
Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pages 531–540,
Austin, Texas, November 1-5, 2016. c©2016 Association for Computational Linguistics

Towards a Convex HMM Surrogate for Word Alignment

Andrei Arsene Simion
Columbia University ∗

New York, NY, 10011
aas2148@columbia.edu

Michael Collins
Columbia University†

Computer Science
New York, NY, 10027

mc3354@columbia.edu

Clifford Stein
Columbia University

IEOR Department
New York, NY, 10027

cs2035@columbia.edu

Abstract

Among the alignment models used in statis-
tical machine translation (SMT), the hidden
Markov model (HMM) is arguably the most
elegant: it performs consistently better than
IBM Model 3 and is very close in perfor-
mance to the much more complex IBM Model
4. In this paper we discuss a model which
combines the structure of the HMM and IBM
Model 2. Using this surrogate, our experi-
ments show that we can attain a similar level
of alignment quality as the HMM model im-
plemented in GIZA++ (Och and Ney, 2003).
For this model, we derive its convex relaxation
and show that it too has strong performance
despite not having the local optima problems
of non-convex objectives. In particular, the
word alignment quality of this new convex
model is significantly above that of the stan-
dard IBM Models 2 and 3, as well as the pop-
ular (and still non-convex) IBM Model 2 vari-
ant of (Dyer et al., 2013).

1 Introduction

The IBM translation models are widely used in mod-
ern statistical translation systems. Typically, one
seeds more complex models with simpler models,
and the parameters of each model are estimated
through an Expectation Maximization (EM) proce-
dure. Among the IBM Models, perhaps the most
elegant is the HMM model (Vogel et al., 1996). The
HMM is the last model whose expectation step is

∗Currently at Google.
†Currently on leave at Google.

both exact and simple, and it attains a level of ac-
curacy that is very close to the results achieved by
much more complex models. In particular, experi-
ments have shown that IBM Models 1, 2, and 3 all
perform worse than the HMM and Model 4 benefits
greatly from being seeded by the HMM (Och and
Ney, 2003).

In this paper we make the following contributions:

• We derive a new alignment model which com-
bines the structure of the HMM and IBM
Model 2 and show that its performance is very
close to that of the HMM. There are several
reasons why such a result would be of value
(for more on this, see (Simion et al., 2013) and
(Simion et al., 2015a), for example).

• The main goal of this work is not to eliminate
highly non-convex models such as the HMM
entirely but, rather, to develop a new, power-
ful, convex alignment model and thus push the
boundary of these theoretically justified tech-
niques further. Building on the work of (Simion
et al., 2015a), we derive a convex relaxation for
the new model and show that its performance
is close to that of the HMM. Although it does
not beat the HMM, the new convex model im-
proves upon the standard IBM Model 2 signif-
icantly. Moreover, the convex relaxation also
performs better than the strong IBM 2 vari-
ant FastAlign (Dyer et al., 2013), IBM Model
3, and the other available convex alignment
models detailed in (Simion et al., 2015a) and
(Simion et al., 2013).

• We derive a parameter estimation algorithm for

531

new model and its convex relaxation based on
the EM algorithm. Our model has both HMM
emission probabilities and IBM Model 2’s dis-
tortions, so we can use Model 2 to seed both the
model’s lexical and distortion parameters. For
the convex model, we need not use any initial-
ization heuristics since the EM algorithm we
derive is guaranteed to converge to a local op-
tima that is also global.

The goal of our work is to present a model which
is convex and has state of the art empirical perfor-
mance. Although one step of this task was achieved
for IBM Model 2 (Simion et al., 2015a), our tar-
get goal deals with a much more local-optima-laden,
non-convex objective. Finally, whereas IBM 2 in
some ways leads to a clear method of attack, we will
discuss why the HMM presents challenges that re-
quire the insertion of this new surrogate.

Notation. We adopt the notation introduced in
(Och and Ney, 2003) of having 1m2n denote the
training scheme of m IBM Model 1 EM iterations
followed by initializing Model 2 with these parame-
ters and running n IBM Model 2 EM iterations. We
denote by H the HMM and note that it too can be
seeded by running Model 1 followed by Model 2.
Additionally, we denote our model as 2H, and note
that it has distortion parameters like IBM Model
2 and emission parameters like that of the HMM.
Under this notation, we let 1m2n2oH denote running
Model 1 for m iterations, then Model 2 for n iter-
ation, and then finally our Model for o iterations.
As before, we are seeding from the more basic to
the more complex model in turn. We denote the
convex relaxation of 2H by 2HC. Throughout this
paper, for any integer N , we use [N] to denote
{1 . . . N} and [N]0 to denote {0 . . . N}. Finally, in
our presentation, “convex function” means a func-
tion for which a local maxima also global, for exam-
ple, f(x) = −x2.

2 IBM Models 1 and 2 and the HMM

In this section we give a brief review of IBM Models
1, 2, and the HMM, as well as the the optimization
problems arising from these models. The standard
approach for optimization within these latent vari-
able models is the EM algorithm.

Throughout this section, and the remainder of the
paper, we assume that our set of training examples
is (e(k), f (k)) for k = 1 . . . n, where e(k) is the k’th
English sentence and f (k) is the k’th French sen-
tence. Following standard convention, we assume
the task is to translate from French (the “source” lan-
guage) into English (the “target” language) 1. We
use E to denote the English vocabulary (set of pos-
sible English words), and F to denote the French
vocabulary. The k’th English sentence is a sequence
of words e(k)1 . . . e

(k)
lk

where lk is the length of the

k’th English sentence, and each e(k)i ∈ E; similarly
the k’th French sentence is a sequence f (k)1 . . . f

(k)
mk ,

where mk is the length of the k’th French sentence,
and each f (k)j ∈ F . We define e(k)0 for k = 1 . . . n
to be a special NULL word (note that E contains the
NULL word).

For each English word e ∈ E, we will assume
that D(e) is a dictionary specifying the set of possi-
ble French words that can be translations of e. The
set D(e) is a subset of F . In practice, D(e) can be
derived in various ways; in our experiments we sim-
ply define D(e) to include all French words f such
that e and f are seen in a translation pair.

Given these definitions, the IBM Model 2 opti-
mization problem is presented in several sources, for
example, (Simion et al., 2013). The parameters in
this problem are t(f |e) and d(i|j, l,m). The ob-
jective function for IBM Model 2 is then the log-
likelihood of the training data; we can simplify the
log-likelihood (Koehn, 2008) as

1

n

n∑

k=1

mk∑

j=1

log p(f
(k)
j |e(k)) ,

where

p(f
(k)
j |e(k)) =

lk∑

i=0

t(f
(k)
j |e

(k)
i)d(i|j, lk,mk) .

1Technically, in most standard sources (Koehn, 2008), this
goes as follows: when we want to translate from French to En-
glish we note that p(e|f) ∝ p(f |e)p(e) by Bayes’s Theorem.
When translating, the alignment models we consider are con-
cerned with modeling p(f |e) while the rest of the translation is
handled by the language model p(e). Therefore, in the context
of the original task, we have that English is the target language
while French is the source. However, for the sake of clarity, we
emphasize that the alignment models we study are concerned
with the development of p(f |e).

532

This last simplification is crucial as it allows for a
simple multinomial EM implementation, and can be
done for IBM Model 1 as well (Koehn, 2008). Fur-
thermore, the ability to write out the marginal like-
lihood per sentence in this manner has seen other
applications: it was crucial, for example, in deriving
a convex relaxation of IBM Model 2 and solving the
new problem using subgradient methods (Simion et
al., 2013).

An improvement on IBM Model 2, called the
HMM alignment model, was introduced by Vogel
et al (Vogel et al., 1996). For this model, the dis-
tortion parameters are replaced by emission parame-
ters d(aj |aj−1, l). These emission parameters spec-
ify the probability of the next alignment variable
for the jth target word is aj , given that the previ-
ous source word was aligned to a target word whose
position was aj−1 in a target sentence with length of
l. The objective of the HMM is given by

1

n

n∑

k=1

∑

a
(k)
1 ...a

(k)
mk

log

mk∏

j=1

t(f
(k)
j |e

(k)

akj
)d(a

(k)
j |a

(k)
j−1, lk)

and we present this in Fig 1. We note that unlike
IBM Model 2, we cannot simplify the exponential
sum within the log-likelihood of the HMM, and so
EM training for this model requires the use of a spe-
cial EM implementation knows as the Baum-Welch
algorithm (Rabiner and Juang., 1986).

Once these models are trained, each model’s high-
est probability (Viterbi) alignment is computed. For
IBM Models 1 and 2, the Viterbi alignment splits
easily (Koehn, 2008). For the HMM, dynamic pro-
gramming is used (Vogel et al., 1996). Although it
is non-convex and thus its initialization is important,
the HMM is the last alignment model in the classi-
cal setting that has an exact EM procedure (Och and
Ney, 2003): from IBM Model 3 onwards heuristics
are used within the expectation and maximization
steps of each model’s associated EM procedure.

3 Distortion and emission parameter
structure

The structure of IBM Model 2’s distortion param-
eters and the HMM’s emission parameters is im-
portant and is used in our model as well, so we

Input: Define E, F , (e(k), f (k), lk,mk) for k =
1 . . . n, D(e) for e ∈ E as in Section 2.

Parameters:
• A parameter t(f |e) for each e ∈ E, f ∈ D(e).
• A parameter d(i|i, lk) for each i ∈ [lk]0, i′ ∈
[lk]0.

Constraints:

∀e ∈ E, f ∈ D(e), t(f |e) ≥ 0 (1)

∀e ∈ E,
∑

f∈D(e)

t(f |e) = 1 (2)

∀i, i′ ∈ [lk]0, d(i′|i, lk) ≥ 0 (3)

∀i ∈ [lk]0,
∑

i′∈[lk]0
d(i′|i, lk) = 1 (4)

Objective: Maximize

1

n

n∑

k=1

∑

a
(k)
1 ...a

(k)
mk

log

mk∏

j=1

t(f
(k)
j |e

(k)

akj
)d(a

(k)
j |a

(k)
j−1, lk)

with respect to the t(f |e) parameters d(i′|i, l).
Figure 1: The HMM Optimization Problem

detail this here. We are using the roughly same
structure as (Liang et al., 2006) and (Dyer et al.,
2013): the distortions and emissions of our model
are parametrized by forcing the model to concentrate
its alignments on the diagonal.

3.1 Distortion Parameters for IBM2

Let λ > 0. For the IBM Model 2 distortions we
set the NULL word probability as d(0|j, l,m) = p0,
where p0 = 1

l+1 and note that this will generally de-
pend on the target sentence length within a bitext
training pair that we are considering. For i 6= 0
which satisfies we set

d(i|j, l,m) =
(1− p0)e−λ|

i
l
− j

m
|

Zλ(j, l,m)
,

where Zλ(j, l,m) is a normalization constant as in
(Dyer et al., 2013).

3.2 Emission Parameters for HMM

Let θ > 0. For the HMM emissions we first set
the NULL word generation to d(0|i, l) = p0, with

533

p0 = 1
l+1 . For target word position i, i′ 6= 0, we set

d(i′|i, l) =
(1− p0)e−θ|

i′
l
− i

l
|

Zθ(i, l,m)
,

where Zθ(i, l,m) is a suitable normalization con-
stant. Lastly, if i = 0 so that we are jump-
ing from the NULL word onto a possibly different
word, we set d(i′|0, l) = p0. Aside from making
the NULL word have uniform jump probability, the
above emission parameters are modeled to favor a
jumping to an adjacent English word.

4 Combining IBM Model 2 and the HMM

In deriving the new HMM surrogate, our main goal
was to allow the current alignment to know as much
as possible about the previous alignment variable
and still have a likelihood that factors as that of IBM
Model 2 (Simion et al., 2013; Koehn, 2008). We
combine IBM Model 2 and the HMM by incorpo-
rating the generation of words using the structure
of both models. The model we introduce, IBM2-
HMM, is displayed in Fig 2.

Consider a target-source sentence pair (e, f) with
|e| = l and |f | = m. For source sentence positions j
and j+ 1 we have source words fj and fj+1 and we
assign a joint probability involving the alignments
aj and aj+1 as:

q(j, aj , aj+1, l,m) = (5)
t(fj |eaj)d(aj |j, l,m)t(fj+1|eaj+1)d(aj+1|aj , l) . (6)

From the equation above, we note that we use the
IBM Model 2’s word generation method for posi-
tion j and the HMM generative structure for position
j + 1. The generative nature of the above procedure
introduces dependency between adjacent words two
at a time. Since we want to mimic the HMM’s struc-
ture as much as possible, we devise our likelihood
function to mimic the HMM’s dependency between
alignments using q. Essentially, we move the source
word position j from 1 to m and allow for overlap-
ping terms when j ∈ {2, . . . ,m − 1}. In what fol-
lows, we describe this representation in detail.

The likelihood in Eq. 16 is actually the sum of two
likelihoods which use equations Eq. 5 and 6 repeat-
edly. To this end, we will discuss how our objective
is actually

1

n

n∑

k=1

log
∑

a(k),b(k)

p(f (k), a(k), b(k)|e(k)) , (7)

where a(k) and b(k) both are alignment vectors
whose components are independent and can take on
any values in [lk]0. To see how p(f, a, b|e) comes
about, note that we could generate the sentence f by
generating pairs (1, 2), (3, 4), (5, 6), . . . using equa-
tions Eqs. 5 and 6 for each pair. Taking all this to-
gether, the upshot of our discussion is that generat-
ing the pair (e, f) in this way gives us that the like-
lihood for an alignment a would be given by:

p1(f, a|e) =
m−1∏

j odd

q(j, aj , aj+1, l,m) . (8)

Using the same idea as above, we could also skip
the first target word position and generate pairs
(2, 3), (4, 5), . . . using Eqs. 5 and 6. Under this sec-
ond generative method, the joint probability for f
and alignment b is:

p2(f, b|e) =
m−1∏

j even

q(j, bj , bj+1, l,m) , (9)

Finally, we note that if m is even we do not
generate f1 and fm under p2 but we do generate
these words under p1. Similarly, if m is odd we
do not generate f1 under p2 and we do not gen-
erate fm under p1; however in this case as in the
first, we still generate these missing words under
the other generative method. Using p(f, a, b|e) =
p1(f, a|e)p2(f, b|e) and factoring the log-likelihood
as in IBM Model 1 and 2 (Koehn, 2008), we get the
log-likelihood in Fig 2. Finally, we note that our
model’s log-likelihood could be viewed as the sum
of the log-likelihoods of a model which generates
(e, f) using p1 and another model which generates
sentences using p2. These models share parameters
but generate words using different recipes, as dis-
cussed above.

5 The parameter estimation for
IBM2-HMM

To fully optimize our new model (over t, λ, and θ),
we can use an EM algorithm in the same fashion as

534

Input: Define E, F , (e(k), f (k), lk,mk) for k =
1 . . . n, D(e) for e ∈ E as in Section 2.

Parameters:
• A parameter t(f |e) for each e ∈ E, f ∈ D(e).
• A parameter λ > 0 for distortion centering.
• A parameter θ > 0 for emission centering.

Constraints:

∀e ∈ E, f ∈ D(e), t(f |e) ≥ 0 (10)

∀e ∈ E,
∑

f∈D(e)

t(f |e) = 1 (11)

∀i ∈ [lk]0, j ∈ [mk], d(i|j, lk,mk) ≥ 0 (12)

∀j ∈ [mk],
∑

i∈[lk]0
d(i|j, lk,mk) = 1 (13)

∀i, i′ ∈ [lk]0, d(i′|i, lk) ≥ 0 (14)

∀i ∈ [lk]0,
∑

i′∈[lk]0
d(i′|i, lk) = 1 (15)

Objective: Maximize

1

n

n∑

k=1

mk−1∑

j=1

log

lk∑

i=0

lk∑

i′=0

q(j, i, i′, lk,mk) (16)

with respect to the parameters t(f |e), d(i′|i, l)
d(i|j, l,m), and q(j, i, i′, lk,mk) set as

t(f
(k)
j |e

(k)
i)d(i|j, l,m)t(f

(k)
j+1|ei′)d(i′|i, l) (17)

Figure 2: The IBM2-HMM Optimization Problem. We use

equation (5) within the likelihood definition.

(Dyer et al., 2013). Specifically, for the model in
question the EM algorithm still applies but we have
to use a gradient-based algorithm within the learning
step. On the other hand, since such a gradient-based
method introduces the necessary complication of a
learning rate, we could also optimize the objective
by picking θ and λ via cross-validation and using
a multinomial EM algorithm for the learning of the
lexical t terms. For our experiments, we opted for
this simpler choice: we derived a multinomial EM
algorithm and cross-validated the centering param-
eters for the distortion and emission terms. With λ
and θ fixed, the derivation of this algorithm is very
similar to the one used for IBM2-HMM’s convex re-

laxation and this uses the path discussed in (Simion
et al., 2015a) and (Simion et al., 2015b). We detail
the EM algorithm for the convex relaxation below.

6 A Convex HMM Surrogate

In this section we detail a procedure to get a con-
vex relaxation for IBM2-HMM. Let (t,d) be all the
parameters of the HMM. As a first step in getting
a convex HMM, one could follow the path devel-
oped in (Simion et al., 2015a) and directly replace
the HMM’s objective terms

mk∏

j=1

t(f
(k)
j |e

(k)

akj
)d(a

(k)
j |a

(k)
j−1, lk)

by

(

mk∏

j=1

t(f
(k)
j |e

(k)

akj
)d(a

(k)
j |a

(k)
j−1, lk))

1
2mk .

In particular, the geometric mean function

h(x1, . . . , h2mk
) = (

∏2mk
j=1 xj)

1
2mk is convex

((Boyd and Vandenberghe, 2004)) and, for a
given sentence pair (e(k), f (k)) with alignment
a(k) we can find a projection matrix P so that
P(t,d) = (t̃, d̃) where t̃ = {t(f (k)j |e

(k)

akj
)}mk
j=1

and d̃ = {d(a
(k)
j |a

(k)
j−1, lk)}mk

j=1 are exactly the
parameters used in the term above (in particular,
t,d are the set of all parameters while t̃, d̃ are
the set of parameters for the specific training pair
k; P projects from the full space onto only the
parameters used for training pair k). Given this, we
then have that g(t,d) = h(P(t,d)) = h(t̃, d̃) is
convex and, by composition, so is log g(t,d) (see
(Simion et al., 2015a; Boyd and Vandenberghe,
2004) for details; the main idea lies in the fact that
as linear transformations preserve convexity, so do
compositions of convex functions with increasing
convex functions such as log). Finally, if we run this
plan for all terms in the objective, the new objective
is convex since it is the sum of convex functions (the
new optimization problem is convex as it has linear
constraints). Although this gives a convex program,
we observed that the powers being so small made
the optimized probabilities very uninformative (i.e.
uniform). The above makes sense: no matter what
the parameters are, we will easily get the 1 we seek

535

for each term in the objective since all terms are
taken to a low (1

2mk
) power .

Since this direct relaxation does not yield fruit,
we next could turn to our model. Developing its re-
laxation in the vein of (Simion et al., 2015a), we
could be to let d(i|j, l,m) and d(i′|i, l) be multino-
mial probabilities (that is, these parameters would
not have centering parameters λ and θ and would
be just standard probabilities as in the GIZA++ ver-
sions of the HMM and IBM Model 2 (Och and Ney,
2003)) and replace all the terms q(j, i′, i, l,m) in
(16) by (q(j, i′, i, l,m))

1
4 . Although this method is

feasible, experiments showed that the relaxation is
not very competitive and performs on par with IBM
Model 2; this relaxation is far in performance from
the HMM even though we are relaxing (only) the
product of 4 terms (lastly, we mention that we tried
other variants were we replaced d(i|j, l,m)d(i′|i, l)
by d(i, i′|j, l,m) so that we would have only three
terms; unfortunately, this last attempt also produced
parameters that were “too uniform”).

The above analysis motivates why we defined our
model as we did: we now have only two terms to
relax. In particular, to rectify the above, we left
in place the structure discussed in Section 3 and
made λ and θ be tuning parameters which we can
cross-validate for on a small held-out data set. This
last constraint effectively removes the distortion and
emission parameters from the model but we still
maintain the structural property of these parame-
ters: we maintain their favoring the diagonal or ad-
jacent alignment. To get the relaxation, we replace
q(j, i, i′, l,m) by

p(j, i, i′, l,m) ∝
√
t(f

(k)
j |e

(k)
i)t(f

(k)
j+1|ei′)

and set the proportionality constant to be
d(i|j, l,m)d(i′|i, l). Using this setup we now
have a convex objective to optimize over. In
particular, we’ve formulated a convex relaxation of
the IBM2-HMM problem which, like the Support
Vector Machine, includes parameters that can be
cross-validated over (Boyd and Vandenberghe,
2004).

Input: Define E, F , (e(k), f (k), lk,mk) for k =
1 . . . n, D(e) for e ∈ E as in Section 2. Pick
λ, θ > 0 as in Section 3 via cross-validation.

Parameters:
• A parameter t(f |e) for each e ∈ E, f ∈ D(e).

Constraints:

∀e ∈ E, f ∈ D(e), t(f |e) ≥ 0 (18)

∀e ∈ E,
∑

f∈D(e)

t(f |e) = 1 (19)

Objective: Maximize

1

n

n∑

k=1

mk−1∑

j=1

log

lk∑

i=0

lk∑

i′=0

p(j, i, i′, lk,mk) (20)

with respect to the parameters t(f |e) and
p(j, i, i′, lk,mk) set as
√
t(f

(k)
j |e

(k)
i)d(i|j, l,m)

√
t(f

(k)
j+1|ei′)d(i′|i, l)

Figure 3: The IBM2-HMM convex relaxation optimization

problem. Note that the distortions d(i|j, l, ,m) and emissions

d(i′|i, l) are constants held fixed and parameterized by cross-

validated parameters λ and θ as in Section 3.

7 An EM algorithm for the convex
surrogate

The EM algorithm for the convex relaxation of our
surrogate is given in Fig 4. As the model’s objective
is the sum of the objectives of two models generated
by a multinomial rule, we can get a very succinct
EM algorithm. For more details on this and a simi-
lar derivation, please refer to (Simion et al., 2015a),
(Koehn, 2008) or (Simion et al., 2015b). For this al-
gorithm, we again note that the distortion and emis-
sion parameters are constants so that the only esti-
mation that needs to be conducted is on the lexical t
terms.

To be specific, we have that the M step requires
optimizing

1

n

n∑

k=1

log
∑

a(k),b(k)

q(a
(k)

, b
(k)|e(k)

, f
(k)

)p(f
(k)

, a
(k)

, b
(k)|e(k)

) .

In the above, we have that

536

q(a(k), b(k)|e(k), f (k))

are constants proportional to

mk−1∏

j=1

√
t(f

(k)
j |e(k)

a
(k)
j

)t(f
(k)
j+1|e

(k)

a
(k)
j+1

)

mk∏

j=2

√
t(f

(k)
j |e(k)

b
(k)
j

)t(f
(k)
j+1|e

(k)

b
(k)
j+1

)

and gotten through the E step. This optimization
step is very similar to the regular Model 2 M step
since the β drops down using log tβ = β log t; the
exact same count-based method can be applied. The
upshot of this is given in Fig 4; similar to the logic
above for 2HC, we can get the EM algorithm for 2H.

8 Decoding methods for IBM2-HMM

When computing the optimal alignment we wanted
to compare our model with the HMM as closely as
possible. Because of this, the most natural method
of evaluating the quality of the parameters would be
to use the same rule as the HMM. Specifically, for
a sentence pair (e, f) with |e| = l and |f | = m,
in HMM decoding we aim to find (a1 . . . am) which
maximizes

max
a1,...,am

m∏

j=1

t(fj |eaj)d(aj |aj−1, l).

As is standard, dynamic programming can now be
used to find the Viterbi alignment. Although there
are a number of ways we could define the opti-
mal alignment, we felt that the above would be the
best since it tests dependance between alignment
variables and allows for easy comparison with the
GIZA++ HMM. Finding the optimal alignment un-
der the HMM setting is labelled “HMM” in Table 1.

We can also find the optimal alignment by taking
the objective literally (see (Simion et al., 2014) for a
similar argument dealing with the convex relaxation
of IBM Model 2) and computing

max
a1...am

p1(f, a|e)p2(f, a|e).

Above, we are asking for the optimal alignment
that yields the highest probability alignment through
generating technique p1 and p2. This method of de-
coding is a lot like the HMM style and also relies

1: Input: Define E, F , (e(k), f (k), lk,mk) for k =
1 . . . n, D(e) for e ∈ E as in Section 2. Two pa-
rameters λ, θ > 0 picked by cross-validation so that
the distortions and emissions are constants obeying
the structure in Section 3. An integer T specifying
the number of passes over the data.

2: Parameters:
• A parameter t(f |e) for each e ∈ E, f ∈ D(e).

3: Initialization:
• ∀e ∈ E, f ∈ D(e), set t(f |e) = 1

D(e) .
4: EM Algorithm: Expectation
5: for all k = 1 . . . N do
6: for all j = 1 . . .mk do
7: δ = 0
8: ∆ = 0
9: for all i = 0 . . . lk do

10: for all i′ = 0 . . . lk do
11: δ[i, i′] = p(j, i′, i, lk,mk)
12: ∆+ = δ[i, i′]
13: for all i = 0 . . . lk do
14: for all i′ = 0 . . . lk do
15: δ[i, i′] = δ[i,i′]

∆

16: counts(f
(k)
j , e

(k)
i)+ = δ[i, i′]

17: counts(e
(k)
i)+ = δ[i, i′]

18: counts(f
(k)
j+1, e

(k)
i′)+ = δ[i, i′]

19: counts(e
(k)
i′)+ = δ[i, i′]

20: EM Algorithm: Maximization
21: for all e ∈ E do
22: for all f ∈ D(e) do
23: t(f |e) = counts(e,f)

counts(e)

24: Output: t parameters.

Figure 4: Pseudocode for the EM algorithm of the IBM2-

HMM’s convex relaxation. As the distortion and emission pa-

rameters are constants, the algorithm is very similar to that of

IBM Model 1.

on dynamic programming. In this case we have the
recursion for QJoint given by

QJoint(1, i) = t(f1|ei)d2(i|1, l,m) ,

∀i ∈ [l]0, and

QJoint(j, i
′) = t2(fj |ei′)d(i′|j, l,m)MJoint(j − 1, i′) ,

where MJoint(j − 1, i′) is

MJoint(j − 1, i′) =
l

max
i=0
{d(i′|i, l)QJoint(j − 1, i)} ,

∀ 2 ≤ j ≤ m,∀ i′ ∈ [l]0. The alignment results got-
ten by decoding with this method is labelled “Joint”
in Table 1.

537

9 Experiments

In this section we describe experiments using the
IBM2-HMM optimization problem combined with
the EM algorithm for parameter estimation.

9.1 Data Sets

We use data from the bilingual word alignment
workshop held at HLT-NAACL 2003 (Michalcea
and Pederson, 2003). We use the Canadian Hansards
bilingual corpus, with 743,989 English-French sen-
tence pairs as training data, 37 sentences of devel-
opment data, and 447 sentences of test data (note
that we use a randomly chosen subset of the origi-
nal training set of 1.1 million sentences, similar to
the setting used in (Moore, 2004)). The develop-
ment and test data have been manually aligned at the
word level, annotating alignments between source
and target words in the corpus as either “sure” (S)
or “possible” (P) alignments, as described in (Och
and Ney, 2003). As is standard, we lower-cased all
words before giving the data to GIZA++ and we ig-
nored NULL word alignments in our computation of
alignment quality scores.

9.2 Methodology

We test several models in our experiments. In par-
ticular, we empirically evaluate our models against
the GIZA++ IBM Model 3 and HMM, as well as the
FastAlign IBM Model 2 implementation of (Dyer et
al., 2013) that uses Variational Bayes. For each of
our models, we estimated parameters and got align-
ments in turn using models in the source-target and
target-source directions; using the same setup as
(Simion et al., 2013), we present the gotten inter-
sected alignments. In training, we employ the stan-
dard practice of initializing non-convex alignment
models with simpler non-convex models. In par-
ticular, we initialize, the GIZA++ HMM with IBM
Model 2, IBM Model 2 with IBM Model 1, and
IBM2-HMM and IBM Model 3 with IBM Model
2 preceded by Model 1. Lastly, for FastAlign, we
initialized all parameters uniformly since this em-
pirically was a more favorable initialization, as dis-
cussed in (Dyer et al., 2013).

We measure the performance of the models in
terms of Precision, Recall, F-Measure, and AER us-
ing only sure alignments in the definitions of the first

three metrics and sure and possible alignments in the
definition of AER , as in (Simion et al., 2013) and
(Marcu et al., 2006). For our experiments, we report
results in both AER (lower is better) and F-Measure
(higher is better) (Och and Ney, 2003).

Table 1 shows the alignment summary statistics
for the 447 sentences present in the Hansard test
data. We present alignments quality scores using
either the FastAlign IBM Model 2, the GIZA++
HMM, and our model and its relaxation using either
the “HMM” or “Joint” decoding. First, we note that
in deciding the decoding style for IBM2-HMM, the
HMM method is better than the Joint method. We
expected this type of performance since HMM de-
coding introduces positional dependance among the
entire set of words in the sentence, which is shown to
be a good modeling assumption (Vogel et al., 1996).

From the results in Table 1 we see that the HMM
outperforms all other models, including IBM2-
HMM and its convex relaxation. However, IBM2-
HMM is not far in AER performance from the HMM
and both it and its relaxation do better than FastAl-
ign or IBM Model 3 (the results for IBM Model 3
are not presented; a one-directional English-French
run of 1525315 gave AER and F-Measure numbers of
0.1768 and 0.6588, respectively, and this was behind
both the IBM Model 2 FastAlign and our models).

As a further set of experiments, we also appended
an IBM Model 1 or IBM Model 2 objective to our
models’s original objectives, so that the constraints
and parameters are the same but now we are maxi-
mizing the average of two log-likelihoods. With re-
gard to the EM optimization, we would only need
to add another δ parameter: we’d now have proba-
bilities δ1[i] ∝ t(f

(k)
j |e

(k)
i)d(i|j, ll,mk) (this is for

IBM Model 2 smoothing; we have d = 1 for IBM
1 smoothing) and δ2[i, i′] ∝ p(j, i, i′.lk,mk) in the
EM Algorithm that results (for more, see (Simion et
al., 2015a)). We note that the appended IBM Model
2 objective is still convex if we fix the distortions’
λ parameter and then optimize for the t parameters
via EM (thus, model 2HC is still convex). For us,
there were significant gains, especially in the con-
vex model. The results for all these experiments are
shown in Table 2, with IBM 2 smoothing for the con-
vex model displayed in the rightmost column.

Finally, we also tested our model in the full

538

Training 15210H 15210H 210HC 210HC FA10 1525H10

Decoding HMM Joint HMM Joint IBM2 HMM
Iteration AER

1 0.0956 0.1076 0.1538 0.1814 0.5406 0.1761
2 0.0884 0.0943 0.1093 0.1343 0.1625 0.0873
3 0.0844 0.0916 0.1023 0.1234 0.1254 0.0786
4 0.0828 0.0904 0.0996 0.1204 0.1169 0.0753
5 0.0808 0.0907 0.0992 0.1197 0.1131 0.0737
6 0.0804 0.0906 0.0989 0.1199 0.1128 0.0719
7 0.0795 0.0910 0.0986 0.1197 0.1116 0.0717
8 0.0789 0.0900 0.0988 0.1195 0.1086 0.0725
9 0.0793 0.0904 0.0986 0.1195 0.1076 0.0738
10 0.0793 0.0902 0.0986 0.1195 0.1072 0.0734

Iteration F-Measure
1 0.7829 0.7797 0.7199 0.6914 0.2951 0.7219
2 0.7854 0.7805 0.7594 0.7330 0.7111 0.8039
3 0.7899 0.7806 0.7651 0.7427 0.7484 0.8112
4 0.7908 0.7813 0.7668 0.7457 0.7589 0.8094
5 0.7928 0.7806 0.7673 0.7461 0.7624 0.8058
6 0.7928 0.7807 0.7678 0.7457 0.7630 0.8056
7 0.7939 0.7817 0.7679 0.7457 0.7633 0.8046
8 0.7942 0.7814 0.7679 0.7458 0.7658 0.8024
9 0.7937 0.7813 0.7680 0.7457 0.7672 0.8007
10 0.7927 0.7816 0.7680 0.7457 0.7679 0.8010

Table 1: Alignment quality results for IBM2-HMM (2H) and

its convex relaxation (2HC) using either HMM-style dynamic

programming or “Joint” decoding. The first and last columns

above are for the GIZA++ HMM initialized either with IBM

Model 1 or Model 1 followed by Model 2. FA above refers to

the improved IBM Model 2 (FastAlign) of (Dyer et al., 2013).

SMT pipeline using the cdec system (Dyer et al.,
2013). For our experiments, we compared our
models’ alignments (gotten by training 1525H and
25HC) against the alignments gotten by the HMM
(1525H5), IBM Model 4 (15H53343), and FastAl-
ign. Unfortunately, we found that all 4 systems
led to roughly the same BLEU score of 40 on a
Spanish-English training set of size 250000 which
was a subset of version 7 of the Europarl dataset
(Dyer et al., 2013). For our development and test
sets, we used data each of size roughly 1800 and
we preprocessed all data by considering only sen-
tences of size less than 80 and filtering out sentences
which had a very large (or small) ratio of target and
source sentence lengths. Although the SMT results
were not a success in that our gains were not signif-
icant, we felt that the experiments at least highlight
that our model mimics the HMM’s alignments even
though its structure is much more local. Lastly, we
in regards to the new convex model’s performance,
we observe much better alignment quality than any
other convex alignment models in print, for exam-
ple, (Simion et al., 2015a).

Training 15210H 15210H 210HC 210HC
Smoothing IBM1 IBM2 IBM1 IBM2
Decoding HMM HMM HMM HMM
Iteration AER

1 0.1003 0.0958 0.1703 0.1482
2 0.0949 0.0890 0.1172 0.1057
3 0.0904 0.0840 0.1039 0.0955
4 0.0886 0.0816 0.0984 0.0927
5 0.0866 0.0795 0.0948 0.0894
6 0.0851 0.0794 0.0933 0.0888
7 0.0837 0.0790 0.0922 0.0886
8 0.0825 0.0788 0.0921 0.0880
9 0.0820 0.0785 0.0921 0.0881
10 0.0820 0.0777 0.0920 0.0881

Iteration F-Measure
1 0.7791 0.7817 0.7065 0.7251
2 0.7822 0.7839 0.7559 0.7637
3 0.7856 0.7897 0.7689 0.7740
4 0.7873 0.7923 0.7729 0.7760
5 0.7899 0.7938 0.7771 0.7782
6 0.7904 0.7943 0.7789 0.7788
7 0.7917 0.7946 0.7800 0.7791
8 0.7928 0.7944 0.7806 0.7795
9 0.7930 0.7941 0.7806 0.7797
10 0.7925 0.7947 0.7806 0.7796

Table 2: Alignment quality results for IBM2-HMM and its

relaxation using IBM 1 and IBM 2 smoothing (in this case,

“smoothing” means adding these log-likelihoods to the original

objective as in (Simion et al., 2013). For the convex relaxation

of IBM2-HMM, we can only smooth by adding in the convex

IBM Model 1 objective, or by adding in an IBM Model 2 objec-

tive where the distortions are taken to be constants (these distor-

tions are identical to the ones that are used within the relaxation

itself and are cross-validated for optimal λ).

10 Conclusions and Future Work

Our work has explored some of the details of a new
model which combines the structure of IBM Model
2 the alignment HMM Model. We’ve shown that
this new model and its convex relaxation performs
very close to the standard GIZA++ implementation
of the HMM. Bridging the gap between the HMM
and convex models proves difficult for a number of
reasons (Guo and Schuurmans, 2007). In this pa-
per, we have introduced a new set of ideas aimed at
tightening this gap.

Acknowledgments

Andrei Simion was supported by a Google research
award. Cliff Stein was partially supported by NSF
grant CCF-1421161. We thank the reviewers for
their insightful commentary and suggestions.

539

References
Steven Boyd and Lieven Vandenberghe. 2004. Convex

Optimization. Cambridge University Press.
Peter F. Brown, Vincent J. Della Pietra, Stephen A. Della

Pietra, and Robert. L. Mercer. 1993. The Mathematics
of Statistical Machine Translation: Parameter Estima-
tion. Computational Linguistics, 19:263-311.

A. P. Dempster, N. M. Laird, and D. B. Rubin. 1977.
Maximum Likelihood From Incomplete Data via the
EM Algorithm. Journal of the royal statistical society,
series B, 39(1):1-38.

Chris Dyer , Victor Chahuneau, Noah A. Smith. 2013.
A Simple, Fast, and Effective Reparameterization of
IBM Model 2. In Proceedings of NAACL.

Alexander Fraser and Daniel Marcu. 2007. Measur-
ing Word Alignment Quality for Statistical Ma-
chine Translation. Journal Computational Linguistics,
33(3): 293-303.

Joao V. Graca, Kuzman Ganchev and Ben Taskar. 2007.
Expectation Maximization and Posterior Constraints.
In Proceedings of NIPS.

Yuhong Guo and Dale Schuurmans. 2007. Convex Re-
laxations of Latent Variable Training. In Proceedings
of NIPS.

Simon Lacoste-Julien, Ben Taskar, Dan Klein, and
Michael Jordan. 2008. Word Alignment via Quadratic
Assignment. In Proceedings of the HLT-NAACL.

Phillip Koehn. 2004. Statistical Significance Tests for
Machine Translation Evaluation. In Proceedings of the
EMNLP.

Phillip Koehn. 2008. Statistical Machine Translation.
Cambridge University Press.

Percy Liang, Ben Taskar and Dan Klein. 2006. Alignment
by Agreement. In Proceedings of NAACL.

Daniel Marcu, Wei Wang, Abdessamad Echihabi,
and Kevin Knight. 2006. SPMT: Statistical Ma-
chine Translation with Syntactified Target Language
Phrases. In Proceedings of the EMNLP.

Rada Michalcea and Ted Pederson. 2003. An Evalua-
tion Exercise in Word Alignment. HLT-NAACL 2003:
Workshop in building and using Parallel Texts: Data
Driven Machine Translation and Beyond.

Robert C. Moore. 2004. Improving IBM Word-
Alignment Model 1. In Proceedings of the ACL.

Stephan Vogel, Hermann Ney and Christoph Tillman.
1996. HMM-Based Word Alignment in Statistical
Translation. In Proceedings of COLING.

Franz Och and Hermann Ney. 2003. A Systematic
Comparison of Various Statistical Alignment Models.
Computational-Linguistics, 29(1): 19-52.

L.R. Rabiner and B.H. Juang. 1986. An Introduction to
Hidden Markov Models. In IEEE ASSP Magazine.

Andrei Simion, Michael Collins and Cliff Stein. 2013. A
Convex Alternative to IBM Model 2. In Proceedings
of EMNLP.

Andrei Simion, Michael Collins and Cliff Stein. 2013.
Some Experiments with a Convex IBM Model 2. In
Proceedings of EACL.

Andrei Simion, Michael Collins and Cliff Stein. 2015.
A Family of Latent Variable Convex Relaxations for
IBM Model 2. In Proceedings of the AAAI.

Andrei Simion, Michael Collins and Cliff Stein. 2015.
On a Strictly Concave IBM Model 1. In Proceedings
of EMNLP.

Kristina Toutanova and Michel Galley. 2011. Why Ini-
tialization Matters for IBM Model 1: Multiple Optima
and Non-Strict Convexity. In Proceedings of the ACL.

Ashish Vaswani, Liang Huang and David Chiang. 2012.
Smaller Alignment Models for Better Translations:
Unsupervised Word Alignment with the L0-norm. In
Proceedings of the ACL.

540

