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Abstract

When applying machine learning to prob-
lems in NLP, there are many choices to
make about how to represent input texts.
They can have a big effect on perfor-
mance, but they are often uninteresting
to researchers or practitioners who simply
need a module that performs well. We ap-
ply sequential model-based optimization
over this space of choices and show that it
makes standard linear models competitive
with more sophisticated, expensive state-of-
the-art methods based on latent variables or
neural networks on various topic classifica-
tion and sentiment analysis problems. Our
approach is a first step towards black-box
NLP systems that work with raw text and
do not require manual tuning.

1 Introduction

NLP researchers and practitioners spend a consid-
erable amount of time comparing machine-learned
models of text that differ in relatively uninteresting
ways. For example, in categorizing texts, should
the “bag of words” include bigrams, and is tf-idf
weighting a good idea? In learning word embed-
dings, distributional similarity approaches have
been shown to perform competitively with neural
network models when the hyperparameters (e.g.,
context window, subsampling rate, smoothing con-
stant) are carefully tuned (Levy et al., 2015). These
choices matter experimentally, often leading to big
differences in performance, with little consistency
across tasks and datasets in which combination of
choices works best. Unfortunately, these differ-
ences tell us little about language or the problems
that machine learners are supposed to solve.

We propose that these decisions can be auto-
mated in a similar way to hyperparameter selection
(e.g., choosing the strength of a ridge or lasso regu-
larizer). Given a particular text dataset and classi-
fication task, we show a technique for optimizing
over the space of representational choices, along

with other “nuisances” that interact with these de-
cisions, like hyperparameter selection. For exam-
ple, using higher-order n-grams means more fea-
tures and a need for stronger regularization and
more training iterations. Generally, these decisions
about instance representation are made by humans,
heuristically; our work seeks to automate them, not
unlike Daelemans et al. (2003), who proposed to
use genetic algorithms to optimize representational
choices.

Our technique instantiates sequential model-
based optimization (SMBO; Hutter et al., 2011).
SMBO and other Bayesian optimization ap-
proaches have been shown to work well for hyper-
parameter tuning (Bergstra et al., 2011; Hoffman
et al., 2011; Snoek et al., 2012). Though popular
in computer vision (Bergstra et al., 2013), these
techniques have received little attention in NLP.

We apply it to logistic regression on a range of
topic and sentiment classification tasks. Consis-
tently, our method finds representational choices
that perform better than linear baselines previously
reported in the literature, and that, in some cases,
are competitive with more sophisticated non-linear
models trained using neural networks.

2 Problem Formulation and Notation

Let the training data consist of a collection of pairs
dtrain = 〈〈d.i1, d.o1〉, . . . , 〈d.in, d.on〉〉, where
each input d.i ∈ I is a text document and each
output d.o ∈ O, the output space. The overall
training goal is to maximize a performance func-
tion f (e.g., classification accuracy, log-likelihood,
F1 score, etc.) of a machine-learned model, on a
held-out dataset, ddev ∈ (I× O)n′ .

Classification proceeds in three steps: first,
x : I → RN maps each input to a vector rep-
resentation. Second, a predictive model (typi-
cally, its parameters) is learned from the inputs
(now transformed into vectors) and outputs: L :
(RN × O)n → (RN → O). Finally, the resulting
classifier c : I → O is fixed as L(dtrain) ◦ x (i.e.,
the composition of the representation function with
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the learned mapping).
Here we consider linear classifiers of the form

c(d.i) = arg maxo∈O w>o x(d.i), where the param-
eters wo ∈ RN , for each output o, are learned
using logistic regression on the training data. We
let w denote the concatenation of all wo. Hence
the parameters can be understood as a function of
the training data and the representation function
x. The performance function f , in turn, is a func-
tion of the held-out data ddev and x—also w and
dtrain , through x. For simplicity, we will write
“f(x)” when the rest are clear from context.

Typically, x is fixed by the model designer, per-
haps after some experimentation, and learning fo-
cuses on selecting the parameters w. For logistic
regression and many other linear models, this train-
ing step reduces to convex optimization in N |O|
dimensions—a solvable problem that is costly for
large datasets and/or large output spaces. In seek-
ing to maximize f with respect to x, we do not wish
to carry out training any more times than necessary.

Choosing x can be understood as a problem of
selecting hyperparameter values. We therefore turn
to Bayesian optimization, a family of techniques
that can be used to select hyperparameter values
intelligently when solving for parameters (w) is
costly.

3 Bayesian Optimization

Our approach is based on sequential model-based
optimization (SMBO; Hutter et al., 2011). It itera-
tively chooses representation functions x. On each
round, it makes this choice through a probabilistic
model of f , then evaluates f—we call this a “trial.”
As in any iterative search algorithm, the goal is to
balance exploration of options for x with exploita-
tion of previously-explored options, so that a good
choice is found in a small number of trials.

More concretely, in the tth trial, xt is selected
using an acquisition function A and a “surrogate”
probabilistic model pt. Second, f is evaluated
given xt—an expensive operation which involves
training to learn parameters w and assessing per-
formance on the held-out data. Third, the surrogate
model is updated. See Algorithm 1; details on A

and pt follow.

Acquisition Function. A good acquisition func-
tion returns high values for x when either the value
f(x) is predicted to be high, or the uncertainty
about f(x)’s value is high; balancing between
these is the classic tradeoff between exploitation

Algorithm 1 SMBO algorithm

Input: number of trials T , target function f
p1 = initial surrogate model
Initialize y∗

for t = 1 to T do
xt ← arg maxx A(x; pt, y

∗)
yt ← evaluate f(xt)
Update y∗

Estimate pt given x1:t and y1:t

end for

and exploration. We use a criterion called Expected
Improvement (EI; Jones, 2001),1 which is the ex-
pectation (under the current surrogate model pt)
that f(x) = y will exceed f(x∗) = y∗:

A(x; pt, y
∗) =

∫ ∞
−∞

max(y − y∗, 0)pt(y | x)dy

where x∗ is chosen depending on the surrogate
model, discussed below. (For now, think of it as
a strongly-performing “benchmark” discovered in
earlier iterations.) Other options for the acquisition
function include maximum probability of improve-
ment (Jones, 2001), minimum conditional entropy
(Villemonteix et al., 2009), Gaussian process up-
per confidence bound (Srinivas et al., 2010), or a
combination of them (Hoffman et al., 2011).

Surrogate Model. As a surrogate model, we use
a tree-structured Parzen estimator (TPE; Bergstra
et al., 2011).2 This is a nonparametric approach to
density estimation. We seek to estimate pt(y | x)
where y = f(x), the performance function that is
expensive to compute exactly. The TPE approach

seeks pt(y | x) ∝ pt(y) ·
{

p<
t (x), if y<y∗

p≥t (x), if y≥y∗
, where

p<
t and p≥t are densities estimated using observa-

tions from previous trials that are less than and
greater than y∗, respectively. In TPE, y∗ is defined
as some quantile of the observed y from previous
trials; we use 15-quantiles.

As shown by Bergstra et al. (2011), the Ex-
pected Improvement in TPE can be written as:

1EI is the most widely used acquisition function that has
been shown to work well on a range of tasks.

2Another common approach to the surrogate is the Gaus-
sian process (Rasmussen and Williams, 2006; Hoffman et al.,
2011; Snoek et al., 2012). Like Bergstra et al. (2011), our
preliminary experiments found the TPE to perform favorably.
Further TPE’s tree-structured configuration space is advanta-
geous, because it allows nested definitions of hyperparameters,
which we exploit in our experiments (e.g., only allows bigrams
to be chosen if unigrams are also chosen).
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Hyperparameter Values
nmin {1, 2, 3}
nmax {nmin , . . . , 3}
weighting scheme {tf, tf-idf, binary}
remove stop words? {True, False}
regularization {`1, `2}
regularization strength [10−5, 105]
convergence tolerance [10−5, 10−3]

Table 1: The set of hyperparameters considered in our ex-
periments. The top half are hyperparameters related to text
representation, while the bottom half are logistic regression
hyperparameters, which also interact with the chosen repre-
sentation.

A(x; pt, y
∗) ∝

(
γ + p<

t (x)

p≥t (x)
(1− γ)

)−1

, where

γ = pt(y < y∗), fixed at 0.15 by definition of
y∗ (above). Here, we prefer x with high probability
under p≥t (x) and low probability under p<

t (x). To
maximize this quantity, we draw many candidates
according to p≥t (x) and evaluate them according
to p<

t (x)/p≥t (x). Note that p(y) does not need to
be given an explicit form. To compute p<

t (x) and
p≥t (x), we associate each hyperparameter with a
node in the graphical model and multiply individ-
ual probabilities at every node—see Bergstra et al.
(2011) for details.

4 Experiments

We fix L to logistic regression. We optimize text
representation based on the types of n-grams used,
the type of weighting scheme, and the removal of
stopwords; we also optimize the regularizer and
training convergence criterion, which interact with
the representation. See Table 1 for a complete list.

Note that even with this limited number of
options, the number of possible combinations is
huge,3 so exhaustive search is computationally ex-
pensive. In all our experiments for all datasets, we
limit ourselves to 30 trials per dataset. The only
preprocessing we applied was downcasing.

We always use a development set to evaluate
f(x) during learning and report the final result on
an unseen test set. We summarize the hyperparam-
eters selected by our method, and the accuracies
achieved (on test data) in Table 5. We discuss com-
parisons to baselines for each dataset in turn. For
each of our datasets, we select supervised, non-
ensemble classification methods from previous lit-
erature as baselines. In each case, we emphasize
comparisons with the best-published linear method

3It is actually infinite since the reg. strength and conv. tol-
erance are continuous values, but we could discretize them.

(often an SVM with a linear kernel with represen-
tation selected by experts) and the best-published
method overall. In the following, “SVM” always
means “linear SVM.” All methods were trained
and evaluated on the same training/testing splits
as baselines; in cases where standard development
sets were not available, we used a random 20% of
the training data as a development set.

Stanford sentiment treebank (Socher et al.,
2013)—Table 2. A sentence-level sentiment
analysis dataset of rottentomatoes.com movie re-
views: http://nlp.stanford.edu/sentiment. We use the
binary classification task where the goal is to pre-
dict whether a review is positive or negative (no
neutral). Our logistic regression model outperforms
the baseline SVM reported by Socher et al. (2013),
who used only unigrams but did not specify the
weighting scheme for their SVM baseline. While
our result is still below the state-of-the-art based
on the the recursive neural tensor networks (Socher
et al., 2013) and the paragraph vector (Le and
Mikolov, 2014), we show that logistic regression is
comparable with recursive and matrix-vector neu-
ral networks (Socher et al., 2011; Socher et al.,
2012).

Method Acc.
Naı̈ve Bayes 81.8
SVM 79.4
Vector average 80.1
Recursive neural networks 82.4
LR (this work) 82.4
Matrix-vector RNN 82.9
Recursive neural tensor networks 85.4
Paragraph vector 87.8

Table 2: Comparisons on the Stanford sentiment treebank
dataset. Scores are as reported by Socher et al. (2013) and Le
and Mikolov (2014). Test size = 6, 920.

Amazon electronics (McAuley and Leskovec,
2013)—Table 3. A binary sentiment analy-
sis dataset of Amazon electronics product re-
views: http://riejohnson.com/cnn data.html. The best-
performing methods on this dataset are based on
convolutional neural networks (Johnson and Zhang,
2015).4 Our method is on par with the second-
best of these, outperforming all of the reported
feed-forward neural networks and SVM variants
Johnson and Zhang used as baselines. They varied

4These are convolutional neural networks with a recti-
fier activation function, trained under `2 regularization with
stochastic gradient descent. The authors also consider an
extension based on parallel CNN that we do not include here.

2102



the representations, and used log term frequency
and normalization to unit vectors as the weighting
scheme, after finding that this outperformed term
frequency. Our method achieved the best perfor-
mance with binary weighting, which they did not
consider.

IMDB movie reviews (Maas et al., 2011)—
Table 3. A binary sentiment analysis
dataset of highly polar IMDB movie reviews:
http://ai.stanford.edu/~amaas/data/sentiment. The
results parallel those for Amazon electronics;
our method comes close to convolutional neural
networks (Johnson and Zhang, 2015), which
are state-of-the-art.5 It outperforms SVMs and
feed-forward neural networks, the restricted
Boltzmann machine approach presented by Dahl
et al. (2012), and compressive feature learning
(Paskov et al., 2013).6

Method Accuracy
Amazon IMDB

SVM-unigrams 88.29 88.64
RBM 89.23
SVM-{1, 2}-grams 90.95 90.26
Compressive feature learning 90.40
SVM-{1, 2, 3}-grams 91.29 90.58
LR-{1, 2, 3, 4, 5}-grams 90.60
NN-{1, 2, 3}-grams 91.52 90.83
LR (this work) 91.56 90.85
Bag of words CNN 91.61 91.34
Sequential CNN 92.52 91.61

Table 3: Comparisons on the Amazon electronics and IMDB
reviews datasets. SVM results are from Wang and Manning
(2012), the RBM (restricted Bolzmann machine) result is from
Dahl et al. (2012), NN and CNN results are from Johnson
and Zhang (2015), and LR-{1, 2, 3, 4, 5}-grams and compres-
sive feature learning results are from Paskov et al. (2013).
Test size = 20, 000 for both datasets.

Congressional vote (Thomas et al.,
2006)—Table 4. A dataset of transcripts
from the U.S. Congressional debates:
http://www.cs.cornell.edu/~ainur/sle-data.html. Similar
to previous work (Thomas et al., 2006; Bansal et
al., 2008; Yessenalina et al., 2010), we consider
the task to predict the vote (“yea” or “nay”) for the
speaker of each speech segment (speaker-based
speech-segment classification). Our method
outperforms the best results of Yessenalina et
al. (2010), which use a multi-level structured

5As noted, semi-supervised and ensemble methods are
excluded for a fair comparison.

6This approach is based on minimum description length,
using unlabeled data to select a set of higher-order n-grams to
use as features.

model based on a latent-variable SVM. We show
comparisons to two weaker baselines as well.

Method Acc.
SVM-link 71.28
Min-cut 75.00
SVM-SLE 77.67
LR (this work) 78.59

Table 4: Comparisons on the congress vote dataset. SVM-
link exploits link structures (Thomas et al., 2006); the min-cut
result is from Bansal et al. (2008); and SVM-SLE result is
reported by Yessenalina et al. (2010). Test size = 1, 175.

20 Newsgroups (Lang, 1995) all topics—Table 6.
20 Newsgroups is a benchmark topic classifica-
tion dataset: http://qwone.com/~jason/20Newsgroups.
There are 20 topics in this dataset. Our method
outperforms state-of-the-art methods including the
distributed structured output model (Srikumar and
Manning, 2014).7 The strong logistic regression
baseline from Paskov et al. (2013) uses all 5-grams,
heuristic normalization, and elastic net regulariza-
tion; our method found that unigrams and bigrams,
with binary weighting and `2 penalty, achieved far
better results.

Method Acc.
Discriminative RBM 76.20
LR-{1, 2, 3, 4, 5}-grams 82.80
Compressive feature learning 83.00
Distributed structured output 84.00
LR (this work) 87.84

Table 6: Comparisons on the 20 Newsgroups dataset for
classifying documents into all topics. The disriminative RBM
result is from Larochelle and Bengio (2008); compressive
feature learning and LR-5-grams results are from Paskov et
al. (2013), and the distributed structured output result is from
Srikumar and Manning (2014). Test size = 9, 052.

20 Newsgroups: talk.religion.misc vs. alt.atheism
and comp.graphics vs. comp.windows.x. We de-
rived three additional topic classification tasks from
the 20N dataset. The first and second tasks are
talk.religion.misc vs. alt.atheism (test size = 686) and
comp.graphics vs. comp.windows.x (test size = 942).
Wang and Manning (2012) report a bigram naı̈ve
Bayes model achieving 85.1% and 91.2% on these
tasks, respectively (best single model results).8 Our

7This method was designed for structured prediction, but
Srikumar and Manning (2014) also applied it to classification.
It attempts to learn a distributed representation for features
and for labels. The authors used unigrams and did not discuss
the weighting scheme.

8They also report a naı̈ve Bayes/SVM ensemble achieving
87.9% and 91.2%.
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Dataset Acc. nmin nmax Weighting Stopword removal? Reg. Strength Conv.
Stanford sentiment 82.43 1 2 tf-idf F `2 10 0.098
Amazon electronics 91.56 1 3 binary F `2 120 0.022
IMDB reviews 90.85 1 2 binary F `2 147 0.019
Congress vote 78.59 2 2 binary F `2 121 0.012
20N all topics 87.84 1 2 binary F `2 16 0.008
20N all science 95.82 1 2 binary F `2 142 0.007
20N atheist/religion 86.32 1 2 binary T `1 41 0.011
20N x/graphics 92.09 1 1 binary T `2 91 0.014

Table 5: Classification accuracies and the best hyperparameters for each of the datasets in our experiments. “Acc” shows
accuracies for our logistic regression model. “Min” and “Max” correspond to the min n-grams and max n-grams respectively.
“Reg.” is the regularization type, “Strength” is the regularization strength, and “Conv.” is the convergence tolerance. For
regularization strength, we round it to the nearest integer for readability.

method achieves 86.3% and 92.1% using slightly
different representations (see Table 5). The last task
is to classify related science documents into four
science topics (sci.crypt, sci.electronics, sci.space,
sci.med; test size = 1, 899). We were not able to
find previous results that are comparable to ours on
this task; we include our result (95.82%) to enable
further comparisons in the future.

5 Discussion

Optimized representations. For each task, the
chosen representation is different. Out of all possi-
ble choices in our experiments (Table 1), each of
them is used by at least one of the datsets (Table 5).
For example, on the Congress vote dataset, we only
need to use bigrams, whereas on the Amazon elec-
tronics dataset we need to use {1, 2, 3}-grams. The
binary weighting scheme works well for most of
the datasets, except the sentence-level sentiment
analysis task, where the tf-idf weighting scheme
was selected. `2 regularization was best in all cases
but one. We do not believe that an NLP expert
would be likely to make these particular choices,
except through the same kind of trial-and-error pro-
cess our method automates efficiently.

Number of trials. We ran 30 trials for each
dataset in our experiments. Figure 1 shows each
trial accuracy and the best accuracy on develop-
ment data as we increase the number of trials for
two datasets. We can see that 30 trials are gener-
ally enough for the model to obtain good results,
although the search space is large.

Transfer learning and multitask setting. We
treat each dataset independently and create a sep-
arate model for each of them. It is also possible
to learn from previous datasets (i.e., transfer learn-
ing) or to learn from all datasets simultaneously
(i.e., multitask learning) to improve performance.
This has the potential to reduce the number of trials

Stanford sentiment

trial
ac
cu
ra
cy

0 5 10 15 20 25 30
50

60
70

80

Congress vote

trial

ac
cu
ra
cy

0 5 10 15 20 25 30

40
50

60
70

80

Figure 1: Classification accuracies on development data
for Stanford sentiment treebank (left) and congressional vote
(right) datasets. In each plot, the green solid line indicates the
best accuracy found so far, while the dotted orange line shows
accuracy at each trial. We can see that in general the model is
able to obtain reasonably good representation in 30 trials.

required even further. See Bardenet et al. (2013),
Swersky et al. (2013), and Yogatama and Mann
(2014) for more about how to perform Bayesian
optimization in these settings.

Beyond supervised learning. Our framework
could also be extended to unsupervised and semi-
supervised models. For example, in document clus-
tering (e.g., k-means), we also need to construct
representations for documents. Log-likelihood
might serve as a performance function. A range of
random initializations might be considered. Inves-
tigation of this approach for nonconvex problems
is an exciting area for future work.

6 Conclusion

We used Bayesian optimization to optimize choices
about text representations for various categoriza-
tion problems. Our technique identifies settings for
a standard linear model (logistic regression) that
are competitive with far more sophisticated meth-
ods on topic classification and sentiment analysis.
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