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Abstract
The challenges of Machine Reading and
Knowledge Extraction at a web scale re-
quire a system capable of extracting diverse
information from large, heterogeneous cor-
pora. The Open Information Extraction (OIE)
paradigm aims at extracting assertions from
large corpora without requiring a vocabulary
or relation-specific training data. Most sys-
tems built on this paradigm extract binary re-
lations from arbitrary sentences, ignoring the
context under which the assertions are cor-
rect and complete. They lack the expres-
siveness needed to properly represent and ex-
tract complex assertions commonly found in
the text. To address the lack of representa-
tion power, we propose NESTIE, which uses
a nested representation to extract higher-order
relations, and complex, interdependent asser-
tions. Nesting the extracted propositions al-
lows NESTIE to more accurately reflect the
meaning of the original sentence. Our ex-
perimental study on real-world datasets sug-
gests that NESTIE obtains comparable preci-
sion with better minimality and informative-
ness than existing approaches. NESTIE pro-
duces 1.7-1.8 times more minimal extractions
and achieves 1.1-1.2 times higher informative-
ness than CLAUSIE.

1 Introduction

Syntactic analyses produced by syntactic parsers are
a long way from representing the full meaning of the
sentences parsed. In particular, they cannot support
questions like “Who did what to whom?”, “Where
did what happen?”. Owing to the large, hetero-
geneous corpora available at web scale, traditional

approaches to information extraction (Brin, 1998;
Agichtein and Gravano, 2000) fail to scale to the
millions of relations found on the web. As a re-
sponse, the paradigm of Open Information Extrac-
tion (OIE) (Banko et al., 2007) has seen a rise in
interest as it eliminates the need for domain knowl-
edge or relation-specific annotated data. OIE sys-
tems use a collection of patterns over the surface
form or dependency tree of a sentence to extract
propositions of the form (arg1,rel,arg2).

However, state-of-the-art OIE systems, REVERB

(Fader et al., 2011) and OLLIE (Schmitz et al., 2012)
focus on extracting binary assertions and suffer from
three key drawbacks. First, lack of expressivity of
representation leads to significant information loss
for higher-order relations and complex assertions.
This results in incomplete, uniformative and inco-
herent prepositions. Consider Example 1 in Fig-
ure 1. Important contextual information is either
ignored or is subsumed in over-specified argument
and relation phrases. It is not possible to fix such
nuances by post-processing the propositions. This
affects downstream applications like Question An-
swering (Fader et al., 2014) which rely on correct-
ness and completeness of the propositions.

Second, natural language frequently includes re-
lations presented in a non-canonical form that can-
not be captured by a small set of extraction pat-
terns that only extract relation mediated by verbs
or a subset of verbal patterns. Consider Ex-
ample 2 in Figure 1 that asserts, “Rozsa Hill
is the third hill near the river”, “Rozsa Hill is
Rose Hill” and “Rozsa Hill lies north of Cas-
tle Hill”. A verb-mediated pattern would extract
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1. After giving 5,000 people a second chance at life, 
doctors are celebrating the 25th anniversary of 
Britain's first heart transplant.

R: P1: (doctors, are celebrating the 25th anniversary of, 
Britain 's first heart transplant)

O: P1: (doctors, are celebrating, the 25th anniversary of 
Britain's first heart transplant)

N:
P1: (doctors, are celebrating, the 25th anniversary of 
Britain's first heart transplant)
P2: (doctors, giving, second chance at life)
P3: (P1, after, P2)

2. Rozsa ( Rose ) Hill , the third hill near the river, lies 
north of Castle Hill.
R: P1: (the third hill, lies north of, Castle Hill)
O: P1: (the third hill, lies north of, Castle Hill)

N:
P1: (Rozsa, lies, north of Castle Hill)
P2: (Rozsa Hill, is, third hill near the river)
P3: (Rozsa Hill, is, Rose)

3. “A senior official in Iraq said the body, which was 
found by U.S. military police, appeared to have been 
thrown from a vehicle.”

R: P1: (Iraq, said, the body)
P2: (the body, was found by, U.S. military police)

O: P1: (A senior official in Iraq, said, the body which was 
found by U.S. military police)

N:

P1: (body, appeared to have been thrown, ∅)
P2: (P1, from, vehicle)
P3: (A senior official in Iraq, said, P2)
P4: (U.S. military police, found, body)

Figure 1: Example propositions from OIE systems: REVERB

(R), OLLIE (O) and NESTIE(N).

a triple, (the third hill, lies north
of, Castle Hill) that is less informative than
a triple, (Rozsa, lies, north of Castle
Hill) which is not mediated by a verb in the
original sentence. Furthermore, these propositions
are not complete. Specifically, queries of the form
‘What is the other name of Rozsa Hill?”, “Where is
Rozsa Hill located?”, “Which is the third hill near
the river?” will either return no answer or return an
uninformative answer with these propositions. Since
information is encoded at various granularity levels,
there is a need for a representation rich enough to ex-
press such complex relations and sentence construc-
tions.

Third, OIE systems tend to extract propositions
with long argument phrases that are not minimal
and are difficult to disambiguate or aggregate for
downstream applications. For instance, the argu-

ment phrase, body which was found by U.S. military
police, is less likely to be useful than the argument
phrase, body in Example 3 in Figure 1.

In this paper we present NESTIE, which over-
comes these limitations by 1) expanding the propo-
sition representation to nested expressions so addi-
tional contextual information can be captured, 2)
expanding the syntactic scope of relation phrases
to allow relations mediated by other syntactic en-
tities like nouns, adjectives and nominal modifiers.
NESTIE bootstraps a small set of extraction pat-
terns that cover simple sentences and learns broad-
coverage relation-independent patterns. We believe
that it is possible to adapt OIE systems that extract
verb-based relations to process assertions denoting
events with many arguments, and learn other non-
clausal relations found in the text. With weakly-
supervised learning techniques, patterns encoding
these relations can be learned from a limited amount
of data containing sentence equivalence pairs.

This article is organized as follows. We pro-
vide background on OIE in Sec. 2 followed by an
overview of our proposed solution in Sec. 3. We
then discuss how the extraction patterns for nested
representations are learned in Sec. 4. In Sec. 5,
we compare NESTIE against alternative methods on
two datasets: Wikipedia and News. In Sec. 6, we
discuss related work on pattern-based information
extraction.

2 Background

The key goal of OIE is to obtain a shallow seman-
tic representation of the text in the form of tuples
consisting of argument phrases and a phrase that
expresses the relation between the arguments. The
phrases are identified automatically using domain-
independent syntactic and lexical constraints. Some
OIE systems are:

TextRunner (Yates et al., 2007) WOE (Wu and
Weld, 2010): They use a sequence-labeling graph-
ical model on extractions labeled automatically us-
ing heuristics or distant supervision. Consequently,
long-range dependencies, holistic and lexical as-
pects of relations tend to get ignored.

ReVerb (Fader et al., 2011): Trained with shallow
syntactic features, REVERB uses a logistic regres-
sion classifier to extract relations that begin with a
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verb and occur between argument phrases.
Ollie (Schmitz et al., 2012): Bootstrapping from

REVERB extractions, OLLIE learns syntactic and
lexical dependency parse-tree patterns for extrac-
tion. Some patterns reduce higher order relations
to ReVerb-style relation phrases. Also, representa-
tion is extended optionally to capture contextual in-
formation about conditional truth and attribution for
extractions.

ClausIE (Del Corro and Gemulla, 2013): Us-
ing linguistic knowledge and a small set of domain-
independent lexica, CLAUSIE identifies and classi-
fies clauses into clause types, and then generates ex-
tractions based on the clause type. It relies on a pre-
defined set of rules on how to extract assertions in-
stead of learning extraction patterns. Also, it doesn’t
capture the relations between the clauses.

There has been some work in open-domain in-
formation extraction to extract higher-order rela-
tions. KRAKEN (Akbik and Löser, 2012) uses a
predefined set of rules based on dependency parse
to identify fact phrases and argument heads within
fact phrases. But unlike alternative approaches,
it doesn’t canonicalize the fact phrases. There is
another body of work in natural language under-
standing that shares tasks with OIE. AMR parsing
(Banarescu et al., ), semantic role labeling (SRL)
(Toutanova et al., 2008; Punyakanok et al., 2008)
and frame-semantic parsing (Das et al., 2014). In
these tasks, verbs or nouns are analyzed to identify
their arguments. The verb or noun is then mapped to
a semantic frame and roles of each argument in the
frame are identified. These techniques have gained
interest with the advent of hand-constructed seman-
tic resources like PropBank and FrameNet (Kings-
bury and Palmer, 2002; Baker et al., 1998). Gener-
ally, the verb/noun and the semantically labeled ar-
guments correspond to OIE propositions and, there-
fore, the two tasks are considered similar. Systems
like SRL-IE (Christensen et al., 2010) explore if
these techniques can be used for OIE. However,
while OIE aims to identify the relation/predicate be-
tween a pair of arguments, frame-based techniques
aim to identify arguments and their roles with re-
spect to a predicate. Hence, the frames won’t corre-
spond to propositions when both the arguments can-
not be identified for a binary relation or when the
correct argument is buried in long argument phrases.

Dataset

Seed Templates

Pattern Representation

Fact Extraction

Bootstrapping

Syntactic paraphrases

Syntactic Patterns
Propositions

Pattern Learning

Fact Extraction

Seed Extraction

Statement Proposition Extraction Proposition Linking

Pattern Learning

Pattern Representation

Figure 2: System Architecture of NESTIE.

3 Task Definition and NestIE Overview

Task: We focus on the task of OIE, where the sys-
tem takes a natural language statement and extracts
the supported assertions. This is achieved by us-
ing an extractor that uses nested representations to
extract propositions and a linker that connects ex-
tracted propositions to capture context.

Proposition-based Extractor: We propose a
framework to extend open-domain binary-relation
extractors to extract n-ary and complex rela-
tions. As not all assertions can be expressed as
(arg1,rel,arg2), we learn syntactic patterns
for relations that are expressed as nested templates
like, (arg1,rel,(arg2,rel2,arg3)),
((arg1,rel,arg2),rel2,arg3).

Proposition Linking: In practice, it is infeasible
to enumerate simple syntactic pattern templates that
capture the entire meaning of a sentence. Also, in-
creasing the complexity of templates would lead to
sparsity issues while bootstrapping. We assume that
there is a finite set of inter-proposition relations that
can be captured using a small set of rules which take
into account the structural properties of the propo-
sitions and syntactic dependencies between the rela-
tion phrases of the propositions.

System Evaluation: To compare NESTIE to
other alternative methods, we conduct an experi-
mental study on two real-world datasets: Wikipedia
and News. Propositions from each system are eval-
uated for correctness, minimality, and informative-
ness.
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Template Example

Pattern: A body has been found by police.

Representation: T: (arg1, [rel, by], arg2) (body, [found, by], police)

Pattern: Fallujah is an Iraqi city.

Representation: T: (arg1, be, arg2) (Fallujah, is, city)

Pattern: Ghazi al-Yawar is new president of Iraq.

Representation: T: (arg1, be, [arg2, rel2, arg3]) (Yawar, is, [president, of, Iraq])

Pattern: 10,000 people in Africa died of Ebola.

Representation: T1:([arg1, rel2, arg3], rel, arg2]
T2: (T1, rel3, arg4)

T1: ([people, in, Africa], died, ∅) 
T2: (T1, of, Ebola)

arg1 arg2 rel
nsubj cop

arg1 arg2 rel
nsubj cop

arg3
rel2 = nmod(?!:agent).*

arg1 rel arg2
nsubjpass nmod:agent

arg1 rel | VB* arg2
nsubj

arg4
rel3 = nmod(?!:agent).*

arg3
rel2 = nmod.* dobj

Figure 3: Seed templates and corresponding representation.

4 Proposition Extraction

Figure 2 illustrates the system architecture of
NESTIE. First, a set of high-precision seed tem-
plates is used to extract propositions. A template
maps a dependency parse-tree pattern to a triple
representation such as (arg1,rel,arg2) for bi-
nary relations, or a nested triple representation such
as ((arg1,rel,arg2),rel2,arg3) for n-
ary relations. Furthermore, an argument is allowed
to be a sequence of words, “arg2 rel2 arg3”
to capture its nominal modifiers. Then, using a RTE
dataset that contains syntactic paraphrases, NESTIE
learns equivalent parse-tree patterns for each tem-
plate in the seed set. These patterns are used to ex-
tract propositions which are then linked.

4.1 Constructing Seed Set

We use a set of 13 hand-written templates. Each
template maps an extraction pattern for a simple
sentence to corresponding representation. A sub-
set of these templates is shown in Figure 3. To
create a seed set of propositions, we use the RTE
dataset which is comprised of statements and their
entailed hypotheses. We observed that most of the
hypotheses were syntactic variants of the facts in
their corresponding statements. These hypotheses
were also short with a single, independent clause.
These shared sentence constructions could be cap-

tured with a small set of templates. We iteratively
create templates until at least one proposition could
be extracted for each hypothesis. The propositions
from the hypotheses form the set for bootstrapping.

For each seed proposition extracted from a hy-
pothesis, the statement entailing the hypothesis con-
tains all the content words of the proposition and
expresses the same information as the proposition.
However, there is a closed class of words, such as
prepositions, a subset of adverbs, determiners, verbs
etc. that does not modify the underlying meaning of
the hypothesis or the statement and can be consid-
ered auxiliary. These were ignored while construct-
ing the seed set.

Example 1 Consider a statement-hypothesis pair,
Statement: Paul Bremer, the top U.S. civilian admin-
istrator in Iraq, and Iraq’s new president, Ghazi al-
Yawar, visited the northern Iraqi city of Kirkuk.
Hypothesis: Ghazi al-Yawar is the president of Iraq.
The hypothesis is entailed in the statement.
The seed templates extract propositions from
the hypothesis: (al-Yawar,is,president,
(al-Yawar,is,president of Iraq), and
(al-Yawar,is president of,Iraq).

Bootstrapping is a popular technique to gener-
ate positive training data for information extraction
(Collins and Singer, 1999; Hoffmann et al., 2011).
We extend the bootstrapping techniques employed

58



in OLLIE and RENOUN, for n-ary and complex re-
lations. First, instead of learning dependency parse-
tree patterns connecting the heads of the argument
phrases and the relation phrase connecting them, we
learn the dependency parse-tree patterns connect-
ing the heads of all argument and relation phrases
in the template. This allows greater coverage of
context for the propositions and prevents the argu-
ments/relations from being over-specified and/or un-
informative. Second, some of the relations in the
representation are derived from the type of depen-
dency, e.g. type of nominal modifier. As these
relations are implicit, and might not be present in
the paraphrase, they are ignored for learning. In-
tuitively, with such constraints, paraphrases “Mary
gave John a car” and “Mary gave a car to John”
can map to the same representation.

4.2 Extraction Pattern Learning

The biggest challenge in information extraction is
the multitude of ways in which information can be
expressed. Since it is not possible to enumerate
all the different syntactic variations of an assertion,
there is a need to learn general patterns that encode
the various ways of expressing the assertion. In par-
ticular, we learn the various syntactic patterns that
can encode the same information as the seed patterns
and hence can be mapped to same representation.

NESTIE tries to learn the different ways in which
the content words of a seed proposition from a hy-
pothesis can be expressed in the statement that en-
tails this hypothesis. We use the Stanford depen-
dency parser (De Marneffe et al., 2006) to parse
the statement and identify the path connecting the
content words in the parse tree. If such a path ex-
ists, we retain the syntactic constraints on the nodes
and edges in the path and ignore the surface forms
of the nodes in the path. This helps generalize the
learned patterns to unseen relations and arguments.
NESTIE could learn 183 templates from the 13 seed
templates. Figure 4 shows a subset of these patterns.

Example 2 Consider dependency parse-subtree of
the statement and hypothesis from Example 1,
Statement: Iraq

poss−→ president
appos−→ al − Y awar

Hypothesis: al−Y awar nsubj←− president
of−→ Iraq

A seed extraction pattern maps the parse-
tree of the hypothesis to the representation,

(arg1, be, arg2), returning proposition,
(al-Yawar,is,president of Iraq).
With bootstrapping, the syntactic pattern from the
statement is mapped to the same representation.

4.3 Pattern Matching

Once the extraction patterns are learned, we use
these patterns to extract propositions from new un-
seen sentences. We first parse a new sentence and
match the patterns against the parse tree. As the pat-
terns only capture the heads of the arguments and
relations, we expand the extracted propositions to
increase the coverage of context of the arguments
as in the original sentence.

Example 3 In the statement from Example 1, the
extraction patterns capture the dependency path con-
necting the head words: Iraq, administrator
and Paul Bremer. However, to capture the con-
textual information, further qualification of the argu-
ment node, administrator, is required.

Following this observation, we expand the
arguments on nmod, amod, compound,
nummod, det, neg edges. We expand the
relations on advmod, neg, aux, auxpass,
cop, nmod edges. Only the dependency edges not
captured in the pattern are considered for expansion.
Also, the order of words from the original sentence
is retained in the argument phrases.

4.4 Proposition Linking

NESTIE uses a nested representation to capture the
context of extracted propositions. The context could
include condition, attribution, belief, order, reason
and more. Since it is not possible to generate or learn
patterns that can express these complex assertions
as a whole, NESTIE links the various propositions
from the previous step to generate nested proposi-
tions that are complete and closer in meaning to the
original statement.

The proposition linking module is based on the
assumption that the inter-proposition relation can be
inferred from the dependency parse of the sentence
from which propositions were extracted. Some of
the rules employed to link the propositions are:

• The relation of proposition P1 has a relation-
ship to the relation of proposition P2.
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Template Seed Pattern Learned Pattern

Pattern:

Representation: T: (arg1, [rel, by], arg2)

Pattern:

Representation: T: (arg1, be, arg2)

Pattern:

Representation: T: (arg1, be, [arg2, rel2, arg3])

Pattern:

Representation: T1:([arg1, rel2, arg3], rel, arg2], T2: (T1, rel3, arg4)

arg1 arg2 rel
nsubj cop

arg2 rel | VB* arg1
nsubj dobj

arg2 | NN* arg1 | NN*
appos

arg1 slot1 arg2
nsubj dobj

rel | VB*
xcomp

arg1 rel arg2
nsubjpass nmod:agent

arg1 arg2 rel
nsubj cop

arg3
rel2 = nmod(?!:agent).*

arg1 rel | VB* arg2
nsubj

arg4
rel3 = nmod(?!:agent).*

arg3
rel2 = nmod.* dobj

arg1slot1 arg2 | JJ
ccomp

arg3
nsubj nsubj

Figure 4: Syntactic Patterns learned using bootstrapping.

Consider the statement, “The accident happened af-
ter the chief guest had left the event.” and propo-
sitions, P1: (accident, happen, φ) and P2:
(chief guest, had left, event). Us-
ing dependency edge, nmod:after, the linking re-
turns (P1,after,P2).

• Proposition P1 is argument in proposition P2.

Consider the statement, “A senior offi-
cial said the body appeared to have been
thrown from a vehicle.” and propositions,
P1: (body,appeared to have been
thrown from,vehicle) and P2: (senior
official,said,φ). The linking updates P2 to
(senior official,said,P1).

• An inner nested proposition is replaced with a
more descriptive alternative proposition.

We use dependency parse patterns to link proposi-
tions. We find correspondences between: a ccomp
edge and a clausal complement, an advcl edge and
a conditional, a nmod edge and a relation modi-
fier. For clausal complements, a null argument in the
source proposition is updated with the target propo-
sition. For conditionals and nominal modifiers, a
new proposition is created with the source and target
propositions as arguments. The relation of the new
proposition is derived from the target of the mark
edge from the relation head of target proposition.

4.5 Comparison with Ollie

NESTIE uses an approach similar to OLLIE and
WOE to learn dependency parse based syntactic pat-
terns. However, there are significant differences.
First, OLLIE and WOE rely on extractions from
REVERB and Wikipedia info-boxes respectively for
bootstrapping. Most of these relations are binary.
On the contrary, our algorithm is based on high-
confidence seed templates that are more expressive
and hence learn patterns expressing different ways in
which the proposition as a whole can be expressed.
Though the arguments in OLLIE can be expanded to
include the n-ary arguments, NESTIE encodes them
in the seed templates and learns different ways of
expressing these arguments. Also, similar to OL-
LIE, NESTIE can extract propositions that are not
just mediated by verbs.

5 Experiments

We conducted an experimental study to compare
NESTIE to other state-of-the-art extractors. We
found that it achieves higher informativeness and
produces more correct and minimal propositions
than other extractors.

5.1 Experimental Setup

We used two datasets released by (Del Corro and
Gemulla, 2013) in our experiments: 200 random
sentences from Wikipedia, and 200 random sen-
tences from New York Times (NYT). We compared
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Dataset Reverb Ollie ClausIE NestIE

NYT dataset
Avg. Informativeness 1.437/5 2.09/5 2.32/5 2.762/5
Correct 187/275 (0.680) 359/529 (0.678) 527/882 (0.597) 469/914 (0.513)
Minimal (among correct) 161/187 (0.861) 238/359 (0.663) 199/527 (0.377) 355/469 (0.757)

Wikipedia dataset
Avg. Informativeness 1.63/5 2.267/5 2.432/5 2.602/5
Correct 194/258 (0.752) 336/582 (0.577) 453/769 (0.589) 415/827 (0.501)
Minimal (among correct) 171/194 (0.881) 256/336 (0.761) 214/453 (0.472) 362/415 (0.872)

Figure 5: Informativeness and number of correct and minimal extractions as fraction of total extractions.

NESTIE against three OIE systems: REVERB, OL-
LIE and CLAUSIE. Since the source code for each of
the extractors was available, we independently ran
the extractors on the two datasets. Next, to make the
extractions comparable, we configured the extrac-
tors to generate triple propositions. REVERB and
CLAUSIE extractions were available as triples by
default. OLLIE extends its triple proposition repre-
sentation. So, we generated an additional extraction
for each of the possible extensions of a proposition.
NESTIE uses a nested representation. So, we simply
extracted the innermost proposition in a nested rep-
resentation as a triple and allowed the subject and
the object in the outer proposition to contain a ref-
erence to the inner triple. By preserving references
the context of a proposition is retained while allow-
ing for queries at various granularity levels.

We manually labeled the extractions obtained
from all extractors to 1) maintain consistency, 2)
additionally, assess if extracted triples were infor-
mative and minimal. Some extractors use heuris-
tics to identify arguments and/or relation phrase
boundaries, which leads to over-specific arguments
that render the extractions unusable for other down-
stream applications. To assess the usability of ex-
tractions, we evaluated them for minimality (Bast
and Haussmann, 2013). Furthermore, the goal of
our system is to extract as many propositions as pos-
sible and lose as little information as possible. We
measure this as informativeness of the set of the ex-
tractions for a sentence. Since computing informa-
tiveness as a percentage of text contained in at least
one extraction could be biased towards long extrac-
tions, we used an explicit rating scale to measure
informativeness.

Two CS graduate student labeled each extraction
for correctness (0 or 1) and minimality (0 or 1). For

each sentence, they label the set of extractions for in-
formativeness (0-5). An extraction is marked correct
if it is asserted in the text and correctly captures the
contextual information. An extraction is considered
minimal if the arguments are not over-specified i.e.
they don’t subsume another extraction or have con-
junctions or are excessively long. Lastly, they rank
the set of extractions on a scale of 0-5 (0 for bad,
5 for good) based on the coverage of information in
the original sentence. The agreement between label-
ers was measured in terms of Cohens Kappa.

5.2 Comparative Results

The results of our experimental study are summa-
rized in Figure 5 which shows the number of cor-
rect and minimal extractions, as well as the total
number of extractions for each extractor and dataset.
For each dataset, we also report the macro-average
of informativeness reported by the labelers. We
found moderate inter-annotator agreement: 0.59 on
correctness and 0.53 on minimality for both the
datasets. Each extractor also includes a confidence
score for the propositions. But since each extractor
has its unique method to find confidence, we com-
pare the precision over all the extractions instead of
a subset of high-confidence extractions.

NESTIE produced many more extractions, and
more informative extractions than other systems.
There appears to be a trade-off between informa-
tiveness and correctness (which are akin to recall
and precision, respectively). CLAUSEIE is the sys-
tem with results closer to NESTIE than other sys-
tems. However, the nested representation and propo-
sition linking used by NESTIE produce substantially
more (1.7-1.8 times more) minimal extractions than
CLAUSEIE, which generates propositions from the
constituents of the clause. Learning non-verb medi-
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ated extraction patterns and proposition linking also
increase the syntactic scope of relation expressions
and context. This is also reflected in the average
informativeness score of the extractions. NESTIE
achieves 1.1-1.9 times higher informativeness score
than the other systems.

We believe that nested representation directly im-
proves minimality, independent of other aspects of
extractor design. To explore this idea, we conducted
experiments on OLLIE, which does not expand the
context of the arguments heuristically unlike other
extractors. Of the extractions labeled correct but not
minimal by the annotators on the Wikipedia dataset,
we identified extractions that satisfy one of: 1) has
an argument for which there is an equivalent extrac-
tion (nested extractions), 2) shares the same subject
with another extraction whose relation phrase con-
tains the relation and object of this extraction (n-
ary extractions), 3) has an object with conjunction.
Any such extractions can be made minimal and in-
formative with a nested representation. 73.75% of
the non-minimal correct extractions met at least one
of these conditions, so by a post-processing step,
we could raise the minimality score of OLLIE by
17.65%, from 76.1% to 93.75%.

5.3 Error Analysis of NestIE

We did a preliminary analysis of the errors made
by NESTIE. We found that in most of the cases
(about 33%-35%), extraction errors were due to in-
correct dependency parsing. This is not surprising as
NESTIE relies heavily on the parser for learning ex-
traction patterns and linking propositions. An incor-
rect parse affects NESTIE more than other systems
which are not focused on extracting finer grained in-
formation and can trade-off minimality for correct-
ness. An incorrect parse not only affects the pattern
matching but also proposition linking which either
fails to link two propositions or produces an incor-
rect proposition.

Example 4 Consider the statement, “A day after
strong winds stirred up the Hauraki Gulf and broke
the mast of Team New Zealand, a lack of wind
caused Race 5 of the America’s Cup to be aban-
doned today.”. The statement entails following as-
sertions:
A1: “strong winds stirred up the Hauraki Gulf”

A2: “strong winds broke the mast of Team New
Zealand”

A3: “a lack of wind caused Race 5 of the America’s
Cup to be abandoned”

A1 and A2 are parsed correctly. A3 is parsed
incorrectly with Race 5 as object of the verb
caused. Some extractors either don’t capture A3
or return an over-specified extraction, (a lack of
wind, caused, Race 5 of the America ’s Cup to be
abandoned today). Such an extraction is correct but
not minimal.

To maintain minimality, NESTIE aims to extract
propositions, P1: (Race 5 of the America ’s Cup, be
abandoned, φ) and P2: (a lack of wind, caused, P1).
However, it fails because of parser errors. It extracts
incorrect proposition, P3: (a lack of wind, caused,
Race 5) corresponding to A3 and links it to propo-
sitions for A1 and A2. Linking an incorrect propo-
sition generates more incorrect propositions which
hurt the system performance.

However, we hope this problem can be allevi-
ated to some extent as parsers become more robust.
Another approach could be to use clause segmenta-
tion to first identify clause boundaries and then use
NESTIE on reduced clauses. As the problem be-
comes more severe for longer sentences, we wish to
explore clause processing for complex sentences in
future.

Another source of errors was under-specified
propositions. Since our nested representation al-
lows null arguments for intransitive verb phrases
and for linking propositions, failure to find an ar-
gument/proposition results in an under-specified ex-
traction. We found that 27% of the errors were be-
cause of null arguments. However, by ignoring ex-
tractions with null arguments we found that preci-
sion increases by only 4%-6% (on Wikipedia). This
explains that many of the extractions with empty ar-
guments were correct, and need special handling.
Other sources of errors were: aggressive general-
ization of an extraction pattern to unseen relations
(24%), unidentified dependency types while parsing
long, complex sentences (21%), and errors in ex-
panding the scope of arguments and linking extrac-
tions (20%).
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6 Related Work

As OIE has gained popularity to extract propositions
from large corpora of unstructured text, the problem
of the extractions being uninformative and incom-
plete has surfaced. A recent paper (Bast and Hauss-
mann, 2014) pointed out that a significant fraction
of the extracted propositions is not informative. A
simple inference algorithm was proposed that uses
generic rules for each semantic class of predicate to
derive new triples from extracted triples. Though it
improved the informativeness of extracted triples, it
did not alleviate the problem of lost context in com-
plex sentences. We, therefore, create our own ex-
tractions.

Some recent works (Bast and Haussmann, 2013;
Angeli et al., 2015) have tried to address the prob-
lem of long and uninformative extractions in open-
domain information extraction by finding short en-
tailment or clusters of semantically related con-
stituents from a longer utterance. These clusters are
reduced to triples using schema mapping to known
relation types or using a set of hand-crafted rules.
NESTIE shares similar objectives but uses boot-
strapping to learn extraction patterns.

Bootstrapping and pattern learning has a long his-
tory in traditional information extraction. Systems
like DIPRE (Brin, 1998), SNOWBALL (Agichtein
and Gravano, 2000), NELL (Mitchell, 2010), and
OLLIE bootstrap based on seed instances of a rela-
tion and then learn patterns for extraction. We fol-
low a similar bootstrapping algorithm to learn ex-
traction patterns for n-ary and nested propositions.

Using a nested representation to express com-
plex and n-ary assertions has been studied in closed-
domain or ontology-aided information extraction.
Yago (Suchanek et al., 2008) and (Nakashole and
Mitchell, 2015) extend binary relations to capture
temporal, geospatial and prepositional context infor-
mation. We study such a representation for open-
domain information extraction.

7 Conclusions

We presented NESTIE, a novel open information ex-
tractor that uses nested representation for expressing
complex propositions and inter-propositional rela-
tions. It extends the bootstrapping techniques of pre-
vious approaches to learn syntactic extraction pat-

terns for the nested representation. This allows it to
obtain higher informativeness and minimality scores
for extractions at comparable precision. It produces
1.7-1.8 times more minimal extractions and achieves
1.1-1.2 times higher informativeness than CLAU-
SEIE. Thus far, we have tested our bootstrap learn-
ing and proposition linking approaches only on a
small dataset. We believe that its performance will
improve with larger datasets. NESTIE can be seen
as a step towards a system that has a greater aware-
ness of the context of each extraction and provides
informative extractions to downstream applications.
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Schneider, and Noah A Smith. 2014. Frame-semantic
parsing. Computational linguistics, 40(1):9–56.

Marie-Catherine De Marneffe, Bill MacCartney, Christo-
pher D Manning, et al. 2006. Generating typed de-
pendency parses from phrase structure parses. In Pro-
ceedings of LREC, volume 6, pages 449–454.

Luciano Del Corro and Rainer Gemulla. 2013. Clausie:
clause-based open information extraction. In Proceed-
ings of the IW3C2, pages 355–366.

Anthony Fader, Stephen Soderland, and Oren Etzioni.
2011. Identifying relations for open information ex-
traction. In Proceedings of EMNLP, pages 1535–
1545.

Anthony Fader, Luke Zettlemoyer, and Oren Etzioni.
2014. Open question answering over curated and ex-
tracted knowledge bases. In Proceedings of ACM-
SIGKDD, pages 1156–1165. ACM.

Raphael Hoffmann, Congle Zhang, Xiao Ling, Luke
Zettlemoyer, and Daniel S Weld. 2011. Knowledge-
based weak supervision for information extraction of
overlapping relations. In Proceedings of ACL-HLT,
pages 541–550.

Paul Kingsbury and Martha Palmer. 2002. From tree-
bank to propbank. In LREC.

Tom Mitchell. 2010. Never-ending learning. Technical
report, DTIC Document, Carnegie Mellon University.

Ndapandula Nakashole and Tom M Mitchell. 2015. A
knowledge-intensive model for prepositional phrase
attachment. In Proceedings of ACL, pages 365–375.

V. Punyakanok, D. Roth, and W. Yih. 2008. The impor-
tance of syntactic parsing and inference in semantic
role labeling. Computational Linguistics, 34(2).

Michael Schmitz, Robert Bart, Stephen Soderland, Oren
Etzioni, et al. 2012. Open language learning for infor-
mation extraction. In Proceedings of EMNLP-CoNLL
2012, pages 523–534.

Fabian M Suchanek, Gjergji Kasneci, and Gerhard
Weikum. 2008. Yago: A large ontology from
wikipedia and wordnet. Web Semantics: Science, Ser-
vices and Agents on the World Wide Web, 6(3):203–
217.

Kristina Toutanova, Aria Haghighi, and Christopher D
Manning. 2008. A global joint model for semantic
role labeling. Computational Linguistics, 34(2):161–
191.

Fei Wu and Daniel S Weld. 2010. Open information ex-
traction using wikipedia. In Proceedings of the ACL,
pages 118–127.

Alexander Yates, Michael Cafarella, Michele Banko,
Oren Etzioni, Matthew Broadhead, and Stephen
Soderland. 2007. Textrunner: open information ex-
traction on the web. In Proceedings of NAACL-HLT:
Demonstrations, pages 25–26.

64


