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Abstract 

We present a novel way of extracting fea-

tures from short texts, based on the acti-

vation values of an inner layer of a deep 

convolutional neural network. We use the 

extracted features in multimodal senti-

ment analysis of short video clips repre-

senting one sentence each. We use the 

combined feature vectors of textual, vis-

ual, and audio modalities to train a classi-

fier based on multiple kernel learning, 

which is known to be good at heteroge-

neous data. We obtain 14% performance 

improvement over the state of the art and 

present a parallelizable decision-level da-

ta fusion method, which is much faster, 

though slightly less accurate. 

1 Introduction 

The advent of the Social Web has enabled any-

one with a smartphone or computer to easily cre-

ate and share their ideas, opinions and content 

with millions of other people around the world.  

Much of the content being posted and consumed 

online is video.  With billions of phones, tablets 

and PCs shipping today with built-in cameras 

and a host of new video-equipped wearables like 

Google Glass on the horizon, the amount of vid-

eo on the Internet will only continue to increase. 

It has become increasingly difficult for re-

searchers to keep up with this deluge of video 

content, let alone organize or make sense of it.  

Mining useful knowledge from video is a critical 

need that will grow exponentially, in pace with 

the global growth of content. This is particularly 

important in sentiment analysis (Cambria et al., 

2013a; 2013b; 2014), as both service and product 

reviews are gradually shifting from unimodal to 

multimodal. We present a method for detecting 

sentiment polarity in short video clips of a person 

uttering a sentence.  

We do it using all three modalities: visual, 

such as facial expression, audio, such as pitch, 

and textual, the contents of the uttered sentence. 

While the visual and the audio modalities pro-

vide additional evidence that improves classifica-

tion accuracy, we found the textual modality to 

have the greater impact on the result (Cambria 

and Hussain, 2015; Cambria et al., 2013c; Poria 

et al., 2015a; 2015b). 

In this paper, we propose a novel way for fea-

ture extraction from text. Given a training corpus 

with hand-annotated sentiment polarity labels, 

following Kim (2014), we train a deep convolu-

tional neural network (CNN) on it. However, 

instead of using it as a classifier, as Kim did, we 

use the values from its hidden layer as features 

for a much more advanced classifier, which gives 

superior accuracy. Similar ideas have been sug-

gested in the context of computer vision for deal-

ing with images, but have not been applied in the 

context of NLP to textual data, and, specifically, 

for sentiment polarity classification. 

2 Overview of the Method 

In this paper, we present two different methods 

for dealing with multimodal data: feature-level 

fusion and decision-level fusion, each one having 

its advantages and disadvantages. 

We extracted features from the data for each 

modality independently. In the case of feature-

level fusion, we then concatenated the obtained 

feature vectors and fed the resulting long vector 

into a supervised classifier. In the case of deci-

sion-level fusion, we fed the features of each 

modality into separate classifiers, and then com-

bined their decisions. Our experimental results 

show that both of these methods outperform the 

state of the art by a large margin. 
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3 Textual Features 

We used a CNN as a trainable feature extractor 

to extract features from the textual data. Utter-

ances in the original dataset are in Spanish. 

While usually it is better to work directly with 

the source language (Wang et al., 2013), in this 

work we translated utterances into English using 

Google translator. Without the translation into 

English, 68.56% accuracy was obtained. 

The choice of CNN for feature extraction is 

justified by the following considerations: 

1. The convolution layers of CNN can be seen 

as a feature extractor, whose output is then 

fed into a rather simplistic classifier useful 

for training the network but not the best at 

actual classification. CNN forms local fea-

tures for each word and combine them to 

produce a global feature vector for the whole 

text. However, the features that CNN builds 

internally can be extracted and used as input 

for another, more advanced classifier. This 

turns CNN, originally a supervised classifier, 

into a trainable feature extractor. 

2. As a feature extractor, CNN is automatic and 

does not rely on handcrafted features. In par-

ticular, it adapts well to the peculiarities of 

the specific dataset, in a supervised manner. 

3. The features it gives are based on a hierarchy 

of local features, reflecting well the context. 

A drawback of CNN as a classifier is that it 

finds only a local optimum, since it uses the 

same backpropagation technique as MLP. How-

ever, inspired by ideas introduced in the context 

of computer vision (Bluche et al., 2013), we, for 

the first time in the context of NLP, extract the 

features that CNN builds internally and feed 

them into a much more advanced classifier. In 

our experiments, this was SVM, or roughly its 

multi-kernel version MKL, which is good at 

finding the global optimum. Thus, the properties 

of CNN and SVM complement each other in 

such a way that their advantages are combined. 

To form the input for the CNN feature extrac-

tor, for each word in the text we built a 306-

dimensional vector by concatenating two parts: 

1. Word embeddings. We used a publicly avail-

able word2vec dictionary (Mikolov et al., 

2013a; 2013b; 2013c), trained on a 100 mil-

lion word corpus from Google News using 

the continuous bag of words architecture. 

This dictionary provides a 300-dimensional 

vector for each word. For words not found in 

this dictionary, we used random vectors. 

2. Part of speech. We used 6 basic parts of 

speech (noun, verb, adjective, adverb, prepo-

sition, conjunction) encoded as a 6-

dimensional binary vector. We used Stanford 

Tagger as a part of speech tagger. 

For each input text, the input vectors for the 

CNN were a concatenation of three parts: 

1. Left padding. Two dummy “words” with 

zero vectors were added at the beginning of 

each text, in order to provide space for con-

volution, since at the convolution layers we 

used the kernel size of at most 3. 

2. Text. All 306-dimensional vectors corre-

sponding to each word were concatenated, 

preserving the word order. 

3. Right padding. Again, at least 2 dummy 

“words” with zero vectors were added after 

each sentence to provide space for convolu-

tion. To form vectors for all texts in the cor-

pus of the same dimensionality, they were al-

so padded at the right with the necessary 

amount of additional dummy “words.”  

In our experiments, all texts were very short, 

consisting of one sentence, the longest one being 

of 65 words. Thus all input vectors were of di-

mension 306  (2 + 65 + 2) = 21,114. 

The CNN we used consisted of 7 layers: 

1. Input layer, of 21,114 neurons. 

2. Convolution layer, with a kernel size of 3 

and 50 feature maps. The output of this layer 

was computed with a non-linear function; we 

used the hyperbolic tangent. 

3. Max-pool layer with max-pool size of 2. 

4. Convolution layer: kernel size of 2, 100 fea-

ture maps, also using the hyperbolic tangent. 

5. Max-pool layer with max-pool size of 2. 

6. Fully connected layer of 500 neutrons, 

whose values were later used as the extracted 

features. For regularization, we employed 

dropout on the penultimate layer with a con-

straint on L2-norms of the weight vectors. 

7. Output softmax layer of 2 neurons, by the 

number of training labels—the sentiment po-

larity values: positive or negative. This layer 

was used only for training the CNN. 

The CNN was trained using a standard back-

propagation procedure. The training data for the 

output layer were the known sentiment polarity 

labels present in the training corpus for each text. 

As features of the given text, we used the val-

ues of the penultimate, fully connected, layer of 

the CNN. In this way, we used the last output 
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layer of the CNN only for training, but for actual 

decision-making, we replaced it with much more 

sophisticated classifiers, namely, with SVM or 

MKL. Using only CNN as a classifier, 75.50% 

was obtained which is in fact lower than the re-

sult (79.77%) obtained when CNN was used to 

extract trainable features for the SVM classifier. 

We also tried other word vectors having dif-

ferent dimensions, e.g., Glove word vectors and 

Collobart’s word vectors. However, the best ac-

curacy was obtained using Google word2vec. 

4 Visual Features 

We split each clip into frames (still images). 

From each frame, we extracted 68 facial charac-

teristic points (FCPs), such as the position of the 

left corner of the left eye, etc., using the facial 

recognition library CLM-Z (Baltrušaitis et al., 

2012). For each pair of FCPs, we calculated the 

distance. Thus, we characterized each facial ex-

pression by 68  67 / 2 = 2,278 distances. In ad-

dition, for each frame we extracted 6 face posi-

tion coordinates (3D-dimensional displacement 

and angular displacement of face and head) using 

the GAVAM software. This gave 2,278 + 6 = 

2,284 values per frame. 

For each of these values, we calculated its 

mean value and standard deviation over all 

frames of the clip; 4568 features in total. 

5 Audio Features 

We used the openSMILE software (Eyben et al., 

2010) to extract audio features related to the 

pitch and voice intensity. This software extracts 

the so-called low-level descriptors, such as Mel 

frequency cepstral coefficients, spectral centroid, 

spectral flux, beat histogram, beat sum, strongest 

beat, pause duration, pitch, voice quality, percep-

tual linear predictive coefficients, etc., and their 

statistical functions, such as amplitude mean, 

arithmetic mean, root quadratic mean, standard 

deviation, flatness, skewness, kurtosis, quartiles, 

inter-quartile ranges, linear regression slope, etc. 

This gave us 6373 audio features in total. 

6 Feature-Level Fusion 

Feature-level fusion consisted in concatenation 

of the feature vectors obtained for each of the 

three modalities. The resulted vectors and along 

with the sentiment polarity labels from the train-

ing set, were used to train a classifier with a mul-

tiple kernel learning (MKL) algorithm; we used 

the SPF-GMKL implementation (Jain et al., 

2012) designed to deal with heterogeneous data. 

Clearly, feature vectors resulted from concatenat-

ing so different data sources are heterogeneous. 

The parameters of the classifier were found by 

cross validation. We chose a configuration with 8 

kernels: 5 RBF with gamma from 0.01 to 0.05 

and 3 polynomial with powers 2, 3, 4. We also 

tried Simple-MKL; it gave slightly lower results. 

7 Feature Selection 

We significantly reduced the number of features 

using feature selection. We used two different 

feature selectors: one based on the cyclic correla-

tion-based feature subset selection (CFS) and 

another based on principal component analysis 

(PCA) with top K features, where K was experi-

mentally selected and varied for different exper-

iment. For example, in case of audio, visual and 

textual fusion, K was set to 300.  

The union of the features selected by the two 

methods was used. For each unimodal, each bi-

modal, and the multimodal experiment, separate 

feature extraction was performed. The number of 

 

Text Visual Audio 
Pérez-Rosas 

et al. (2013) 

Our method 

 without feature 

selection 

with feature 

selection 

# features, without selection 500 4568 6373    

Unimodal               

#
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437 – – 70.94% 79.14%  79.77%  

– 398 – 67.31% 75.22%  76.38%  

– – 325 64.85% 74.49%  74.22%  

Bimodal 

379 109 – 72.39% 84.97%  85.46%  

384 – 81 72.88% 83.85%  84.12%  

– 242 209 68.86% 82.95%  83.69%  

Multimodal 305 74 58 74.09% 87.89%  88.60%  

Table 1. Accuracy of state-of-the-art method compared with our method with feature-level fusion. 

The number of features is for our experiments, not for [16]. Shaded cells are shared with Table 2. 
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selected features for each experiment is given in 

Table 1. In all cases except for the unimodal ex-

periment with audio modality, feature selection 

slightly improved the results, in addition to the 

improvement in processing time. In the only case 

where feature selection slightly deteriorated the 

result, the difference was rather small. 

8 Unimodal Classification and 

Decision-Level Fusion 

For unimodal experiments and for decision-level 

fusion, we used one classifier per each modality; 

specifically, we used SVM. For each modality, in 

this way we obtained the probabilities of the la-

bels. In unimodal experiments, we chose the la-

bel with the greater probability. 

For decision-level fusion, we added these 

probabilities with weights, which were chosen 

experimentally, and, again, used the most proba-

ble label. The weights we used for decision-level 

fusion were chosen using detailed search with an 

intuition that best performing unimodal classifier 

has higher importance in the fusion. We do not 

claim that these weights are optimal. They are 

indeed sub-optimal and hence encourage the 

scope of future research. 

Knowing a specific decision for the text mo-

dality allowed us to use evidence from a separate 

classifier; we used the one based on the Sentic 

Patterns (SP) (Poria et al., 2014a). It structures 

natural language clauses into a sentiment hierar-

chy used to infer the overall polarity label (posi-

tive vs. negative) for the input sentence. E.g., a 

sentence “The car is very old but it is rather not 

expensive”, is positive, expressing a favorable 

sentiment of the speaker, who recommends pur-

chasing the product. However, “The car is very 

old though it is rather not expensive” is negative, 

expressing reluctance of the speaker to purchase 

the car. Despite the latter contains exactly the 

same concepts as the former, the polarity is op-

posite because of the adversative dependency.  

On benchmark datasets, SP perform better 

than state of the art sentiment classifiers, which 

outperforms the textual classifier described in 

Section 3. Since SP are a superior classifier, we 

used it as a bias to modify the weight of the tex-

tual modality. However, SP do not report a prob-

ability, but only a binary decision, so we only 

used them to tweak the weights in the probability 

mix: when the text-based unimodal classifier 

agreed with SP, we increased the weight of the 

text modality. Another benefit of the decision-

level fusion is its speed, since fewer features are 

used for each classifier and since SVM, used as a 

unimodal classifier, is faster than MKL. In addi-

tion, separate classifiers can be run in parallel. 

9 Experimental Results 

We report results for tenfold cross-validation. 

9.1 Dataset 

We experimented on the dataset described by 

Morency et al. (2011). The dataset consists of 

498 short video fragments where a person utters 

one sentence. The items are manually tagged for 

sentiment polarity, which can be positive, nega-

tive, or neutral. We discarded the neutral items 

from the dataset, which gave us a dataset of 447 

clips tagged as positive or negative. 

The video in the dataset is present in MP4 

format with the resolution of 360  480, to which 

the developers converted all videos originally 

collected in different formats with different reso-

lution. The duration of the clips is about 5 sec-

onds on average. About 80% of the clips present 

female speakers. The developers provided tran-

scription of the text of the sentences, which we 

used in our textual modality processing. 

9.2 Results for Each Modality Separately 

As a baseline, we used classifiers trained on fea-

tures extracted from each modality separately. 

The results are shown in Table 1, unimodal sec-

tion. The number of features after feature selec-

tion is indicate for the modality used. 

The table shows that the best results were ob-

tained for textual modality; the visual modality 

performed worse, and the audio was least useful. 

However, even the worst of our results is much 

better than the state-of-the-art (Pérez-Rosas et 

al., 2013). In each modality separately, our re-

sults outperform the state of the art by about 9%, 

which is about 30% reduction in error rate. 

9.3 Results with Feature-level Fusion 

As a yet another baseline, we tried feature-level 

fusion of only two modalities.  

The results are shown in Table 1, bimodal sec-

tion. Again, the number of features after feature 

selection is indicated for the two modalities used. 

As expected, missing the audio features was the 

least important, missing the video features was 

more significant, and missing the text features 

was most painful for the accuracy.  

Even the worst result obtained with fusion of 

two modalities outperformed our best unimodal 

result, as well as the best result of the state of the 
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art. Finally, the best result, shown in the multi-

modal section of Table 1, was obtained when all 

three modalities were fused. This result outper-

forms the corresponding result of the state of the 

art by 14%, which gives 56% of error reduction. 

9.4 Results with Decision-level Fusion 

The results for decision-level fusion are shown in 

Table 2, last column. The shaded cells are shared 

with Table 1. In the second section, three classi-

fiers were fused at the decision level. In the third 

section, two modalities indicated with the plus 

sign were fused at the feature level (giving the 

accuracy indicated in the penultimate column) 

and then this classifier was fused at the decision 

level with the third modality. The weights corre-

spond to the share of each modality. In the last 

section, the weight for the unimodal classifier is 

shown, and the weight for the bimodal classifier 

was its complement to 1. 

For the experiments that involved tweaking of 

the weights with the SP oracle, pairs of weights 

are shown: the weight used when the text mo-

dality results corresponded (left) with the SP 

prediction and the weight used when they did not 

(right). The accuracy with at least partial feature-

level fusion was better than that for no feature-

level fusion at all (3-way). As in the bimodal sec-

tion of Table 1, excluding audio from feature-

level fusion was least problematic and excluding 

text was most problematic.  

In all cases, decision-level fusion did not sig-

nificantly improve the accuracy of the best sum-

mand. However, separating text-based classifier 

permitted us to use the Sentic Patterns tweak, 

which cannot be used if the text-only results are 

not known. With this tweak, the best result was 

obtained. Even with this improvement, the accu-

racy of decision-level fusion was slightly lower 

than that of feature-level fusion; in exchange for 

much about twice better processing speed. 

A baseline decision level evaluation strategy 

was taken which allowed us to take majority vot-

ing among the predicted class labels by unimodal 

classifiers. Based on this strategy the final class 

label was chosen by the maximum of the three 

unimodal models’ votes. For the multimodal fu-

sion using this baseline method only 72.83% ac-

curacy was obtained. As expected the proposed 

feature and decision level fusion outperformed 

this baseline method by a large margin. 

10 Conclusion 

We have presented a novel method for determin-

ing sentiment polarity in video clips of people 

speaking. We combine evidence from the words 

they utter, the facial expression, and the speech 

sound. The main novelty of this paper consists in 

using deep CNN to extract features from text and 

in using MKL to classify the multimodal hetero-

geneous fused feature vectors. 

We also presented a faster variant of our 

method, based on decision-level fusion. In case 

of the decision level fusion experiment, the cou-

pling of Sentic Patterns to determine the weight 

of textual modality has enriched the performance 

of multimodal sentiment analysis framework 

considerably. However, the parameter selection 

for decision level fusion produced suboptimal 

results. A systematic mathematical approach for 

decision level fusion is an important future work. 

Our future work will focus on extracting more 

relevant features from the visual modality. We 

will employ deep 3D convolutional neural net-

works on this modality for feature extraction. We 

will use a feature selection method to obtain key 

features; this will ensure the scalability as well as 

stability of the framework. We will continue our 

study of reasoning over text (Jimenez et al., 

2015; Pakray et al., 2011; Sidorov et al., 2014; 

Sidorov, 2014) and in particular of concept-

based sentiment analysis (Poria et al., 2014b). 

 Sentic 

Patterns 

Weights  Fusion Accuracy 

Text Visual Audio  Feature Decision 

Unimodal accuracy 81.73% 79.77% 76.38% 74.22%    

Unimodal 

3-way 

 3-way majority voting   72.83% 

no 0.45 0.3 0.25   81.24% 

yes 0.5 / 0.25 0.3 / 0.4 0.2 / 0.35   82.06% 

Bimodal 

with unimodal 

 + + 0.3  85.46% 85.53% 

 + 0.23 +  84.12% 84.86% 

no 0.4 + +  83.69% 84.48% 

yes 0.45 / 0.3 + +  same 86.27% 

Table 2. Accuracy of our method with decision-level fusion and feature selection. 
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