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Abstract

Analyzing arguments in user-generated
Web discourse has recently gained atten-
tion in argumentation mining, an evolving
field of NLP. Current approaches, which
employ fully-supervised machine learn-
ing, are usually domain dependent and
suffer from the lack of large and diverse
annotated corpora. However, annotating
arguments in discourse is costly, error-
prone, and highly context-dependent. We
asked whether leveraging unlabeled data
in a semi-supervised manner can boost
the performance of argument component
identification and to which extent is the
approach independent of domain and reg-
ister. We propose novel features that ex-
ploit clustering of unlabeled data from de-
bate portals based on a word embeddings
representation. Using these features, we
significantly outperform several baselines
in the cross-validation, cross-domain, and
cross-register evaluation scenarios.

1 Introduction

Argumentation mining, an evolving sub-field of
NLP, deals with analyzing argumentation' in var-
ious genres, such as legal cases (Mochales and
Moens, 2011), student essays (Stab and Gurevych,
2014a), and medical and scientific articles (Green,
2014; Teufel and Moens, 2002). Recently, the fo-
cus of argumentation mining has also shifted to the
Web registers (such as comments to articles, forum
posts, or blogs) which is motivated by the need of

! Argumentation is a verbal activity for which the goal
consists of convincing the listener or reader of the acceptabil-
ity of a standpoint by means of a constellation of propositions
Justifying or refuting the proposition expressed in the stand-
point (van Eemeren et al., 2002) or the art of persuading
others to think or act in a definite way, including all writing
and speaking which is persuasive in form (Ketcham, 1917).

retrieving and understanding ordinary people’s ar-
guments to various contentious topics on the large
scale. Applications include passenger rights and
protection (Park and Cardie, 2014), hotel reviews
(Wachsmuth et al., 2014), and controversies in ed-
ucation (Habernal et al., 2014).

Despite the plethora of existing argumentation
theories (van Eemeren et al., 2014), the preva-
lent view in argumentation mining treats argu-
ments as discourse structures consisting of sev-
eral argument components, such as claims and
premises (Peldszus and Stede, 2013). Current
approaches to automatic analysis of argumenta-
tion usually follow the fully supervised machine-
learning paradigm (Biran and Rambow, 2011;
Stab and Gurevych, 2014b; Park and Cardie,
2014) and rely on manually annotated datasets.
Only few publicly available argumentation cor-
pora exist, as annotations are costly, error-prone,
and require skilled human annotators (Stab and
Gurevych, 2014a; Habernal et al., 2014).

To overcome the limited scope and size of the
existing annotated corpora, semi-supervised meth-
ods can be adopted, as they gain performance by
exploiting large unlabeled datasets (Settles, 2012).
However, unlike in other NLP tasks where data
can be cheaply labeled using for example distant
supervision, employing such methods in argumen-
tation mining is questionable. First, argumenta-
tion is an act of persuasion (Nettel and Roque,
2011; Mercier and Sperber, 2011) but not all user-
generated texts can be treated as persuasive (Park
and Cardie, 2014; Habernal et al., 2014), thus the
selection of an appropriate unlabeled dataset rep-
resents a problem on its own. Second, argument
components (e.g., claims or premises) are highly
context-dependent and cannot be easily labeled
in distant data using predefined patterns. So far,
semi-supervised methods for argumentation min-
ing remain unexplored.

In this article, we tackle argumentation min-
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ing of user-generated Web data by exploiting de-
bate portals—semi-structured discussion websites
where members pose contentious questions to the
community and allow others to pick a side and
provide their opinions and arguments in order to
‘win’ the debate.> Our first research question
is whether debate portals (which contain noisy
user-generated data) can be utilized in a semi-
supervised manner for fine-grained identification
of argument components. As a second research
question, we investigate to what extent our meth-
ods are domain independent and evaluate their
adaptation across several domains and registers.

Our contribution is three-fold. First, to the best
of our knowledge, we present the first successful
attempt to semi-supervised argumentation mining
in Web data based on exploiting unlabeled exter-
nal resources. We leverage these resources and
derive features in an unsupervised manner by pro-
jecting data from debate portals into a latent argu-
ment space using unsupervised word embeddings
and clustering. Second, our novel features sig-
nificantly outperform state-of-the-art features in
all scenarios, namely in cross-validation, cross-
domain evaluation, and cross-register evaluation.
Third, to ensure full reproducibility of our experi-
ments, we provide all data and source codes under
free licenses.’

2 Related work

Analysis of argumentation has been an active topic
in numerous research areas, such as philosophy
(van Eemeren et al., 2014), communication studies
(Mercier and Sperber, 2011), and informal logic
(Blair, 2004), among others. In this section, we
will focus on the most related works on argumen-
tation mining techniques in NLP in the first part,
with an emphasis on Web data in the second part.

Mochales and Moens (2011) based their work
on argumentation schemes (Walton et al., 2008)
and experimented with Araucaria and ECHR
datasets using supervised models to classify ar-
gumentative and non-argumentative sentences (=
0.7F1) and their structure. Feng and Hirst (2011)
classified argument schemes on the Araucaria
dataset, reaching 0.6-0.9 accuracy. Experiments
on this dataset were also conducted by Rooney et
al. (2012), who classified sentences to four cate-
gories (conclusion, premise, conclusion-premise,

2For instance createdebate.comor debate. org
*https://github.com/habernal/emnlp2015

and none) and achieved 0.65 accuracy. These
approaches assume the text is already segmented
into argument components. Stab and Gurevych
(2014b) examined argumentation in persuasive
essays and classified argument components into
four categories (premise, claim, major claim, non-
argumentative) using SVM and achieved 0.73
macro Fj score. They further classified argu-
ment relations (support and attack) and reached
0.72 macro Fi score. The best-performing fea-
tures were structural features (such as the location
or length ratios), as persuasive essays usually com-
ply with a certain structure which can be seen as a
potential drawback of this approach.

Regarding user-generated Web data, Biran and
Rambow (2011) used naive Bayes for classifying
justification of subjective claims from blogs and
Wikipedia talk pages, relying on features from
RST Treebank and manually-processed n-grams.
In similar Web registers, Rosenthal and McK-
eown (2012) automatically determined whether
a sentence is a claim using logistic regression
and various lexical and sentiment-related features
and achieved accuracy about 0.66-0.71. Park
and Cardie (2014) classified propositions in user
comments into three classes (verifiable experi-
ential, verifiable non-experiential, and unverifi-
able) using SVM and reached 0.69 macro F}
score. Goudas et al. (2014) identified premises in
Greek social media texts using BIO encoding and
achieved 0.42 F} score with Conditional Random
Fields. The research gaps in the above-mentioned
approaches are the following. First, the argumen-
tation models are simplified to either claims or a
few types of premises/propositions. Second, the
segmentation of discourse into argument compo-
nents is ignored (except the work of Goudas et al.
(2014)). Recently, Boltuzi¢ and §najder (2015)
employed hierarchical clustering to cluster argu-
ments in online debates using embeddings projec-
tion, but in contrast to our work they performed
only intrinsic evaluation of the clusters.

Debate portals have been used in a related body
of research, such as classifying support and attack
between posts by Cabrio and Villata (2012), or
stance detection by Hasan and Ng (2013) or Got-
tipati et al. (2013). These approaches consider
the complete documents (posts) but do not ana-
lyze the micro-level argumentation (e.g., claims or
premises).
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Doc #2823 (article comment, public-private-schools): im: 1 agree - Ki in_th li

parents DO need to be involved.] The more people leave, the worse its going to become. [premise: The public school system
lets them deal with real life too, unfortunate that it may be but that is what’s out there in college and the work force too.]
[premise: There are still great teachers in the public schools - lets stand behind them.]

Doc #2224 (forumpost, single-sex-education): [backing: 1 went to an all boys school —] [claim: Can’t say I particularly liked
it, I would of much preferred gone to a co-ed.] [premise: It is closer to the ’real world’ that way. Kids should grow up in the
company of both sexes... They will be more at ease around the opposite sex when they are older and it just makes sense.] If it
is purely education you are concerned about (and not so much behaviour), our year (at a private school) went shockingly bad
in OP scores. We were the worst in 12 years and were beaten by LOTS of co-ed and public schools... So you can never tell. In
saying that my sister really enjoyed going to an all girls school. Her year went really well too. Ask your daughters what they

Figure 1: Two examples of argument annotation of an article comment and a forum post.

3 Data

As data for training and evaluation of our methods,
we use a corpus consisting of 340 English docu-
ments (approx. 90k tokens) annotated* with argu-
mentation by Habernal et al. (2014). Compared to
other corpora mentioned in the related work, this
corpus is the largest one to date that covers dif-
ferent domains and spans several registers of user-
generated Web content. In particular, the corpus
comprises four registers (comments to articles, fo-
rum posts, blogs, and argumentative newswire ar-
ticles) and covers six domains related to educatio-
nal controversies (homeschooling, private vs. pub-
lic schools, mainstreaming, single-sex education,
prayer in schools, and redshirting).

The argumentation model used in this corpus
is based on extended Toulmin’s model (Toulmin,
1958). Each document contains usually one ar-
gument, where each argument consists of several
argument components. There are five different
components in this model, namely, the claim (the
statement about to be established in the argument
which conveys author’s stance towards the topic),
the premise(s) (propositions that are intended to
give reasons of some kind for the claim), the back-
ing (additional information used to back-up the
argument), the rebuttal (attacks the claim), and
the refutation (which attacks the rebuttal). Rela-
tions between the argument components are en-
coded implicitly in the function of the particular
component type, for instance, premises are always
attached to the claim. We made two observations
in the data: the claim is often implicit (must be
inferred by the reader), and some sentences have
no argumentative function (thus are not labeled by
any argument component).’

4 Available at www . ukp . tu-darmstadt .de/data/
argumentation-mining/

SA publication containing a thorough analysis of the
dataset is pending.

Figure 1 depicts two example annotations from
the corpus. Argument components were annotated
on the token level as non-overlapping annotation
spans. We therefore represent the argument anno-
tations using BIO encoding. Each token is labeled
with one of the 11 categories (5 argument com-
ponent types x B or I tag 4+ one O category for
non-argumentative text).

4 Method

We cast the task of identifying argument compo-
nents as a sequence tagging problem and employ
SVM"™ ™ (Joachims et al., 2009).° For linguis-
tic annotations and feature engineering, we rely
on two UIMA-based frameworks — DKProCore
(Eckart de Castilho and Gurevych, 2014) and
DKProTC (Daxenberger et al., 2014).

Although the argument component annotations
in the corpus are aligned to the token boundaries
(token-level annotations), the minimal classifica-
tion unit in our sequence tagging approach is set
to the sentence level. First, this allows us to cap-
ture rich features that are available for entire sen-
tences as opposed to the token level. Second, by
modeling sequences on the token level we would
lose the advantage of SVM’""" to estimate depen-
dencies between labels, as the label context is lim-
ited due to computational feasibility. On the token
level, the label sequences are rather static (long se-
quences with the same label), as opposed to the
sentence level. Before the classification step, we
adjust all annotation boundaries (note that we use
11 BIO labels) so that they are aligned to the sen-
tence boundaries and each sentence is then treated
as a single classification unit with one label (for
example, the first sentence from Figure 1 with
token labels Claim-B, Claim-I, Claim-I, ... be-

SKeerthi and Sundararajan (2007) conclude that perfor-
mance of SVM™" is comparable to another widely used
method, Conditional Random Fields (Lafferty et al., 2001)

2129



comes Claim-B). After classification, the labels
are mapped back to tokens (so that, for example,
Claim-B sentence label is transformed to Claim-
B, Claim-I, ... token labels). However, all eval-
uations are performed on the token level and the
performance is always measured against the orig-
inal token labels. Using this approximation, we
lose only about 10% of F performance.’

4.1 Baseline features

Lexical baseline (FS0) We encode the presence
of unigrams, bigrams, and trigrams in the sentence
as ‘one-hot’ (binary) features.

Structural and syntactic features (FS1) Since
the presence of discourse markers has been shown
to be helpful in argument component analysis (e.g,
“therefore” and “since” for premises or “think”
and “believe” for claims), we encode the first
and last three words as binary features. Further-
more, we capture the relative position of the sen-
tence in the paragraph and the document, the num-
ber of part of speech 1-3 grams, maximum de-
pendency tree depth, constituency tree produc-
tion rules, and number of sub-clauses (Stab and
Gurevych, 2014b). We used Stanford POS Tagger
(Toutanova et al., 2003), Berkeley parser (Petrov
et al., 2006), and Malt parser (Nivre, 2009).

Sentiment and topic features (FS2) We as-
sume that claims express sentiment, thus we com-
pute five sentiment categories (from very nega-
tive to very positive) using Stanford sentiment an-
alyzer (Socher et al., 2013) and use these values
directly as features. Furthermore, in order to help
detecting off-topic and non-argument sentences,
we employ topic model features. In particular, we
use features taken from a vector representation of
the sentence obtained by using Gibbs sampling on
LDA model (Blei et al., 2003; McCallum, 2002)
with topics trained on unlabeled data provided as
a part of the corpus.®

Semantic and discourse features (FS3) Fea-
tures based on semantic frames has been intro-
duced in relevant works on stance recognition
(Hasan and Ng, 2013). Our features, based on
PropBank semantic role labels and obtained from

"In only 1% of the sentences there are two or more argu-
ment components in it; we arbitrarily choose the largest one.

8The number of topics was empirically set to 30, therefore
for each sentence the topic distribution results into 30 real-
valued features.

NLP Semantic Role Labeler (Choi, 2012), ex-
tract various semantic information (agent, predi-
cate + agent, predicate + agent + patient + (op-
tional) negation, argument type + argument value)
and discourse markers. Discourse relations also
play an important role in argumentation analysis
(Cabrio et al., 2013). We thus employ binary fea-
tures (such as the presence of the sentence in a
chain, the transition type, the distance to previ-
ous/next sentences in the chain, or the number
of inter-sentence coreference links) obtained from
Stanford Coreference Chain Resolver (Lee et al.,
2013). Furthermore, we include features result-
ing from a PTDB-style discourse parser (Li et al.,
2012), such as the type of discourse relation (ex-
plicit, implicit), the presence of discourse connec-
tives, and attributions.

4.2 Unsupervised features

We enrich the above-mentioned features by uti-
lizing external large unlabeled resources — debate
portals. They fulfill several criteria, namely (a)
they are ‘argumentative’ (meant as opposed to,
for example, prose or encyclopedic genres), (b)
they are comprised of user-generated content and
(c) and there is at least some overlap with topics
from our experimental corpus. On the other hand,
they contain noisy texts of questionable quality
and they do not provide any specific argumentative
structure (in fact, these debates are simple discus-
sions to a topic, where each post is only labeled
with a pro or contra stance). Nevertheless, we as-
sume that the posts from (unlabeled) debate por-
tals contain valuable information that will help us
with classifying argument components in labeled
data. In order to do so, we employ clustering based
on latent semantics, which we now formalize as
argument space features.

We assume that phrases (sentences or docu-
ments) can be projected into a latent vector space,
using, typically, a sum or a weighted average of
all the word embeddings vectors in the phrase; see
for example (Le and Mikolov, 2014). Neighbor-
ing vectors in the latent vector space exhibit some
interesting properties, such as semantic similarity
(thoroughly studied within the distributional se-
mantics area). If the latent vector space is clus-
tered, each n-dimensional vector gets reduced to
a single cluster number; such clusters have been
used directly as features in many tasks, such as
NER (Turian et al., 2010), POS tagging (Owoputi
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et al., 2013), or sentiment analysis (Habernal and
Brychcin, 2013).

We build upon the above-mentioned approach
(described by Sggaard (2013) as ‘clusters-as-
features’ semi-supervised paradigm) and extend it
further. We take both sentences and posts from
the unlabeled debate portals, project them into a
latent space using word embeddings and cluster
them. The motivation is that these clusters will
contain similar phrases or (similar ‘arguments’).
Centroids of these clusters would then represent
a ‘prototypical argument’ (note that the centroids
exist only in the latent vector space and thus do
not correspond to any existing sentence or post).
Then we project each sentence (classification unit)
in the labeled data to the latent vector space, com-
pute its distance vector to all the cluster cen-
troids, and encode this distance vector directly as
real-valued features. By contrast to the above-
mentioned works using a single cluster label as
a feature, the distance vector to cluster centroids
resembles a soft labeling where each sentence be-
longs to several clusters with a certain ‘weight’.
We also use the latent vector space representation
of the sentence directly as a feature vector.

As unlabeled data, we use data from two largest
debate portals.” As a pre-processing step we
removed all posts with less than one ‘point’
earned.'® The data were then indexed using the
Lucene framework and the top 100 debates for
each of the 6 domains were retrieved which re-
sulted into 5,759 posts (= 35k sentences) in the
unlabeled data in total. Our approach is formal-
ized in the following paragraph.

Argument space features (FS4) Let e(w) be
the embedding vector of word w and tfidf(w)
be the TD-IDF value of w. Sentence § =
(wi,...,wy) is then projected into the embed-
ding space E as 5, = Y, tfdf(w;)é(w;)n*
so dim(s,) = dim(E). Analogically to 5, we
project the entire post @ = (wi,...,wy,) to
the same embedding space E such that @, =
S thdf (w;)é(w;)m L.

Let K be the number of sentence clusters in
E and ¢ a centroid vector of cluster k € K.
Then 5. denotes the distance of sentence 5, to
the sentence cluster centroids such that 5, =

createdebate.com and convinceme.net, li-
censed under Creative Commons (CC-BY and CCO, resp.)

19<Points’ is the sum of up-votes/down-votes by other users

to the particular post. Zero-point posts were usually noisy and
spam-like.

(cos(Se, €1), ..., co8(8e, @) where dim(35.) =
K and cos(e, e) denotes cosine similarity. Ana-
logically, let L be the number of post clusters
in E and @; a centroid vector of cluster [ €
L. Then 3, denotes the distance of sentence
S, to the post cluster centroids such that 5, =
(cos(8e,dy),...,cos(8e,d;)). We construct the
feature vector by concatenating §., 5. and 3.

For word embeddings, we use pre-trained skip-
gram word vectors'! produced by Mikolov et
al. (2013) (dim(E) = 300). To create clus-
ters for the argument space features, we used
CLUTO software package'? with Repeated Bi-
section clustering method (Zhao and Karypis,
2002). We clustered the data using different
hyper-parameters K and L (we experimented
with K = {50,100,500,1000} and L =
{50, 100, 500, 1000}).

5 Results

We investigate three evaluation scenarios. First,
we report 10-fold cross validation over all 340
documents, where the data are randomly dis-
tributed across the folds regardless of the domain
or register. In this scenario, the model can bene-
fit from domain-dependent features for the testing
data, such as lexical knowledge (FSO) or domain-
relevant argument space features (FS4). Second,
we evaluate the cross-domain performance; the
model is always trained on five domains and tested
on the sixth one. In this settings, we also re-
move all features that exploit distant data relevant
to the test set. For instance, if the test domain
is mainstreaming, we exclude all debates relevant
to this domain before constructing the argument
space features (FS4). This evaluates the model’s
cross-domain performance without any target do-
main data available. Finally, we test cross-register
performance in two set-ups: we train the models
using comments and forum posts and test on blogs
and newswire articles, and then the other way
round. We divided the data into these two parts
based on similar properties of blogs/articles and
comments/forums, such as the length, or the dis-
tribution of argumentative and non-argumentative
text.

In the evaluation, we focus on Fj scores
achieved on claims, premises, backing, and non-
argumentative text (the ‘O’ class). Although the

Uhttps://code.google.com/p/word2vec/
Phttp://www.cs.umn.edu/~karypis/cluto
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FS B-B BI CB CI O P-B PI]| Avg
Human | .664 579 739 728 833 673 .736 | .707

0 154 211 118 159 718 202 272 | 262
01% 237 254 167 129 671 280 .356 | .299
4x 194 283 225 197 715 230 292 | .305

012x 258 282 189 172 685 276 359 | .317
12341 235 315 181 145 690 .290 394 | .321
0123x | 313 333 .152 .140 .691 287 372 | .327
012341 | .265 332 .183 .167 .690 .314 .405 | .337
34 232 344 256 235 704 269 372 | .345
2347 238 339 253 227 703 291 388 | .348

Table 1: F7 results for the 10-fold cross-validation scenario.
Feature set combination (the F'S column) naming is explained
in Section 4.1. Class labels: B-B/I = Backing-B/I, C-B/l =
Claim-B/I, O = non-argumentative, P-B/1 = Premise-B/I. Star
(%) denotes that the row is significantly better than the previ-
ous row; dagger (f) means the row is not significantly better
than the previous row, but is significantly better than the pre-
vious row minus one; p < 0.001 using exact Liddell’s test
(Liddell, 1983).

classifier is trained and tested on all 11 classes in-
cluding rebuttal and refutation, we do not report
performance of these two argument components—
the results are very poor regardless of the param-
eters for two reasons. First, these classes are un-
derrepresented in the data (Rebuttal-B, Rebuttal-
I, Refutation-B and Refutation-I are present in
only about 4% of sentences). Second, the inter-
annotator agreement reached on these classes were
reported to be very low (Habernal et al., 2014).

Cross validation results Table 1 shows results
for the cross-validation scenario. The human base-
line in the first row is an average score between
three original annotators of the dataset. The base-
line features (FSO) perform poorly, yet they beat
the random assignment and majority vote (< 0.12
F1). The argument space features (FS4) increase
the performance in every combination. The best
results for claims are achieved when only dis-
course, sentiment, and argument space features
are involved (FS3 and FS4), whereas premises and
backing benefit from the presence of lexical, syn-
tactic, and semantic features (the richest feature
set). The overall average best results are obtained
from a feature combination with higher level of
abstraction, in particular without low-level lexical
features from FSO.

After the cross validation experiments, we also
fixed the hyperparameters (using grid search) to
K = 1000, L = 100 for the cluster sizesand t = 1
and e = 0 for the hyperparameters of SVM"""

Cross-domain results For each domain, the
cross-domain results are shown in Table 2. On
average, the best results are about 0.10 F points
worse than in the cross-validation settings (Table

1). In all domains, the best average performance
was achieved using only the argument space fea-
tures (FS4); in four cases this system significantly
outperforms all other systems (p < 0.001). More-
over, more high-level feature set combinations
that also contain argument space features (such
as FS2+FS3+F4 or FS3+FS4) yield usually bet-
ter results for particular argument components in
contrast to features based on lexical or syntactic
information (FSO and FS1). For identifying non-
argumentative texts, there is no clear winner with
respect to feature set abstraction (in three domains
the best results are achieved using FS4 but in other
three domains the baseline FSO performs best).

Cross-register results The argument space fea-
tures (FS4) performs best in average also in the
cross-register evaluation (see Table 3). In recog-
nizing premises, better results were achieved by a
system trained on blogs and articles and tested on
comments and forum posts. Recognizing claims
exhibits similar behavior. On the other hand,
recognizing non-argumentative text performs bet-
ter in the opposite direction. On average, the
cross-register results are much worse than cross-
validation and slightly worse than cross-domain
results.

5.1 Error analysis

First, we quantitatively investigate errors in the
cross-validation scenario. The confusion matrix in
Table 4 shows that about 50-60% of errors for each
argument component were caused by misclassify-
ing it as non-argumentative (the ‘O’ class). The
system tends to prefer the ‘O’ predictions because
of the high presence of non-argumentative sen-
tences in the corpus (about 57%). Backing is often
confused with premises; in particular, Backing-B
with Premise-B in 14%, Backing-1 with Premise-I
in 17%. These two argument components have a
similar function—to support the claim-so the dif-
ferences in the discourse (which are sometimes
very subtle) confuse the system. Note that despite
the confusion between these classes, the -/ and -B
tags mostly remain the same (the system correctly
predicts whether the argument component begins
or not).!3

We also analyzed the errors of the best-

3To provide the complete picture, we also show the previ-
ously unreported classes (rebuttal and refutation). Rebuttal is
usually misclassified as non-argumentative or premise, refu-
tation as either non-argumentative, backing, or premise.
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FS BB B-I C-B C-I O PB  PI| Avg FS B-B BI CB C-I O PB  PI| Avg
Target domain: Homeschooling Target domain: Public vs. private schools
01234 | .039 249 .000 .000 .145 .000 .000 | .062 01 .000 .000 .026 .004 .645 .000 .000 | .096

34 .000 .000 .000 .027 .005 .184 .386 | .086
1234 .063 .263 .000 .000 .289 .000 .000 | .088
234 026 .030 .000 .000 .000 .197 .387 | .091
01 .000 .000 .000 .000 .689 .000 .000 | .098
012 .000 .000 .000 .000 .690 .000 .017 | .101
0123 .000 .020 .000 .000 .689 .000 .018 | .104

012 .000 .000 .026 .005 .647 .000 .000 | .097
01234 | .000 .000 .000 .000 .591 .069 .093 | .108
0 026 .038 .000 .000 .638 .019 .054 | .I111
0123 058 .064 .019 .023 .622 .019 .025 | .119
234 000 .089 .026 .042 013 .240 424 | .119
1234 .000 .022 .000 .000 496 .133 239 | .127

0 .000 .000 .063 .032 .683 .079 .098 | .136 34 051  .166 .037 .045 .011 203 .386 | .128
4o 182 258 069 .069 700 143 224 | .235 4o 228 251 275 270 .653 232 220 | .304
Target domain: Mainstreaming Target domain: Redshirting
01234 | .065 262 .000 .000 .086 .000 .054 | .067 34 073 .047 .000 .000 .144 .132 .265 | .094

34 .000 .000 .000 .000 .000 .184 .352 | .077
234 .000 .287 .000 .000 .000 .222 241 | .107
0 .000 .000 .000 .000 .689 .054 .046 | .113
1234 126279 .000 .000 .060 .158 221 | .121
01 .000 .000 .000 .000 .666 .103 .079 | .121

012 .000 .000 .000 .000 .663 .054 .141 | .123
0123 .000 .000 .000 .000 .630 261 .307 | .171
4x 222 448 000 .000 .674 145 247 | .248

01234 | .000 .000 .076 .070 251 .024 .264 | .098
234 079 .162 .000 .000 .195 .101 .179 | .102
0 .000 .000 .000 .000 .740 .000 .000 | .106
01 .000 .000 .000 .000 .733 .000 .029 | .109
012 .000 .000 .000 .000 .738 .049 .045 | .119
1234 102321 .000 .000 .118 .022 .277 | .120
0123 304 356 .000 .000 .603 .082 .108 | .208
40 226 390  .000 .000 .736 .161 .227 | .249

Target domain: Prayer in schools
1234 | .040 .150 .000 .000 .163 .000 .014 | .052
0123 .000 .000 .000 .000 .080 .061 292 | .062
01234 | .000 .115 .000 .000 .080 .149 .175 | .074
234 058 .042 .000 .000 .012 .215 .303 | .090

34 .000 .000 .098 .105 .034 203 .297 | .105
0 .000 .111  .000 .000 .745 .000 .000 | .122
01 .000 .115 .000 .000 .810 .000 .000 | .132
012 .000 .000 .027 .045 .689 .120 .187 | .153
4 .000 .146 .083 .048 .695 .168 .156 | .185

Target domain: Single-sex education
0123 137 178 .000 .000 .107 .000 .000 | .060
012 .000 .033 .000 .000 .712 .000 .000 | .106
01234 | .138 .194 .024 .036 .247 .056 .148 | .120

34 065 .124 .000 .000 .073 .208 .379 | .121
01 .000 .000 .000 .000 .708 .092 .209 | .144
0 .000 .000 .000 .000 .728 .154 .130 | .145

234 .061 .125 .000 .000 .395 .180 .269 | .147
1234 067 187 078 .073 522 .067 .117 | .159
40 .104 185 .000 .000 .689 204 .397 | .226

Table 2: F results for the cross-domain evaluation scenario ranked by performance. Feature set combination naming (the FS
column) is explained in Section 4.1. Class labels: B-B/I = Backing-B/I, C-B/I = Claim-B/I, O = non-argumentative, P-B/I =
Premise-B/I. Diamond (¢) in the last (winning) row signals a significant difference between this row and all other rows while
star (%) denotes that the row is significantly better than the previous row; p < 0.001 using exact Liddell’s test (Liddell, 1983).

FS B-B BI C-B C-I O PB PI]| Avg

FS B-B BI CB C-I O PB PI| Avg

Train: blogs, articles; Test: comments, forums

01234 | .063 .259 .027 .051 .147 .000 .064 | .087
012 .000 .000 .000 .000 .643 .000 .000 | .092
0 .010 .237 .000 .000 .352 .014 .036 | .093
01 .000 .000 .000 .000 .643 .010 .013 | .095
0123 021 .032 .000 .000 .645 .005 .002 | .101
1234 097 215 052 .068 .369 .000 .013 | .116
234 042 068 .065 .068 534 .093 .168 | .148

34 .030 .061 .098 .099 221 .211 .385 | .158
40 076 206 .167 .158 611 .151 .209 | .225
Table 3:

Train: comments, forums; Test: blogs, articles

34 052 130 .036  .037 .057 .000 .000 | .045
01234 | .000 .008 .000 .000 .003 .080 .301 | .056
234 .055 .182 .033 .036 .121 .025 .015 | .067
1234 .071 .176 .014 .021 .050 .061 .290 | .098
0 .000 .000 .000 .000 .773 .012 .019 | .115
01 .000 .000 .051 .058 .720 .025 .043 | .128
012 .000 .000 .039 .037 .746 .063 .046 | .133
0123 .000 .000 .000 .000 .679 .099 227 | .144
40 142 162 061 .032 .693 .161 .353 | .229

Fy results for the cross-register evaluation scenario ranked by performance. Feature set combination naming (the

FS column) is explained in Section 4.1. Class labels: B-B/I = Backing-B/I, C-B/I = Claim-B/I, O = non-argumentative, P-B/I
= Premise-B/I. Diamond (o) in the last (winning) row signals a significant difference between this row and all other rows;

p < 0.001 using exact Liddell’s test (Liddell, 1983).

performing cross-domain system in detail.'"* We
randomly sampled 40 documents and manually
compared the predicted arguments with the gold
data. We found that 11 predicted documents were
simply wrong or no argument components were
predicted at all (e.g., document #1640, #1658,
#1021, #5258). Most of these errors occur in
blogs, which seem to convey rather complex
argumentation structure (#1666, #1197, #4586,
#5258). In 8 documents, we identified that only
some premises were (correctly) spotted by the sys-
tem. This happened mostly in long comments
(#452) and blogs (#400, #697, #4583). In 7 inves-

14 Available also as PDF at https://github.com/
habernal/emnlp2015; we use #ID to point to the par-
ticular documents.

tigated documents, we identified errors caused by
slightly different boundaries of recognized argu-
ment components (#4517, #2447, #2252, #4840)
or when multiple segments were merged/split
(#1604, #2180, #2310).

By analyzing the predicted output, we also
found that in 12 documents the recognized argu-
ment components seemed to be valid to some ex-
tent, although this was our subjective judge. For
instance, in #4285 (see Figure 2), the first premise
was misclassified as a claim. The gold-data ar-
gument was annotated as an enthymeme (with im-
plicit claim that advocates private schools), while
in the prediction, the same proposition was iden-
tified as the an explicit claim supporting private
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| gold \ pred. — | Bac-B | Bac-I | Cla-B | Cla-I O | Pre-B | Pre-I | Reb-B | Reb-I | Ref-B | Ref-I
Backing-B 54 12 12 1 106 31 8 0 0 0 0
Backing-1 12 | 3,238 1 353 5,089 17 | 1,777 1 18 0 45
Claim-B 7 3 41 5 107 19 9 1 1 0 2
Claim-I 0 160 0 713 2,095 1 456 0 25 0 25
(6] 97 | 3,170 53 | 1,135 | 36,061 156 | 5,459 4 178 1 38
Premise-B 35 17 17 2 290 142 28 6 0 0 1
Premise-1 18 | 1,680 2 544 | 10,779 51 | 7,015 2 234 2 41
Rebuttal-B 3 4 3 2 40 9 7 0 0 0 0
Rebuttal-1 1 199 0 47 1,063 10 859 0 0 0 0
Refutation-B 2 2 0 1 16 1 3 0 1 0 0
Refutation-I 0 86 0 7 592 2 148 0 6 0 0
Table 4: Confusion matrix for the best performing configuration in the cross-validation scenario.
schools with one premise why the education was  components).
not satisfying, which might be also another valid Although argumentation mining in user-

interpretation. The second example #2180 in Fig-
ure 2 shows that the boundaries of the predicted
premises are mixed up (two recognized instead of
three), but the longer backing is also meaningful.
These examples demonstrate that argument analy-
sis is in some cases ambiguous and allows for dif-
ferent valid interpretations.

6 Conclusion

In this article, we proposed a semi-supervised
model for argumentation mining of user-generated
Web content. We developed new unsupervised
features for argument component identification
that exploit clustering of unlabeled argumenta-
tive data from debate portals based on word em-
beddings representation. With the help of these
features we significantly improved performance
of the argumentation mining system and outper-
formed several baselines. While the improvement
was decent in cross-validation scenario, we gained
almost 100% improvement in cross-domain and
cross-register settings.

We evaluated the methods on a publicly avail-
able corpus annotated with argumentation that ori-
gins from user-generated Web data. By a de-
tailed analysis of the errors, we pointed out the
strengths (such as domain adaptability) and weak-
nesses (such as unsatisfying results for rebuttal
and refutation components), as well as the chal-
lenges for the argumentation mining task (such as
boundary identification issues or ambiguous argu-
ments). If we put our results into the context of
existing works, the most relevant one by (Goudas
etal., 2014) achieved 0.42 Fj score on identifying
only premises. We get comparable results in the
cross-validation settings (F; 0.31-0.40) yet with
more complex argumentation model (five different

generated Web discourse has a long way to go
(our methods currently achieve only about 50% of
human performance), we see a huge potential for
various future tasks, such as information seeking
for better-informed personal decision making
or support for argument quality assessment. To
foster the research within the community, we
provide all source codes and data required for the
experiments under free licenses.
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