
shown in Figure 2, the model consists of three main
neural layers: the input layer calculates dense rep-
resentation of input words using attention model on
character embeddings; the feature layer employs a
bi-directional LSTM model to extract non-local fea-
tures from input vectors; the output layer uses a
CRF structure to infer the most likely label for each
input word.

2.1 Input Layer

Given a sentence w(1:n), the input layer builds a vec-
tor representation r⃗i

w for each word wi based on both
word and character embeddings. In particular, an
embedding lookup table is used to convert vocabu-
lary words into their embedding forms directly. To
obtain a character based embedding of wi, we de-
note the character sequence of wi with c(1:n), where
cj is the jth character in wi.

A character lookup table is used to map each char-
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Figure 2: Baseline neural network tagger.

acter cj into a character embedding e⃗j
c. The char-

acter embeddings e⃗1
c , e⃗

2
c , ..., e⃗

m
c are combined using

an attention model(Bahdanau et al., 2015): w⃗i
c =∑m

j=1 aj
c ⊙ e⃗j

c, where aj
c is the weight for e⃗j

c, ⊙ is
the Hadamard product function, and

∑m
j=1 aj

c = 1.

Each aj
c is computed according to both the word

embedding vector and 5-character embedding win-
dow with the current character e⃗j

c in the middle:

aj
c =

tjc∑m
1 tjc

tjc =exp(Wth⃗j
c + Ute⃗i

w + b⃗t)

h⃗i
c =tanh

(
Wc(e⃗j−2

c ⊕ e⃗j−1
c ⊕ e⃗j

c ⊕ e⃗j+1
c

⊕ e⃗j+2
c ) + b⃗c

)

Here ⊕ denotes vector concatenation and e⃗i
w is the

embedding of current word wi. Wt, Ut, Wc and b⃗t,
b⃗c are model parameters. Finally, w⃗i

c is concatenated
with word embedding to form final word represen-
tation r⃗i

w: r⃗i
w = e⃗i

w ⊕ w⃗i
c

2.2 Feature Layer

Recently, bi-directional LSTM has been success-
fully applied in various NLP tasks (Liu et al., 2015;
Zhou and Xu, 2015; Klerke et al., 2016; Plank et al.,
2016). The feature layer uses a bi-directional LSTM
to extract a feature vector h⃗i for each word wi, re-
spectively. An input vector x⃗i = (r⃗i−2

w ⊕r⃗i−1
w ⊕r⃗i

w⊕
r⃗i+1
w ⊕ r⃗i+2

w ) is used to represent each word wi.
We use a LSTM variation with peephole connec-

tions (Graves and Schmidhuber, 2005) to extract fea-
tures based on x⃗(1:n). The model computes a hid-
den vector h⃗i for each input x⃗i , passing information
from h⃗1, ..., h⃗i−1 to h⃗n via a sequence of cell states

c⃗1, c⃗2, ..., c⃗n. Information flow is controlled using an
input gate g⃗i, a forget gate f⃗ i, and an output gate o⃗i:

g⃗i =σ(W(g)x⃗i + U(g)h⃗i−1 + V(g)c⃗i−1 + b⃗(g))

f⃗ i =σ(W(f)x⃗i + U(f)h⃗i−1 + V(f)c⃗i−1 + b⃗(f))

c⃗i =f⃗ i ⊙ c⃗i−1+

g⃗i ⊙ tanh(W(u)x⃗i + U(u)h⃗i−1 + b⃗(u))

o⃗i =σ(W(o)x⃗i + U(o)h⃗i−1 + V(o)c⃗i + b⃗(o))

h⃗i =o⃗i ⊙ tanh(c⃗i),

where σ denotes the component-wise sigmoid func-
tion. W(g), W(f), W(u), W(o), U(g), U(f), U(u),
U(o), V(g), V(f), V(o), b⃗(g), b⃗(f), b⃗(u), b⃗(o) are
model parameters.

Bi-directional extension of the above LSTM
structure is applied in both the left-to-right direc-
tion and the right-to-left direction, resulting in two
hidden vector sequences h

(1:n)
l , h

(1:n)
r , respectively.

Each h⃗i
l is combined with its corresponding h⃗i

r for
final feature vector h⃗i

f :

h⃗i
f = tanh(Wlh⃗i

l + Wrh⃗i
r + b⃗),

where Wl, Wr and b⃗ are model parameters.

2.3 Output Layer
The output layer employs a conditional random field
(CRF) to infer the POS ti of each word wi based on
the feature layer outputs. The conditional probabil-
ity of a tag sequence given an input sentence is:

p(y⃗|x⃗) =

∏n
i=1 Ψ(x⃗, y⃗i)

∏n
i=1 Φ(x⃗, y⃗i, y⃗i−1)

Z(x⃗)
,

where Z(x⃗) is the partition function:

Z(x⃗) =
∑

y⃗

n∏

i=1

Ψ(x⃗, y⃗i)
n∏

i=1

Φ(x⃗, y⃗i, y⃗i−1)

In particular, the output clique potential Ψ(x⃗, y⃗i)
shows the correlation between inputs and output la-
bels: Ψ(x⃗, y⃗i) = exp(s⃗i), with the emission vector
s⃗i being defined as:

s⃗i = θ⃗0h⃗
i
f , (1)

where θ⃗0 is the model parameter.
The edge clique potential shows the correlation

between consecutive output labels using a single
transition weight τ(y⃗i, y⃗i−1).
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Figure 3: Neural stacking.

3 Stacking

3.1 Discrete Stacking
Stacking integrates corpora A and B by first training
a tagger on corpus A, and then using the A tagger
to provide additional features to a corpus B model.
Figure 1(a) shows the training and testing of dis-
crete stacking models, where the B tagger extracts
features from both the raw sentence and A tagger
output. This method achieves feature combination
at the one-best-output level.

3.2 Neural Stacking
Figure 3(a) and (b) shows the two neural stacking
methods of this paper, respectively.

Shallow Integration. Figure 3(a) is a variation of
discrete stacking, with the output tags from tagger A
being converted to a low-dimensional dense embed-
ding features, and concatenated to the word embed-
ding inputs to tagger B. Formally, for each word wi,
denote the tagger A output as tia, we concatenate the
embedding form of tia, denoted as e⃗i

a, to the word
representation r⃗i

w.

r⃗i′
w = r⃗i

w ⊕ e⃗i
a = e⃗i

w ⊕ w⃗i
c ⊕ e⃗i

a (2)

Deep Integration. Figure 3(b) offers deeper inte-
gration between the A and B models, which is fea-
sible only with neural network features. We call this
method feature-level stacking. For feature-level in-
tegration, the emission vector s⃗i in Eq.(1) is taken
for input to tagger B via a projection:

w⃗i
a = tanh(Wss⃗i)

r⃗i
w = e⃗i

w ⊕ w⃗i
c ⊕ w⃗i

a,

where Ws is a model parameter.
Fine-tuning. Feature-level stacking further al-

lows tagger A to be fine-tuned during the training
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Input layer

Feature layer

Output layer B

...w
1

w
2

w
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w
n

Figure 4: Neural multi-view model.

of tagger B, with the loss function being back prop-
agated to tagger A via the w⃗i

a layer (shown in the red
dotted lines in Figure 3(b)). This is a further benefit
of neural stacking compared with discrete stacking.

4 Multi-view Learning

4.1 Discrete Label Coupling
As shown in Figure 1(b), multi-view learning (Li et
al., 2015) utilizes corpus A and corpus B simultane-
ously for training. The coupled tagger directly learns
the logistic correspondences between both corpora,
therefore can lead a more comprehensive usage of
corpus A compared with stacking. In order to better
capture such correlation, specifically designed fea-
ture templates between two tag sets are essential.

For each training instances, both A and B labels
are needed. However, one type of tag is missing.
Li et al. (2015) used a mapping function to supple-
ment the missing annotations with the help of the
annotated tag. The result is a set of sentence with
bundled tags in both annotations, but with ambigu-
ities on one side, due to one-to-many mappings. Li
et al. (2015) showed that speed can be significantly
improved by manually restricting possible mappings
between the labelsets, but a full mapping without re-
striction yields the highest accuracies.

4.2 Neural Multi-task Learning
Neural multi-task learning is free from manual fea-
ture engineering, and avoids manual mapping func-
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tions between tag sets by establishing two separate
output layers, one for each type of label, with shared
low-level parameters. The general structure of a
neural multi-view model is shown in Figure 4, which
can be regarded as a variation of the parameter shar-
ing model of Caruana (1993) and Collobert et al.
(2011). Leveraging heterogeneous annotations for
the same task, compared to parameter sharing be-
tween different NLP tasks (Collobert et al., 2011),
can benefit from tighter integration of information,
and hence allows deeper parameter sharing. These
are verified empirically in the experiments.

In training and testing, sentences from both cor-
pora go through the same input layer and feature
layer. The outputs of each type of tag is then com-
puted separately according to the shared parameters.
The conditional probability of a tag sequence given
an input sentence and its corpus type is:

p(y⃗|x⃗, T ) =

∏n
i=1 ΨT (x⃗, y⃗i)

∏n
i=1 ΦT (x⃗, y⃗i, y⃗i−1)

ZT (x⃗)
,

where T is the corpus type, T ∈ {A,B}. ΨT (x⃗, y⃗i)
and ΦT (x⃗, y⃗i, y⃗i−1) are the corresponding output
clique potential and edge clique potential, respec-
tively. ZT (x⃗) is the partition function:

ZT (x⃗) =
∑

y⃗

n∏

i=1

ΨT (x⃗, y⃗i)
n∏

i=1

ΦT (x⃗, y⃗i, y⃗i−1)

This indicates that each time only one output layer
is activated according to the corpus type of input
sentences.

5 Training

A max-margin objective is used to train the full set
of model parameters Θ:

L(Θ) =
1

D

D∑

d=1

l(x⃗d, y⃗d, Θ) +
λ

2
∥Θ∥2 ,

where x⃗d, y⃗d|Dd=1 are the training examples, λ is
a regularization parameter, and l(x⃗d, y⃗d, Θ) is the
max-margin loss function towards one example
(x⃗d, ȳd).

The max-margin loss function is defined as:

l(x⃗d, y⃗d, Θ) = max
y

(
s(y⃗|x⃗d, Θ) + δ(y⃗, y⃗d)

)

− s(y⃗d|x⃗d,Θ),

Algorithm 1 Neural multi-view training

Input: Two training datasets: D(1) =

(x
(1)
n , y

(1)
n )|Nn=1, D(2) = (x

(2)
m , y

(2)
m )|Mm=2;

Parameters: E, A, R
Output: Θ

1: for i = 1 to E do
2: Sample A instances from D(1) and A ∗ R in-

stances from D(2) to form a new dataset Di

3: Shuffle Di.
4: for each batch Db

i in Di do
5: Forward: compute the cost
6: Backward: compute the loss of each pa-

rameter
7: Update the parameters
8: end for
9: end for

sentences tokens

CTB
train 16091 437991
dev 803 20454
test 1910 50319

PD
train 100749 5194829
dev 18875 958026

Table 1: Data statistics.

where y⃗ is the model output, s(y⃗|x⃗) = logP (y⃗|x⃗) is
the log probability of y⃗ and δ(y⃗, y⃗d) is the Hamming
distance between y⃗ and y⃗d.

We adopt online learning, updating parameters
using AdaGrad (Duchi et al., 2011). To train the
neural stacking model, we first train a base tagger
using corpus A. Then, we train the stacked tagger
with corpus B, where the parameters of the A tagger
has been pretrained from corpus A and the B tagger
is randomly initialized.

For neural multi-view model, we follow Li et al.
(2015) and take a the corpus-weighting strategy to
sample a number of training instances from both cor-
pora for each training iteration, as shown in Algo-
rithm 1. At each epoch, we randomly sample from
the two datasets according to a corpus weights ratio,
namely the ratio between the number of sentences in
each dataset used for training, to form a training set
for the epoch.
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6 Experiments

6.1 Experimental Settings

We adopt the Penn Chinese Treebank version 5.0
(CTB5) (Xue et al., 2005) as our main corpus,
with the standard data split following previous work
(Zhang and Clark, 2008; Li et al., 2015). People’s
Daily (PD) is used as second corpus with a differ-
ent scheme. We filter out PD sentences longer than
200 words. Details of the datasets are listed in Table
1. The standard token-wise POS tagging accuracy
is used as the evaluation metric. The systems are
implemented with LibN3L (Zhang et al., 2016).

For all the neural models, we set the hidden layer
size to 100, the initial learning rate for Adagrad to
0.01 and the regularization parameter λ to 10−8.
word2vec1 is used to pretrain word embeddings.
The Chinese Giga-word corpus version 5 (Graff and
Chen, 2005), segmented by zpar2 (Zhang and Clark,
2011), is used for the training corpus for word em-
beddings. The size of word embedding is 50.

6.2 Development Experiments

We use the development dataset for two main pur-
poses. First, under each setting, we tune the model
parameters, such as the number of training epochs.
Second, we study the influence of several important
hyper-parameters using the development dataset.
For example, for the NN multi-view learning model,
the corpus weights ratio (section 5) plays an im-
portant role for the performance. We determine the
parameters of the model by studying the accuracy
along with the increasing epochs.

Effect of batch size and dropout. The batch size
affects the speed of training convergence and the fi-
nal accuracies of the neural models, and the dropout
rate has been shown to significantly influence the
performance (Chen et al., 2015). We investigate the
effects of these two hyper-parameters by adopting
a corpus weight ratio of 1 : 1 (All the CTB train-
ing data is used, while the same amount of PD is
sampled randomly), drawing the accuracies of the
neural multi-view learning model against the num-
ber of training epochs with various combinations of
the dropout rate d and batch size b. The results are

1https://code.google.com/p/word2vec
2https://github.com/SUTDNLP/ZPar
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shown for the multi-view learning model. For the
stacking model, we use b=100 for the PD sub model.

The results are shown in Figure 5, where the two
dashed lines on the top at epoch 30 represent the
dropout rate of 20%, the two solid lines in the mid-
dle represent zero dropout rate, and the two dotted
lines in the bottom represent a dropout rate 50%.
Without using dropout, the performance increases
in the beginning, but then decreases as the number
of training epochs increases beyond 10. This indi-
cates that the NN models can overfit the training data
without dropout. However, when a 50% dropout
rate is used, the initial performances are significantly
worse, which implies that the 50% dropout rate can
be too large and leads to underfitting. As a result, we
choose a dropout rate of 20% for the remaining ex-
periments, which strikes the balance between over-
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System Accuracy
CRF Baseline (Li et al., 2015) 94.10
CRF Stacking (Li et al., 2015) 94.81
CRF Multi-view (Li et al., 2015) 95.00
NN Baseline 94.24
NN Stacking 94.74
NN Feature Stacking 95.01
NN Feature Stacking & Fine-tuning 95.32
NN Multi-view 95.40
Integrated NN Multi-view & Stacking 95.53

Table 2: Accuracies on CTB-test.

fitting and underfitting.
Figure 5 also shows that the batch size has a rela-

tive small influence on the accuracies, which varies
according to the dropout rate. We simply choose a
batch size of 1 for the remaining experiments ac-
cording to the performance at the dropout rate 20%.

Effect of corpus weights ratio. Figure 6 shows
the effects of different corpus weights ratios. In par-
ticular, a corpus weights ratio of 1:0.2 yields relative
low accuracies. This is likely because it makes use
of the least amount of PD data. The ratios of 1:1
and 1:4 give comparable performances. We choose
the former for our final tests because it is a much
faster choice.

6.3 Final Results

Table 2 shows the final results on the CTB test data.
We lists the results of stacking method of Jiang et
al. (2009) re-implemented by Li et al. (2015), and
CRF multi-view method reported by Li et al. (2015).
We adopt pair-wise significance test (Collins et al.,
2005) when comparing the results between two dif-
ferent models.

Stacking. For baseline tagging using only CTB,
NN model achieves a result of 94.24, slightly higher
than CRF baseline (94.10). NN stacking model in-
tegrating PD data achieves comparable performance
(94.74) compared with CRF stacking model (94.81).
Compared with NN baseline, NN stacking model
boosts the performance from 94.24 to 94.74, which
is significant at the confidence level p < 10−5. This
demonstrates that neural network model can utilize
one-best prediction of the PD model for the CTB
task as effectively as the discrete stacking method
of Jiang et al. (2009).

One advantage of NN stacking as compared with
discrete stacking method is that it can directly lever-

age features of PD model for CTB tagging. Com-
parison between feature-level stacking and one-best-
output level stacking of the NN stacking model
shows that the former gives significantly higher re-
sults, namely 95.01 vs 94.74 at the confidence level
p < 10−3.

One further advantage of NN stacking is that it
allows the PD model to be fine-tuned as an integral
sub-model during CTB training. This is not possible
for the discrete stacking model, because the output
of the PD model are used as atomic feature in the
stacking CTB model rather than a gradient admis-
sive neural layer. By fine-tuning the PD sub-model,
the performance is further improved from 95.01 to
95.32 at the confidence level p < 10−3. The final
NN stacking model improves over the NN baseline
model from 94.24 to 95.32. The improvement is sig-
nificantly higher compared to that by using discrete
stacking which improves over the discrete baseline
from 94.01 to 94.74. The final accuracy of the NN
stacking model is higher than that of the CRF stack-
ing model, namely 94.81 vs 95.32 at the confidence
level p < 10−3. This shows that neural stacking is a
preferred choice for stacking.

Multi-view training. With respect of the multi-
view training method, the NN model improves over
the NN baseline from 94.24 to 95.40, by a margin
of +1.16, which is higher than that of 0.90 brought
by discrete method of Li et al. (2015) over its base-
line, from 94.10 to 95.00. NN multi-view training
method gives relatively higher improvements com-
pared with NN stacking method. This is consis-
tent with the observation of Li et al. (2015), who
showed that discrete label coupling training gives
slightly better improvement compared with discrete
stacking. The final accuracies of NN multi-view
training is also higher than that of its CRF counter-
part, namely 95.00 vs 95.40 at the confidence level
p < 10−3. The difference between the final NN
multi-view training result of 95.40 and the final NN
stacking results is not significant.3

Integration. The flexibility of the NN models
further allows both stacking (on the input) and multi-
viewing (on the output) to be integrated. When

3Note, however, NN stacking method with one-best PD out-
put gives significantly lower accuracies (94.74). It is the fine-
tuning strategy that allows stacking to give comparable results
compared to multi-view training for the NN models.
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System Time Cost(s)
CRF Baseline 176.925
CRF Multi-view (Li et al., 2015) 3992.27
NN Baseline 416.338
NN Multi-view 418.484

Table 3: Time for testing CTB training data.

NN multi-view training is combined with a fine-
tuned NN feature stacking model, the performance
further increases from 95.40 to 95.53. This is the
best results we are aware of on this dataset. The
improvement is significant at the confidence level
p < 10−2 compared with fine-tuned NN stacking
model (95.32). This indicates that NN multi-view
training and stacking model each provide unique ad-
vantages for heterogeneous annotations.

6.4 Speed Test

We compare the efficiencies of neural and discrete
multi-view training by running our models and the
model of Li et al. (2015)4 with default configura-
tions on the CTB5 training data. The CRF baseline
is adapted from Li et al. (2015). All the systems are
implemented in C++ running on an Intel E5-1620
CPU. The results are shown in Table 3.

The NN baseline model is slower than the CRF
baseline model. This is due to the higher computa-
tion cost of a deep neural network on a CPU. Com-
pared with the CRF baseline, the CRF multi-view
model is significantly slower because of its large fea-
ture set and the multi-label search space. However,
the NN multi-view model achieves almost the same
time cost with the NN baseline, and is much more
efficient than the CRF counterpart. This shows the
efficiency advantage of the NN multi-view model by
parameter sharing and output splitting.

7 Related Work

Early research on heterogeneous annotations fo-
cuses on annotation conversion. For example,
Gao et al. (2004) proposed a transformation-based
method to convert the annotation style of a word
segmentation corpus to that of another. Manually
designed transformation templates are used, which
makes it difficult to generalize the method to other

4http://hlt.suda.edu.cn/zhli/resources/zhenghua-acl2015-
resources.zip

tasks and treebanks.
Jiang et al. (2009) described a stacking-based

model for heterogeneous annotations, using a
pipeline to integrate the knowledge from one cor-
pus to another. Sun and Wan (2012) proposed a
structure-based stacking model, which makes use
of structured features such as sub-words for model
combination. These feature integration is stronger
compared to those of Jiang et al. (2009). Johansson
(2013) introduced path-based feature templates in
using one parser to guide another. In contrast to the
above discrete methods, our neural stacking method
offers further feature integration by directly connect-
ing the feature layer of the source tagger with the in-
put layer of the target tagger. It also allows the fine-
tuning of the source tagger. As one of the reviewers
mentioned, two extensions of CRFs, dynamic CRFs
(Sutton et al., 2004) and hidden-state CRFs (Quat-
toni et al., 2004), can also perform similar deep in-
tegration and fine-tuning.

For multi-view training, Johansson (2013) used
a shared feature representation along with separate
individual feature representation for each treebank.
Qiu et al. (2013) proposed a multi-task learning
model to jointly predict two labelsets given an in-
put sentences. The joint model uses the union of
baseline features for each labelset, without consid-
ering additional features to capture the interaction
between the two labelsets. Li et al. (2015) im-
proves upon this method by using a tighter integra-
tion between the two labelsets, treating the Carte-
sian product of the base labels as a single combined
labelset, and exploiting joint features from two la-
belsets. Though capturing label interaction, their
method suffers speed penalty from the sharply in-
creased search space. In contrast to their methods,
our neural approach enables parameter sharing in
the hidden layers, thereby modeling label interaction
without directly combining the two output labelsets.
This leads to a lean model with almost the same time
efficiency as a single-label baseline.

Recently, Zhang and Weiss (2016) proposed
a stack-propagation model for learning a stacked
pipeline of POS tagging and dependency parsing.
Their method is similar to our neural stacking in
fine-tuning the stacked module which yields features
for the target model. While their multi-task learning
is on heterogenous tasks, our multi-task learning is
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defined on heterogenous treebanks.

8 Conclusion

We investigated two methods for utilizing heteroge-
neous annotations for neural network models, show-
ing that they have respective advantages compared
to their discrete counterparts. In particular, neural
stacking allows tighter feature integration compared
to discrete stacking, and neural multi-view training
is free from the feature and efficiency constraints
of discrete one. On a standard CTB test, the neu-
ral method gives the best integration effect, with a
multi-view training model enjoying the same speed
as its single treebank baseline.
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Karlen, Koray Kavukcuoglu, and Pavel Kuksa. 2011.
Natural language processing (almost) from scratch.
The Journal of Machine Learning Research, 12:2493–
2537.
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