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Abstract

A common problem in cognitive modelling
is lack of access to accurate broad-coverage
models of event-level surprisal. As shown in,
e.g., Bicknell et al. (2010), event-level knowl-
edge does affect human expectations for ver-
bal arguments. For example, the model should
be able to predict that mechanics are likely to
check tires, while journalists are more likely
to check typos. Similarly, we would like
to predict what locations are likely for play-
ing football or playing flute in order to esti-
mate the surprisal of actually-encountered lo-
cations. Furthermore, such a model can be
used to provide a probability distribution over
fillers for a thematic role which is not men-
tioned in the text at all.

To this end, we train two neural network mod-
els (an incremental one and a non-incremental
one) on large amounts of automatically role-
labelled text. Our models are probabilistic and
can handle several roles at once, which also
enables them to learn interactions between dif-
ferent role fillers. Evaluation shows a drastic
improvement over current state-of-the-art sys-
tems on modelling human thematic fit judge-
ments, and we demonstrate via a sentence sim-
ilarity task that the system learns highly useful
embeddings.

1 Introduction

Our goals in this paper are to learn a representa-
tion of events and their thematic roles based on large
quantities of automatically role-labelled text and to
be able to calculate probability distributions over the
possible role fillers of specific missing roles. In this
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sense, the task is closely related to work on selec-
tional preference acquisition (Van de Cruys, 2014).
We focus here on the roles agent, patient, loca-
tion, time, manner and the predicate itself. The
model we develop is trained to represent the event-
relevant context and hence systematically captures
long-range dependencies. This has been previously
shown to be beneficial also for more general lan-
guage modelling tasks (e.g., Chelba and Jelinek,
1998; Tan et al., 2012).

This type of modelling is potentially relevant to a
wide range of tasks, for instance for performing the-
matic fit judgment tasks, detecting anomalous events
(Dasigi and Hovy, 2014), or predicting event struc-
ture that is not explicitly present in the text. The
latter could be useful for inferring missing informa-
tion in entailment tasks or improving identification
of thematic roles outside the sentence containing the
predicate. Potential applications also include predi-
cate prediction based on arguments and roles, which
has been noted to be relevant for simultaneous ma-
chine translation for a verb-final to a verb-medial
source language (Grissom II et al., 2014). Within
cognitive modelling, our model could help to more
accurately estimate semantic surprisal for broad-
coverage texts, when used in combination with an
incremental role labeller (e.g., Konstas and Keller,
2015), or to provide surprisal estimates for content
words as a control variable for psycholinguistic ex-
perimental materials.

In this work, we focus on the predictability of
verbs and nouns, and we suggest that the predictabil-
ity of these words depends to a large extent on
the relationship of these words to other nouns and
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verbs, especially those connected via the same event.
We choose a neural network (NN) model because
we found that results from existing related models,
e.g. Baroni and Lenci’s Distributional Memory, de-
pend heavily on how exactly the distributional space
is defined, while having no principled way of opti-
mizing the space. A crucial advantage of a neural
network-based approach is thus that the model can
be trained to optimize the distributional representa-
tion for the task.

Our model is trained specifically to predict miss-
ing semantic role-fillers based on the predicate and
other available role-fillers of that predicate. The
model can also predict the predicate based on the se-
mantic roles and their fillers. In our model, there is
no difference in how the semantic roles or the pred-
icate are treated. Thus, when we refer here to roles,
we usually mean both semantic roles and the predi-
cate, unless otherwise explicitly stated.

Our model is compositional in that it has access to
several role-fillers (including the verb) at the same
time, and can thus represent interdependencies be-
tween participants of an event and predict from a
combined representation. Consider, for example, the
predicate serve, whose likely patients include e.g.,
drinks. If we had the agent robber, we would like
to be able to predict a patient like sentence, in the
sense of “the robber will serve his sentence. ..” This
task is related to modelling thematic fit. In this pa-
per, we evaluate our model on a variety of thematic
fit rating datasets as well as on a sentence similarity
dataset that tests for successful compositionality in
our model’s representations.

This paper makes the following contributions:

e We compare two novel NN models for gener-
ating a probability distribution over selectional
preferences given one or more roles and fillers.

e We show that our technique outperforms state
of the art thematic fit models on many datasets.

e We show that the embeddings thus obtained are
effective in measuring sentence similarity.

1.1 Neural networks

Neural networks have proven themselves to be very
well suited for language modeling. By learning
distributed representations of words (Bengio et al.,
2003), they are able to generalize to new contexts
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that were not observed word-by-word in the training
corpus. They can also use a relatively large number
of context words in order to make predictions about
the upcoming word. In fact, the recurrent neural net-
work (RNN) LM (Mikolov et al., 2010) does not ex-
plicitly fix the context size at all but is potentially
able to compress the relevant information about the
entire context in its recurrent layer. These are the
properties that we would like to see in our role-filler
prediction model as well.

Neural networks have also been used for selec-
tional preference acquisition, as in Van de Cruys
(2014). His selectional preference model differs
from our model in several aspects. First, unlike our
model it is limited to a fixed number of inputs. An-
other difference is that his model uses separate em-
beddings for all input words, while ours enables par-
tial parameter sharing. Finally and crucially for role-
filler prediction, selectional preference models score
the inputs, while our model gives a probability dis-
tribution over all words for the queried target role.

We discuss the components necessary for our
model in more detail in section 3.

2 Data source

Our source of training data is the ukWaC corpus,
which is part of the WaCky project, as well as the
British National Corpus. The corpus consists of web
pages crawled from the .uk web domain, contain-
ing approximately 138 million sentences.

These sentences were run through a semantic role
labeller and head words were extracted as described
in Sayeed et al. (2015). The semantic role labeller
used, SENNA (Collobert and Weston, 2007), gener-
ates PropBank-style role labels. While PropBank ar-
gument positions (ARGO0, ARG, etc.) are primarily
designed to be verb-specific, rather than directly rep-
resenting “classical” thematic roles (agent, patient,
etc.), in the majority of cases, ARGO lines up with
agent roles and ARGI lines up with patient roles.
PropBank-style roles have been used in other recent
efforts in thematic fit modelling (e.g., Baroni et al.,
2014; Vandekerckhove et al., 2009),

For processing purposes, the corpus was divided
into 3500 segments. Fourteen segments (approx 500
thousand sentences) each were used for develop-
ment and testing, and the rest were used for training.



In order to construct our incremental model and
compare it to n-gram language models, we needed a
precise mapping between the lemmatized argument
words and their positions in the original sentence.
This required aligning the SENNA tokenization and
the original ukWaC tokenization used for Malt-
Parser. Because of the heterogeneous nature of web
data, this alignment was not always achievable—we
skipped a small number of sentences in this case. In
the development and testing portions of the data set,
we filtered sentences containing predicates where
there were multiple role-assignees with the same
role for the same predicate.

3 Model design and implementation

Our model is a neural network with a single non-
linear hidden layer and a Softmax output layer. All
inputs are one-hot encoded—i.e., represented as a
binary vector with size equal to the number of pos-
sible input values, where all entries are zero except
the entry at the index corresponding to the current
input value.

3.1 Two-part view of the model

The parameters of a neural network classifier with a
single hidden layer and one-hot encoded inputs can
be viewed as serving two distinct purposes: moving
from inputs towards outputs, the first weight matrix
that we encounter is responsible for learning dis-
tributed representations (or embeddings) of the in-
puts; the second weight matrix represents the param-
eters of a maximum entropy classifier that uses the
learned embeddings as inputs.

Considering the task of role-filler prediction, we
would want these two sets of parameters to have the
following properties:

e The classifier layer should be different for each
target role, because the suitable filler given the
context can clearly be very different depending
on the role (e.g., verb vs. agent).

e The embedding layer should also be different
depending on the role of context word. Other-
wise, the network would not have any informa-
tion about the role of the context word. For ex-
ample, the suitable verb filler for context word
dog in an agent role is probably very different
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from what it would be, were it in a patient role
(e.g. bark vs. feed).

We now briefly describe some incrementally im-
proved intermediate approaches that we also consid-
ered as they help to understand the steps that led to
our final solution for achieving the desired proper-
ties of the embedding and classifier layer.

A naive way to accomplish the aspired properties
would be to have a separate model for each input
role and target role pair. This approach has several
drawbacks. For a start, there is no obvious way to
model interactions of different input roles and fillers
in order to make predictions based on multiple in-
put role-word pairs simultaneously. Another prob-
lem is that the parameters are trained only on a frac-
tion of available training data—e.g., verb embed-
ding weights are trained independently for each tar-
get role classifier. Finally, given that we have chosen
to distinguish between n different roles, it would re-
quire us to train and tune hyper-parameters for n?
models.

One of these problems (data under-utilization) can
be alleviated by sharing role-specific embedding and
classifier weights across different models. For ex-
ample, the verb embedding matrix would be shared
across all models that predict different role fillers
based on input verbs. Other problems remain, and
training the large number of models becomes even
more difficult because of parameter synchronization,
but this is a step towards the next improvement.

Shared role-specific embedding and classifier
weights enable us to combine all input-target role
pair models into a single model. This can be done by
stacking role-specific embedding matrices to form a
3-way embedding tensor and building a classifier pa-
rameter tensor analogously. Having a single model
saves us from tuning multiple models and makes
modelling interactions between inputs possible.

Despite these advantages, having two tensors in
our model has a drawback of rapidly growing the
number of parameters as vocabulary size, number of
roles, and hidden layer size increase. This may lead
to over-fitting and increases training time.

A more subtle weakness is the fact that this
kind of model lacks parameter sharing across role-
specific embedding weight matrices. It is clear that
some characteristics of words (e.g., semantics) usu-



ally remain the same across different roles. Thus it
is practical to share some information across role-
specific weights so that the embeddings can benefit
from more data and learn better semantic represen-
tations while leaving room for role-specific traits.

For these reasons we replace the tensors with their
factored form in our models.

3.2 Factored parameter tensors

Factoring classifier and embedding tensors helps to
alleviate both the efficiency and parameter sharing
problems brought out in Section 3.1.

Given vocabulary size |V|, number of roles |R|
and hidden layer size H, each tensor 7' would re-
quire |V| x |R| x H parameters. The number of
parameters can be reduced by expressing the tensor
as a sum of F' rank-one tensors (Hitchcock, 1927).
This technique enables us to replace the tensor 7'
with three factor matrices A, B and C. Each tensor
element T[4, j, k] can then be written as:

F
T(i, 5, k] = > Ali, f1Bl, fICIf K] (1)
f=1

Assuming lateral slices of 1" represent role-specific
weight matrices (index j denotes roles), we write
each role specific weight matrix W as:

W = Adiag(rB)C (2)
where r is a one-hot encoded role vector and diag
is a function that returns a square matrix with the ar-
gument vector on the main diagonal and zeros else-
where. For example, with a vocabulary of 50000
words, 7 roles and number of factors and hid-
den units equal to 512, the factorization reduces
the number of parameters from 179M to 26M and
greatly improves training speed. Factorization also
enables parameter sharing, since factor matrices A
and C are shared across all roles.

Factored tensors have been used in different neu-
ral network models before. Starting with restricted
Boltzmann machines, Memisevic and Hinton (2010)
used a factored 3-way interaction tensor in their im-
age transformation model. Sutskever et al. (2011)
created a character level RNN LM that was effi-
ciently able to use input character specific recurrent
weights by using a factored tensor. Alumie (2013)
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used a factored tensor in a multi-domain LM to be
able to use a domain-specific hidden layer weight
matrix that would take into account the differences
while exploiting similarities between domains. A
multi-modal LM by Kiros et al. (2014) uses a fac-
tored tensor to change the effective output layer
weights based on image features.

It has been noticed before, that training models
with factored tensors as parameters using gradient
descent is difficult (Sutskever et al., 2011; Kiros
et al.,, 2014). As explained by Sutskever et al.
(2011), this is caused by the fact that each tensor
element is represented as a product of three param-
eters, which may cause disproportionate updates if
these three factors have magnitudes that are too dif-
ferent. Another problem is that if the factor matrix
B happens to have too small or too large values, then
this might also cause instabilities in the lower layers
as the back-propagated gradients are scaled by role-
specific row of B in our model. This situation is
magnified in our models, since we have not one, but
two factored layers.

To solve this problem, Sutskever et al. (2011) sug-
gest using 2nd order methods instead of gradient de-
scent. Alumide (2013) has alleviated the problem
of shrinking back-propagated gradients by adding
a bias (initialized with ones) to the domain-specific
factor vector. We found that using AdaGrad (Duchi
et al., 2011) to update the parameters is very effec-
tive. The method provides parameter-specific learn-
ing rates that depend on the historic magnitudes of
the gradients of these parameters. This seems to
neutralize the effect of vanishing or exploding gra-
dients by reducing the step size for parameters that
tend to have large gradients and allow a bigger learn-
ing rate for parameters with smaller gradients.

3.3 General structure of the model

Our general approach, common to both role-filler
models, is shown in Figure 1. First, role-specific
word embedding vector e is computed by implicitly
taking a fiber (word indexed row of a role indexed
slice) from the factored embedding tensor:

e = wA, diag(rB.)C.
h = PReLU(e + by,)

3)
4

where w and r are one-hot encoded word and role
vectors respectively, by, is hidden layer bias, and A.,
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Figure 1: General structure of role-filler models.

B, and C, represent the factor matrices that the em-
bedding tensor is factored into. Next, we apply a
parametric rectifier (PReLU; He et al., 2015) non-
linearity to the role-specific word embedding to ob-
tain the hidden activation vector h.

The hidden layer activation vector h is fed to the
Softmax output layer through a target role specific
classifier weight matrix (a target role-indexed slice
of the classifier parameter tensor):

¢ = hA. diag(tB.)C.
y = Softmax(c + by)

&)
(6)

where ¢ is a one-hot encoded target role vector,
b, is output layer bias, and y is the output of the
model representing the probability distribution over
the output vocabulary.

34

The general approach described in Section 3.3 also
allows us to model interactions between different in-
put role-word pairs. If we know the order in which
the inputs were introduced, then we can add a recur-
rent connection to the hidden layer to implement an
incremental role filler predictor. When word order is
unknown, then input role-word pair representations
can be added together to compose the representa-
tion of the entire predicate context'. We chose addi-

Modeling input interactions

'In applications like natural language generation, for exam-
ple, where role-fillers need to be predicted, it is not necessarily
always the case that the order will be known in advance or that
the thematic fit model will be used to generate the full sentence
in correct word order.
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tion over concatenation (often preferred in language
models) because the non-incremental model does
not need to preserve information about word order,
and addition also enables using a variable number of
inputs.

The incremental model adds information about
the previous hidden state h;_; to the current input
word role-specific embedding e; through recurrent
weights W,.. So, Equation 4 is replaced with:

ht = PReLU(et + ht,lwr + pth + bh) (7)
where p; is a binary predicate boundary indicator
that informs the model about the start of a new pred-
icate and equals 1 when the target word belongs
to a new predicate and O otherwise. The predi-
cate boundary input p; is connected to the network
through parameter vector W,,. The hidden state hg
is initialized to zeros.

The non-incremental model adds role-specific
embedding vectors of all input words together to
form the representation of the entire predicate con-
text and replaces Equation 4 with:

N
h=PReLU() ¢; + by)
=1

®)

where IV is the number of input role-word pairs.

3.5 Training details

First, we give details that are common to both the
RNN and NN models. The models are trained with
mini-batches of 128 samples. The hidden layer con-
sists of 256 PReLU units; embedding and classifier
tensor factorization layer sizes are 256 and 512 re-
spectively. The input and output vocabularies are the
same, consisting of 50,000 most frequent lemma-
tized words in the training corpus. The role vocab-
ulary consists of 5 argument roles (ARGO, ARGI,
ARGM-LOC, ARGM-TMP and ARGM-MNR), the
verb is treated as the sixth role, and all the other roles
are mapped to a shared OTHER label. Parameters
are updated using AdaGrad (Duchi et al., 2011) with
a learning rate of 0.1. All models are implemented
using Theano (Bastien et al., 2012; Bergstra et al.,
2010) and trained on GPUs for 8 days.

RNN model gradients are computed using back-
propagation through time (Rumelhart et al., 1986)



Model Name Dev Test

3-gram LM 450.1 £2.6 4389 +2.6
3-gram CWM | 859.6 4.6 8349+ 4.5
RNN CWM 485.8 £2.7 47324+2.6
RNN RF 2446+ 14 2378=+14
NN RF 2482 +14 2419+14

Table 1: Perplexities on dev/test dataset.

over 3 time steps. The NN model is trained on mini-
batches of 128 samples that are randomly drawn
with replacement from the training set.

3.6 Model comparison

Perplexity allows us to compare all our models in
similar terms, and evaluate the extent to which ac-
cess to thematic roles helps the model to predict
missing role fillers. For comparability, the perplexi-
ties of all models are computed only on content word
probabilities (i.e., predicates and their arguments).
We also report the 95% confidence interval for per-
plexity, which is computed according to Klakow
and Peters (2002). All models are trained on exactly
the same sentences of lemmatized words. Probabil-
ity mass is distributed across the vocabulary of the
50,000 most frequent content words in the training
corpus.

3.6.1 Models

First, we compare our model to a conventional 3-
gram language model 3-gram LM, conditioning on
the previous context containing the immediately pre-
ceding context of content and function words. All
n-grams are discounted with Kneser-Ney smooth-
ing, and n-gram probability estimates are interpo-
lated with lower order estimates. Sentence onset in
all models is padded with a special sentence onset
tag. The vocabulary of context words for this model
consists of all words from the training corpus.

As a second model, we train a 3-gram content
word model 3-gram CWM, which is an N-gram
LM that is trained only on content words.

Next, we have RNN CWM—an RNN
LM (Mikolov et al., 2010) trained on content
words only. The context size of this model is not
explicitly defined and the model can potentially
utilize more context words than 3-gram CWM (even
from outside the sentence boundary).
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Our incremental role-filler RNN REF is similar to
RNN CWM, except for using role-specific embed-
ding and classifier weights (slices of factored ten-
sor). It thus has additional information about the
content word roles?.

Finally, the non-incremental role-filler NN RF
loses the information about word order and the abil-
ity to use information outside predicate boundaries
and trades it for the ability to see the future (i.e., the
context includes both the preceding and the follow-
ing content words and their roles).

3.6.2 Results

The results of content word perplexity evalua-
tion are summarized in Table 1. The thematic-
role informed models outperform all other mod-
els by a very large margin, cutting perplexity al-
most in half. The incremental model achieves a
slightly lower perplexity than the non-incremental
one (237.8 vs. 241.9), hinting that the content word
order and out-of-predicate role-word pairs can be
even more informative than a preview of upcoming
role-word pairs.

The difference between normal LM and the CWM
can be explained by the loss of information from
function words, combined with additional sparsity
in the model because content word sequences are
much sparser than sequences of content and func-
tion words.

This also explains why using a neural network-
based RNN CWM model improves the performance
so much (perplexity drops from 834.9 to 473.2),
as neural network based language models are well
known for their ability to generalize well to unseen
contexts by learning distributed representations of
words (Bengio et al., 2003).

4 Evaluation on thematic fit ratings

In order to see whether our model accurately repre-
sents events and their typical thematic role fillers, we
evaluate our model on a range of existing datasets
containing human thematic fit ratings. This evalua-
tion also allows us to compare our model to existing
models that have been used on this task.

2A reviewer kindly points out, as a matter of historical inter-
est, that the high-level architecture of the RNN RF model bears
some resemblance to the parallel distributed processing model
in McClelland et al. (1989) and St. John and McClelland (1990).



Data source # ratings Roles NNRF BL2010 GSD2015 BDK2014
Pado (agent, patient) 414 ARGO, ARGI1, ARG2 | 0.52(8)  0.53 (0) 0.53 (0) 0.41
McRae (agent, patient) 1444 ARGO, ARG1 0.38 (20) 0.32(70) 0.36 (70) 0.28
Ferretti (location) 274 ARGM-LOC 0.44 (3) 0.23 (3) 0.29 (3) -
Ferretti (instrument) 248 ARGM-MNR 045(6) 03617 04217 -
Greenberg (patient) 720 ARGI1 0.61 (8) 0.46(18) 0.48(18) -
Pado+McRae+Ferretti 2380 0.41 (37) 0.35(90) 0.38 (90) -

Table 2: Thematic fit evaluation scores, consisting of Spearman’s p correlations between average human judgements and model

output, with numbers of missing values (due to missing vocabulary entries) in brackets. The baseline scores come from the TypeDM

(Baroni and Lenci, 2010) model, further developed and evaluated in Greenberg et al. (2015a,b) and the neural network predict model

described in Baroni et al. (2014). NN RF is the non-incremental model presented in this article. Our model maps ARG2 in Pado

to OTHER role. Significances were calculated using paired two-tailed significance tests for correlations (Steiger, 1980). NN RF

was significantly better than both of the other models on the Greenberg and Ferretti location datasets and significantly better than
BL2010 but not GSD2015 on McRae and Pado+McRae+Ferretti; differences were not statistically significant for Pado and Ferretti

instruments.

4.1 Related work

State-of-the-art computational models of thematic fit
quantify the similarity between a role filler of a verb
and the proto-typical filler for that role for the verb
based on distributional vector space models. For
example, the thematic fit of grass as a patient for
the verb eat would be determined by the cosine of
a distributional vector representation of grass and
a prototypical patient of eat. The proto-typical pa-
tient is in turn obtained from averaging representa-
tions of words that typically occur as a patient of
eat (e.g., Erk, 2007; Baroni and Lenci, 2010; Say-
eed and Demberg, 2014; Greenberg et al., 2015b).
For more than one role, information from both the
agent and the predicate can be used to jointly to pre-
dict a patient (e.g., Lenci, 2011).

4.2 Data

Previous studies obtained thematic fit ratings from
humans by asking experimental participants to rate
how common, plausible, typical, or appropriate
some test role-fillers are for given verbs on a
scale from 1 (least plausible) to 7 (most plausible)
(McRae et al., 1998; Ferretti et al., 2001; Binder
et al., 2001; Pado, 2007; Pado et al., 2009; Vandek-
erckhove et al., 2009; Greenberg et al., 2015a). The
datasets include agent, patient, location and instru-
ment roles. For example, in the Padé et al. (2009)
dataset, the noun sound has a very low rating of 1.1
as the subject of hear and a very high rating of 6.8
as the object of hear. Each of the verb-role-noun
triples was rated by several humans, and our evalua-
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tions are done against the average human score. The
datasets differ from one another in size (as shown
in Table 2), choice of verb-noun pairs, and in how
exactly the question was asked of human raters.

4.3 Methods

A major difference between what the state-of-the-
art models do and what our model does is that our
model distributes a probability mass of one across
the vocabulary, while the thematic fit models have
no such overall constraint; they will assign a high
number to all words that are similar to the proto-
typical vector, without having to distribute probabil-
ity mass. Specifically, this implies that two synony-
mous fillers, one of which is a frequent word like
fire, and the other of which is an infrequent word,
e.g., blaze, will get similar ratings by the distribu-
tional similarity models, but quite different ratings
by the neural network model, as the more frequent
word will have higher probability. Greenberg et al.
(2015a) showed that human ratings are insensitive
to noun frequency. Hence, we report results that ad-
just for frequency effects by setting the output layer
bias of the neural network model to zero. Since the
output unit biases of the neural network model are
independent from the inputs, they correlate strongly
(rs = 0.74,p = 0.0) with training corpus word fre-
quencies after being trained. Therefore, setting the
learned output layer bias vector to a zero-vector is a
simple way to reduce the effect of word frequencies
on the model’s output probability distribution.



Role #ratings p (# NaN)
ARGO 924 0.38 (14)
ARG1 1615 0.51(22)
ARG2 39 0.59 (0)
ARGM-MNR 248 0.45 (6)
ARGM-LOC 274 0.44 (3)
ALL 3100  0.45 (45)

Table 3: Per role thematic-fit evaluation scores in terms of
Spearmans p correlations between average human judgements

and model output.

4.4 Results

We can see that the neural network model outper-
forms the baselines on all the datasets except the
Pado dataset. An error analysis on the role filler
probabilities generated by the neural net points to
the effect of level of constraint of the verb on the es-
timates. For a relatively non-constraining verb, the
neural net model will have to distribute the probabil-
ity mass across many different suitable fillers, while
the semantic similarity models do not suffer from
this. This implies that filler fit is not directly compa-
rable across verbs in the NN model (only filler pre-
dictability is comparable).

Per role results are shown in Table 3. Surpris-
ingly, the model output has the highest correlation
with the averaged human judgements for the target
role ARG2, despite the fact that ARG2 is mapped to
OTHER along with several other roles. The model
struggles the most when it comes to predicting fillers
for ARGO. There is no noticeable correlation be-
tween the role-specific performance and the role oc-
currence frequency in the samples of our training
set. This implies that parameter sharing between
roles does indeed help when it comes to balancing
the performance between rare and ubiquitous roles
as discussed in section 3.1.

4.5 Compositionality

The above thematic role fit data sets only assess the
fit between two words. Our model can however
also model the interaction between different roles;
see Figure 2 for an example of model predictions.
We are only aware of one small dataset that can be
used to systematically test the effectiveness of the
compositionality for this task. The Bicknell et al.
(2010) dataset contains triples like journalist check
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Model | NNRF Lenci 2011
Accuracy 1 | 0.687 0.671
Accuracy 2 | 0.828 0.844

Table 4: Accuracies on the Bicknell evaluation task.

spelling vs. mechanic check spelling and journalist
check tires vs. mechanic check tires together with
human congruity judgments.

The goal in this task is for the model to repro-
duce the human judgments on the 64 sentence pairs.
Lenci (2011), which we compare against in Table
4, proposed a first compositional model based on
TypeDM to evaluate on this task.

We use two accuracy scores for the evaluation,
which we call “Accuracy 1” and “Accuracy 2”. “Ac-
curacy 17 counts a hit iff the model assigns the
composed subject-verb combination a higher score
when we test a human-rated better-fitting object in
contrast with when we test a worse-fitting one; in
other words, a hit is achieved when journalist check
spelling should be better than journalist check tires,
if we give the model journalist check as the predi-
cate to test against different objects. (The result from
Lenci for this task was transmitted by private com-
munication.)

“Accuracy 2” counts a hit iff, given an object, the
composed subject-verb combination gives a higher
score when the subject is better fitting. That is, a
hit is achieved when journalist check spelling has a
higher score than mechanic check spelling, setting
the query to the model as journalist check and me-
chanic check and finding a score for spelling in that
context. This accuracy metric is proposed and eval-
uated in Lenci (2011).

Evaluation shows that our model performs simi-
larly to that of Lenci, although only limited conclu-
sions can be drawn due to the small data set size.

5 Evaluation of event representations:
sentence similarity

To show that our model learns to represent input
words and their roles in a useful way that reflects the
meaning and interactions between inputs, we evalu-
ate our non-incremental model on a sentence simi-
larity task from Grefenstette and Sadrzadeh (2015).

We assign similarity scores to sentence pairs by
computing representations for each sentence by tak-



A clerk serves...
.437 notice

.046 committee
.019 officer
.019 secretary
.014 board

A waiter serves.
.071 breakfast
.045 dish
043 meal
.042 food
.036 tea

[oNoNoNoNo)
[oNoNoNoNo)

priest serves...
.095 god
.041 notice

A prisoner serves.

0.134 sentence

0.069 notlce
.029 christ 0
.024 bread 0
.018 a [¢]

.028
.017 communlty
.016 officer

Where does a waiter serve?

0.062 restaurant
0.060 room
0.046 bar

0.013 bowl
0.012 kitchen

Where does a prisoner serve?

[cNcoNoNoNos 4

Where does a clerk serve?

0.039 committee

0.031 paragraph

0.020 office

0.020 council

Where does a priest serve?

0.018 meeting

0.061 army 0.073 army
0.029 church 0.042 prison
0.020 navy 0.037 war
0.018 war 0.020 iraq
0.016 corps 0.016 their

Figure 2: Examples of model predictions for the verb serve

with different agents and target roles patient and location.

ing the hidden layer state (Equation 8) of the non-
incremental model given the words in the sentence
and their corresponding roles. Sentence similarity
is then rated with the cosine similarity between the
representations of the two sentences.

Spearman’s rank correlation between the cosine
similarities produced by our model and human rat-
ings are shown in Table 5. Our model achieves
much higher correlation with human ratings than the
best result reported by Grefenstette and Sadrzadeh
(2015), showing our model’s ability to compose
meaningful representations of multiple input words
and their roles.

We also compare our model with another NN
word representation model baseline that does not
embed role information; by this comparison, we
can determine the size of the improvement brought
by our role-specific embeddings. The baseline sen-
tence representations are constructed by element-
wise addition of pre-trained word2vec (Mikolov
et al., 2013) word embeddings®. Scores are again
computed by using cosine similarity. The large gap
between our model’s and word2vec baseline’s per-
formance illustrates the importance of embedding
role information in word representations.

6 Conclusions

In this paper we proposed two neural network archi-
tectures for learning proto-typical event representa-

Shttps://code.google.com/p/word2vec/

179

# ratings ‘ NN RF Kronecker W2V  Humans
199 ‘ 0.34 0.26 0.13 0.62

Table 5: Sentence similarity evaluation scores on GS2013

dataset (Grefenstette and Sadrzadeh, 2015), consisting of Spear-
man’s p correlations between human judgements and model
output. Kronecker is the best performing model from Grefen-
stette and Sadrzadeh (2015). NN RF is the non-incremental
model presented in this article, and W2V is the word2vec base-
line. Human performance (inter-annotator agreement) shows

the upper bound.

tions. These models were trained to generate prob-
ability distributions over role fillers for a given se-
mantic role. In our perplexity evaluation, we demon-
strated that giving the model access to thematic role
information substantially improved prediction per-
formance. We also compared the performance of
our model to the performance of current state-of-the-
art models in predicting human thematic fit ratings
and showed that our model outperforms the existing
models by a large margin. Finally, we also showed
that the event representations from the hidden layer
of our model are highly effective in a sentence sim-
ilarity task. In future work, we intend to test the
potential contribution of this model when applied to
larger tasks such as entailment and inference tasks
as well as semantic surprisal-based prediction tasks.
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