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Abstract

Evaluation of NLP methods requires test-
ing against a previously vetted gold-standard
test set and reporting standard metrics (ac-
curacy/precision/recall/F1). The current as-
sumption is that all items in a given test set are
equal with regards to difficulty and discrim-
inating power. We propose Item Response
Theory (IRT) from psychometrics as an alter-
native means for gold-standard test-set gener-
ation and NLP system evaluation. IRT is able
to describe characteristics of individual items -
their difficulty and discriminating power - and
can account for these characteristics in its es-
timation of human intelligence or ability for
an NLP task. In this paper, we demonstrate
IRT by generating a gold-standard test set for
Recognizing Textual Entailment. By collect-
ing a large number of human responses and
fitting our IRT model, we show that our IRT
model compares NLP systems with the per-
formance in a human population and is able to
provide more insight into system performance
than standard evaluation metrics. We show
that a high accuracy score does not always im-
ply a high IRT score, which depends on the
item characteristics and the response pattern.!

1 Introduction

Advances in artificial intelligence have made it pos-
sible to compare computer performance directly
with human intelligence (Campbell et al., 2002; Fer-
rucci et al., 2010; Silver et al., 2016). In most cases,
a common approach to evaluating the performance
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of a new system is to compare it against an unseen
gold-standard test dataset (GS items). Accuracy, re-
call, precision and F1 scores are commonly used to
evaluate NLP applications. These metrics assume
that GS items have equal weight for evaluating per-
formance. However, individual items are different:
some may be so hard that most/all NLP systems an-
swer incorrectly; others may be so easy that every
NLP system answers correctly. Neither item type
provides meaningful information about the perfor-
mance of an NLP system. Items that are answered
incorrectly by some systems and correctly by oth-
ers are useful for differentiating systems according
to their individual characteristics.

In this paper we introduce Item Response The-
ory (IRT) from psychometrics and demonstrate its
application to evaluating NLP systems. IRT is a the-
ory of evaluation for characterizing test items and
estimating human ability from their performance on
such tests. IRT assumes that individual test ques-
tions (referred to as “items” in IRT) have unique
characteristics such as difficulty and discriminating
power. These characteristics can be identified by fit-
ting a joint model of human ability and item charac-
teristics to human response patterns to the test items.
Items that do not fit the model are removed and the
remaining items can be considered a scale to eval-
uate performance. IRT assumes that the probabil-
ity of a correct answer is associated with both item
characteristics and individual ability, and therefore
a collection of items of varying characteristics can
determine an individual’s overall ability.

Our aim is to build an intelligent evaluation metric
to measure performance for NLP tasks. With IRT we
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can identify an appropriate set of items to measure
ability in relation to the overall human population as
scored by an IRT model. This process serves two
purposes: (i) to identify individual items appropri-
ate for a test set that measures ability on a particular
task, and (ii) to use the resulting set of items as an
evaluation set in its own right, to measure the ability
of future subjects (or NLP models) for the same task.
These evaluation sets can measure the ability of an
NLP system with a small number of items, leaving a
larger percentage of a dataset for training.

Our contributions are as follows: First, we in-
troduce IRT and describe its benefits and method-
ology. Second, we apply IRT to Recognizing Tex-
tual Entailment (RTE) and show that evaluation
sets consisting of a small number of sampled items
can provide meaningful information about the RTE
task. Our IRT analyses show that different items ex-
hibit varying degrees of difficulty and discrimina-
tion power and that high accuracy does not always
translate to high scores in relation to human perfor-
mance. By incorporating IRT, we can learn more
about dataset items and move past treating each test
case as equal. Using IRT as an evaluation metric
allows us to compare NLP systems directly to the
performance of humans.

2 Background and Related Work

2.1 Item Response Theory

IRT is one of the most widely used methodologies
in psychometrics for scale construction and eval-
uation. It is typically used to analyze human re-
sponses (graded as right or wrong) to a set of ques-
tions (called “items”). With IRT individual ability
and item characteristics are jointly modeled to pre-
dict performance (Baker and Kim, 2004). This sta-
tistical model makes the following assumptions: (a)
Individuals differ from each other on an unobserved
latent trait dimension (called “ability” or “factor”);
(b) The probability of correctly answering an item
is a function of the person’s ability. This function
is called the item characteristic curve (ICC) and in-
volves item characteristics as parameters; (c) Re-
sponses to different items are independent of each
other for a given ability level of the person (“lo-
cal independence assumption”); (d) Responses from
different individuals are independent of each other.
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Figure 1: Example ICC for a 3PL model with the following
parameters: a = 1.0, b = 0.0, ¢ = 0.25.

More formally, if we let j be an individual, 7 be an
item, and ¢; be the latent ability trait of individual j,
then the probability that individual j answers item ¢
correctly can be modeled as:

pi(05) = ci + Helaf;]b) (1)
where a;, b;, and ¢; are item parameters: a; (the
slope or discrimination parameter) is related to the
steepness of the curve, b; (the difficulty parameter)
is the level of ability that produces a chance of cor-
rect response equal to the average of the upper and
lower asymptotes, and c; (the guessing parameter)
is the lower asymptote of the ICC and the proba-
bility of guessing correctly. Equation 1 is referred
to as the three-parameter logistic (3PL) IRT model.
A two-parameter logistic (2PL) IRT model assumes
that the guessing parameter c; is 0.

Figure 1 shows an ICC of a 3PL model. The
ICC for a good item will look like a sigmoid plot,
and should exhibit a relatively steep increasing ICC
between ability levels —3 and 3, where most peo-
ple are located, in order to have appropriate power
to differentiate different levels of ability. We have
described a one factor IRT model where ability is
uni-dimensional. Multi-factor IRT models would in-
volve two or more latent trait dimensions and will
not be elaborated here.

To identify the number of factors in an IRT model,
the polychoric correlation matrix of the items is cal-
culated and its ordered eigenvalues are plotted. The



number of factors is suggested by the number of
large eigenvalues. It can be further established by
fitting (see below) and comparing IRT models with
different numbers of factors. Such comparison may
use model selection indices such as Akaike Infor-
mation Criterion (AIC) and Conditional Bayesian
Information Criterion (CBIC) and should also take
into account the interpretablility of the loading pat-
tern that links items to factors.

An IRT model can be fit to data with the marginal
maximum likelihood method through an EM algo-
rithm (Bock and Aitkin, 1981). The marginal likeli-
hood function is the probability to observe the cur-
rent response patterns as a function of the item pa-
rameters with the persons’ ability parameters inte-
grated out as random effects. This function is max-
imized to produce estimates of the item parameters.
For IRT models with more than one factor, the slope
parameters (i.e. loadings) that relate items and fac-
tors must be properly rotated (Browne, 2001) be-
fore they can be interpreted. Given the estimated
item parameters, Bayesian estimates of the individ-
ual person’s ability parameters are obtained with the
standard normal prior distribution.

After determining the number of factors and fit-
ting the model, the local independence assumption
can be checked using the residuals of marginal re-
sponses of item pairs (Chen and Thissen, 1997) and
the fit of the ICC for each item can be checked with
item fit statistics (Orlando and Thissen, 2000) to de-
termine whether an item should be retained or re-
moved. If both tests are passed and all items have
proper discrimination power, then the set of items is
considered a calibrated measurement scale and the
estimated item parameters can be further used to es-
timate an individual person’s ability level.

IRT accounts for differences among items when
estimating a person’s ability. In addition, ability es-
timates from IRT are on the ability scale of the pop-
ulation used to estimate item parameters. For exam-
ple, an estimated ability of 1.2 can be interpreted as
1.2 standard deviations above the average ability in
this population. The traditional total number of cor-
rect responses generally does not have such quanti-
tative meaning.

IRT has been widely used in educational test-
ing. For example, it plays an instrumental role in
the construction, evaluation, or scoring of standard-
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ized tests such as the Test of English as a Foreign
Language (TOEFL), Graduate Record Examinations
(GRE) and the SAT college admissions standardized
test.

2.1.1 IRT Terminology

Here we outline common IRT terminology in
terms of RTE. An item refers to a pair of sentences to
which humans or NLP systems assign a label (entail-
ment, contradiction, or neutral). A set of responses
to all items (each graded as correct or incorrect) is a
response pattern. An evaluation scale is a test set of
items to be administered to an NLP system and as-
signs an ability score (or theta score) to the system
as its performance.

2.2 Recognizing Textual Entailment

RTE was introduced to standardize the challenge
of accounting for semantic variation when building
models for a number of NLP applications (Dagan
et al., 2006). RTE defines a directional relationship
between a pair of sentences, the text (T) and the hy-
pothesis (H). T entails H if a human that has read
T would infer that H is true. If a human would in-
fer that H is false, then H contradicts T. If the two
sentences are unrelated, then the pair are said to be
neutral. Table 1 shows examples of T-H pairs and
their respective classifications. Recent state-of-the-
art systems for RTE require a large amount of fea-
ture engineering and specialization to achieve high
performance (Beltagy et al., 2015; Lai and Hocken-
maier, 2014; Jimenez et al., 2014).

A number of gold-standard datasets are available
for RTE (Marelli et al., 2014; Young et al., 2014;
Levy et al., 2014). We consider the Stanford Natu-
ral Language Inference (SNLI) dataset (Bowman et
al., 2015). SNLI examples were obtained using only
human-generated sentences with Amazon Mechan-
ical Turk (AMT) to mitigate the problem of poor
data that was being used to build models for RTE.
In addition, SNLI included a quality control assess-
ment of a sampled portion of the dataset (about 10%,
56,951 sentence pairs). This data was provided to 4
additional AMT users to provide labels (entailment,
contradiction, neutral) for the sentence pairs. If at
least 3 of the 5 annotators (the original annotator
and 4 additional annotators) agreed on a label the
item was retained. Most of the items (98%) received



Text Hypothesis Label

Retained - 4GS

1. A toddler playing with a toy car next to a dog A toddler plays with toy cars Neutral
while his dog sleeps

2. People were watching the tournament in the stadium The people are sitting outside on Contradiction
the grass

Retained - 5GS

3. A person is shoveling snow It rained today Contradiction

4 Two girls on a bridge dancing with the city skyline in the The girls are sisters. Neutral

background

5. A woman is kneeling on the ground taking a photograph A picture is being snapped Entailment

Removed - 4GS

6. Two men and one woman are dressed in costume hats The people are swingers Neutral

7. Man sweeping trash outside a large statue A man is on vacation Contradiction

8. A couple is back to back in formal attire Two people are facing away Entailment
from each other

9. A man on stilts in a purple, yellow and white costume A man is performing on stilts Entailment

Removed - 5GS

10. A group of soccer players are grabbing onto each other A group of football players are Contradiction

as they go for the ball playing a game

11. Football players stand at the line of scrimmage The players are in uniform Neutral

12. Man in uniform waiting on a wall Near a wall, a man in uniform is Entailment
waiting

Table 1: Examples of retained & removed sentence pairs. The selection is not based on right/wrong labels but based on IRT model

fitting and item elimination process. Note that no 4GS entailment items were retained (Section 4.2)

a gold-standard label. Specifics of SNLI generation
are at Bowman et al. (2015).

2.3 Related Work

To identify low-quality annotators (spammers),
Hovy et al. (2013) modeled annotator responses, €i-
ther answering correctly or guessing, as a random
variable with a guessing parameter varying only
across annotators. Passonneau and Carpenter (2014)
used the model of Dawid and Skene (1979) in which
an annotator’s response depends on both the true la-
bel and the annotator. In both models an annotator’s
response depends on an item only through its correct
label. In contrast, IRT assumes a more sophisticated
response mechanism involving both annotator qual-
ities and item characteristics. To our knowledge we
are the first to introduce IRT to NLP and to create a
gold standard with the intention of comparing NLP
applications to human intelligence.

Bruce and Wiebe (1999) analyze patterns of
agreement between annotators in a case-study sen-
tence categorization task, and use a latent-trait
model to identify true labels. That work uses 4 an-
notators at varying levels of expertise and does not
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consider the discriminating power of dataset items.

Current gold-standard dataset generation methods
include web crawling (Guo et al., 2013), automatic
and semi-automatic generation (An et al., 2003), and
expert (Roller and Stevenson, 2015) and non-expert
human annotation (Bowman et al., 2015; Wiebe et
al., 1999). In each case validation is required to
ensure that the data collected is appropriate and us-
able for the required task. Automatically generated
data can be refined with visual inspection or post-
collection processing. Human annotated data usu-
ally involves more than one annotator, so that com-
parison metrics such as Cohen’s or Fleiss’ k can be
used to determine how much they agree. Disagree-
ments between annotators are resolved by researcher
intervention or by majority vote.

3 Methods

We collected and evaluated a random selection from
the SNLI RTE dataset (GSgrrE) to build our IRT
models. We first randomly selected a subset of
GSgrrE, and then used the sample in an AMT Hu-
man Intelligence Task (HIT) to collect more labels



for each text-hypothesis pair. We then applied IRT
to evaluate the quality of the examples and used the
final IRT models to create evaluation sets (GSrpT)
to measure ability for RTE.

3.1 Item Selection

For our evaluation we looked at two sets of data:
sentence-pairs selected from SNLI where 4 out of
5 annotators agreed on the gold-standard label (re-
ferred to as 4GS), and sentence-pairs where 5 out of
5 annotators agreed on the gold-standard label (re-
ferred to as 5GS). We make the assumption for our
analysis that the 4GS items are harder than the 5GS
items due to the fact that there was not a unanimous
decision regarding the gold-standard label.

We selected the subset of GSgrrE to use as an ex-
amination set in 4GS and 5GS according to the fol-
lowing steps: (1) Identify all “quality-control” items
from GSrrp (i.e. items where 5 annotators pro-
vided labels, see §2.2), (2) Identify items in this sec-
tion of the data where 4 of the 5 annotators agreed on
the eventual gold label (to be selected from for 4GS)
and 5 of the 5 annotators agreed on the gold standard
label (to be selected from for 5GS), (3) Randomly
select 30 entailment sentence pairs, 30 neutral pairs,
and 30 contradiction pairs from those items where 4
of 5 annotators agreed on the gold label (4GS) and
those items where 5 of 5 annotators agreed on the
gold label (5GS) to obtain two sets of 90 sentence
pairs.

90 sentence pairs for 4GS and 5GS were sam-
pled so that the annotation task (supplying 90 labels)
could be completed in a reasonably short amount of
time during which users remained engaged. We se-
lected items from 4GS and 5GS because both groups
are considered high quality for RTE. We evaluated
the selected 180 sentence pairs using the model
provided with the original dataset (Bowman et al.,
2015) and found that accuracy scores were similar
compared to performance on the SNLI test set.

3.2 AMT Annotation

For consistency we designed our AMT HIT to match
the process used to validate the SNLI quality con-
trol items (Bowman et al., 2015) and to generate la-
bels for the SICK RTE dataset (Marelli et al., 2014).
Each AMT user was shown 90 premise-hypothesis
pairs (either the full 5GS or 4GS set) one pair at a
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time, and was asked to choose the appropriate label
for each. Each user was presented with the full set,
as opposed to one-label subsets (e.g. just the entail-
ment pairs) in order to avoid a user simply answering
with the same label for each item.

For each 90 sentence-pair set (5GS and 4GS), we
collected annotations from 1000 AMT users, result-
ing in 1000 label annotations for each of the 180 sen-
tence pairs. While there is no set standard for sam-
ple sizes in IRT models, this sample size satisfies
the standards based on the non-central x? distribu-
tion (MacCallum et al., 1996) used when comparing
two multidimensional IRT models. This sample size
is also appropriate for tests of item fit and local de-
pendence that are based on small contingency tables.

Only AMT users with approval ratings above 97%
were used to ensure that users were of a high qual-
ity. The task was only available to users located in
the United States, as a proxy for identifying English
speakers. Attention check questions were included
in the HIT, to ensure that users were paying attention
and answering to the best of their ability. Responses
where the attention-check questions were answered
incorrectly were removed. After removing individ-
uals that failed the attention-check, we retained 976
labels for each example in the 4GS set and 983 labels
for each example in the 5GS set. Average time spent
for each task was roughly 30 minutes, a reasonable
amount for AMT users.

3.3 Statistical Analysis

Data collected for 4GS and 5GS were analyzed sep-
arately in order to evaluate the differences between
“easier” items (5GS) and “harder” items (4GS), and
to demonstrate the ability to show that theta score is
consistent even if dataset difficulty varies. For both
sets of items, the number of factors was identified
by a plot of eigenvalues of the 90 x 90 tetrachoric
correlation matrix and by a further comparison be-
tween IRT models with different number of factors.
A target rotation (Browne, 2001) was used to iden-
tify a meaningful loading pattern that associates fac-
tors and items. Each factor could then be interpreted
as the ability of a user to recognize the correct rela-
tionship between the sentence pairs associated with
that factor (e.g. contradiction).

Once the different factors were associated with
different sets of items, we built a unidimensional



4GS 5GS  Overall Fleiss’ x 4GS 5GS Bowman et al. 2015
Pairs with majority 95.6% 96.7%  96.1% Contradiction 0.37 0.59 0.77
agreement Entailment 0.48 0.63 0.72
Pairs with superma- 61.1% 822% 71.7% Neutral 041 0.54 0.6
jority agreement Overall 043 06 0.7

Table 2: Summary statistics from the AMT HITs.

IRT model for each set of items associated with a
single factor. We fit and compared one- and two-
factor 3PL models to confirm our assumption and
the unidimensional structure underlying these items,
assuming the possible presence of guessing in peo-
ple’s responses. We further tested the guessing pa-
rameter of each item in the one factor 3PL model. If
the guessing parameter was not significantly differ-
ent from 0, a 2PL ICC was used for that particular
item.

Once an appropriate model structure was deter-
mined, individual items were evaluated for goodness
of fit within the model (§2.1). If an item was deemed
to fit the ICC poorly or to give rise to local depen-
dence, it was removed for violating model assump-
tions. Furthermore, if the ICC of an item was too
flat, it was removed for low discriminating power
between ability levels. The model was then refit with
the remaining items. This iterative process contin-
ued until no item could be removed (2 to 6 iterations
depending on how many items were removed from
each set).

The remaining items make up our final test set
(GStRrT), Which is a calibrated scale of ability to
correctly identify the relationship between the two
sentence pairs. Parameters of these items were esti-
mated as part of the IRT model and the set of items
can be used as an evaluation scale to estimate ability
of test-takers or RTE systems. We used the mirt R
package (Chalmers et al., 2015) for our analyses.

4 Results

4.1 Response Statistics

Table 2 lists key statistics from the AMT HITs. Most
of the sampled sentence pairs resulted in a gold stan-
dard label being identified via a majority vote. Due
to the large number of individuals providing labels
during the HIT, we also wanted to see if a gold stan-
dard label could be determined via a two-thirds su-
permajority vote. We found that 28.3% of the sen-
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Table 3: Comparison of Fleiss’ k scores with scores from SNLI

quality control sentence pairs.

tence pairs did not have a supermajority gold label.
This highlights the ambiguity associated with iden-
tifying entailment.

We believe that the items selected for analysis
are appropriate for our task in that we chose high-
quality items, where at least 4 annotators selected
the same label, indicating a strong level of agree-
ment (Section 3.1). We argue that our sample is a
high-quality portion of the dataset, and further anal-
ysis of items where the gold-standard label was only
selected by 3 annotators originally would result in
lower levels of agreement.

Table 3 shows that the level of agreement as mea-
sured by the Fleiss’ x score is much lower when the
number of annotators is increased, particularly for
the 4GS set of sentence pairs, as compared to scores
noted in Bowman et al. (2015). The decrease in
agreement is particularly large with regard to con-
tradiction. This could occur for a number of rea-
sons. Recognizing entailment is an inherently dif-
ficult task, and classifying a correct label, particu-
larly for contradiction and neutral, can be difficult
due to an individual’s interpretation of the sentences
and assumptions that an individual makes about the
key facts of each sentence (e.g. coreference). It may
also be the case that the individuals tasked with cre-
ating the sentence pairs on AMT created sentences
that appeared to contradict a premise text, but can be
interpreted differently given a different context.

Before fitting the IRT models we performed a vi-
sual inspection of the 180 sentence pairs and re-
moved items clearly not suitable for an evaluation
scale due to syntactic or semantic discrepancies. For
example item 10 in Table 1 was removed from the
5GS contradiction set for semantic reasons. While
many people would agree that the statement is a con-
tradiction due to the difference between football and
soccer, individuals from outside the U.S. would pos-
sibly consider the two to be synonyms and classify
this as entailment. Six such pairs were identified



and removed from the set of 180 items, leaving 174
items for IRT model-fitting.

4.2 1IRT Evaluation

4.2.1 IRT Models

We used the methods described in Section 3.3 to
build IRT models to scale performance according to
the RTE task. For both 4GS and 5GS items three
factors were identified, each related to items for the
three G.SprE labels (entailment, contradiction, neu-
tral). This suggests that items with the same GSrrE
label within each set defines a separate ability. In the
subsequent steps, items with different labels were
analyzed separately. After analysis, we were left
with a subset of the 180 originally selected items.
Refer to Table 1 for examples of the retained and
removed items based on the IRT analysis. We re-
tained 124 of the 180 items (68.9%). We were able
to retain more items from the 5GS datasets (76 out
of 90 - 84%) than from the 4GS datasets (48 out
of 90 - 53.5%). Items that measure contradiction
were retained at the lowest rate for both 4GS and
5GS datasets (66% in both cases). For the 4GS en-
tailment items, our analysis found that a one-factor
model did not fit the data, and a two-factor model
failed to yield an interpretable loading pattern after
rotation. We were unable to build an IRT model that
accurately modeled ability to recognize entailment
with the obtained response patterns. As a result, no
items from the 4GS entailment set were retained.

Figure 2 plots the empirical spline-smoothed ICC
of one item (Table 1, item 9) with its estimated re-
sponse curve. The ICC is not continuously increas-
ing, and thus a logistic function is not appropriate.
This item was spotted for poor item fit and removed.
Figure 3 shows a comparison between the ICC plot
of a retained item (Table 1, item 4) and the ICC of
a removed item (Table 1, item 8). Note that the re-
moved item has an ICC that is very flat between -3
and 3. This item cannot discriminate individuals at
any common level of ability and thus is not useful.

The items retained for each factor can be consid-
ered as an evaluation scale that measures a single
ability of an individual test-taker. As each factor is
associated with a separate gold-standard label, each
factor (0) is a person’s ability to correctly classify
the relationship between the text and hypothesis for
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ICC and GAM Plots for Removed ltem
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Figure 2: Estimated (solid) and actual (dotted) response curves

for a removed item.

Item Characteristic Curve
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Figure 3: ICCs for retained (solid) and removed (dotted) items.

one such label (e.g. entailment).

4.2.2 Item Parameter Estimation

Parameter estimates of retained items for each la-
bel are summarized in Table 4, and show that all
parameters fall within reasonable ranges. All re-
tained items have 2PL ICCs, suggesting no signif-
icant guessing. Difficulty parameters of most items
are negative, suggesting that an average AMT user
has at least 50% chance to answer these items cor-
rectly. Although some minimum difficulties are
quite low for standard ranges for a human popula-
tion, the low range of item difficulty is appropriate
for the evaluation of NLP systems. Items in each
scale have a wide range of difficulty and discrimina-
tion power.

With IRT we can use the heterogeneity of items to
properly account for such differences in the estima-
tion of a test-taker’s ability. Figure 4 plots the esti-
mated ability of each AMT user from IRT against
their total number of correct responses to the re-
tained items in the 4GS contradiction item set. The
two estimates of ability differ in many aspects. First,
test-takers with the same total score may differ in
their IRT score because they have different response



Table 4: Parameter estimates of the retained items

Total Correct vs. Theta Score

Theta Score
- 0
o—
-
m—

0 5 10 15 20
Total Correct

Figure 4: Plot of total correct answers vs. IRT scores.

patterns (i.e. they made mistakes on different items),
showing that IRT is able to account for differences
among items. Second, despite a rough monotonic
trend between the two scores, people with a higher
number of correct responses may have a lower abil-
ity estimate from IRT.

We can extend this analysis to the case of RTE
systems, and use the newly constructed scales to
evaluate RTE systems. A system could be trained on
an existing dataset and then evaluated using the re-
tained items from the IRT models to estimate a new
ability score. This score would be a measurement of
how well the system performed with respect to the
human population used to fit the model. With this
approach, larger sections of datasets can be devoted
to training, with a small portion held out to build an
IRT model that can be used for evaluation.

4.2.3 Application to an RTE System

As a demonstration, we evaluate the LSTM model
presented in Bowman et al. (2015) with the items in
our IRT evaluation scales. In addition to the theta
scores, we calculate accuracy for the binary classi-
fication task of identifying the correct label for all

655

Item Set Min. Max. Min. Max. Item Set Theta Score Percentile | Test
Diffi- Diffi- Slope  Slope Acc.
culty culty 5GS

5GS Entailment -0.133 44.83% 96.5%

Contradiction -2.765 0.704 0.846 2.731 Contradiction 1.539 93.82% 87.9%

Entailment -3.253 -1.898 0.78 2.61 Neutral 0.423 66.28% 88%

Neutral -2.082 -0.555 1.271 3.598 4GS

4GS Contradiction 1.777 96.25% 78.9%

Contradiction -1.829  1.283 0.888 2.753 Neutral 0.441 67% 83%

Neutral -2.148  0.386 1.133 3.313 Table 5: Theta scores and area under curve percentiles for

LSTM trained on SNLI and tested on GSrrr. We also report
the accuracy for the same LSTM tested on all SNLI quality con-
trol items (see Section 3.1). All performance is based on binary

classification for each label.

items eligible for each subset in Table 5 (e.g. all test
items where 5 of 5 annotators labeled the item as en-
tailment for 5GS). Note that these accuracy metrics
are for subsets of the SNLI test set used for binary
classifications and therefore do not compare with the
standard SNLI test set accuracy measures.

The theta scores from IRT in Table 5 show that,
compared to AMT users, the system performed well
above average for contradiction items compared to
human performance, and performed around the av-
erage for entailment and neutral items. For both the
neutral and contradiction items, the theta scores are
similar across the 4GS and 5GS sets, whereas the
accuracy of the more difficult 4GS items is consis-
tently lower. This shows the advantage of IRT to ac-
count for item characteristics in its ability estimates.
A similar theta score across sets indicates that we
can measure the “ability level” regardless of whether
the test set is easy or hard. Theta score is a con-
sistent measurement, compared to accuracy which
varies with the difficulty of the dataset.

The theta score and accuracy for 5GS entailment
show that high accuracy does not necessarily mean
that performance is above average when compared
to human performance. However, theta score is not
meant to contradict accuracy score, but to provide a
better idea of system performance compared against
a human population. The theta scores are a result of
the IRT model fit using human annotator responses
and provide more context about the system perfor-
mance than an accuracy score can alone. If accuracy
is high and theta is close to O (as is the case with 5GS
entailment), we know that the performance of RTE



is close to the average level of the AMT user pop-
ulation and that 5GS entailment test set was “easy”
to both. Theta score and percentile are intrinsically
in reference to human performance and independent
of item difficulty, while accuracy is intrinsically in
reference to a specific set of items.

5 Discussion and Future Work

As NLP systems have become more sophisticated,
sophisticated methodologies are required to com-
pare their performance. One approach to create an
intelligent gold standard is to use IRT to build mod-
els to scale performance on a small section of items
with respect to the tested population. IRT models
can identify dataset items with different difficulty
levels and discrimination powers based on human
responses, and identify items that are not appropriate
as scale items for evaluation. The resulting small set
of items can be used as a scale to score an individ-
ual or NLP system. This leaves a higher percentage
of a dataset to be used in the training of the system,
while still having a valuable metric for testing.

IRT is not without its challenges. A large popu-
lation is required to provide the initial responses in
order to have enough data to fit the models; however,
crowdsourcing allows for the inexpensive collection
of large amounts of data. An alternative methodol-
ogy is Classical Test Theory, which has its own limi-
tations, in particular that it is test-centric, and cannot
provide information for individual items.

We have introduced Item Response Theory from
psychometrics as an alternative method for generat-
ing gold-standard evaluation datasets. Fitting IRT
models allows us to identify a set of items that when
taken together as a test set, can provide a meaningful
evaluation of NLP systems with the different diffi-
culty and discriminating characteristics of the items
taken into account. We demonstrate the usefulness
of the IRT-generated test set by showing that high
accuracy does not necessarily indicate high perfor-
mance when compared to a population of humans.

Future work can adapt this analysis to create eval-
uation mechanisms for other NLP tasks. The ex-
pectation is that systems that perform well using a
standard accuracy measure can be stratified based
on which types of items they perform well on. High
quailty systems should also perform well when the
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models are used together as an overall test of abil-
ity. This new evaluation for NLP systems can lead
to new and innovative methods that can be tested
against a novel benchmark for performance, instead
of gradually incrementing on a classification accu-
racy metric.
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