
Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing, pages 1599–1609,
Lisbon, Portugal, 17-21 September 2015. c©2015 Association for Computational Linguistics.

A Generative Word Embedding Model and its Low Rank Positive
Semidefinite Solution

Shaohua Li1, Jun Zhu2, Chunyan Miao1

1Joint NTU-UBC Research Centre of Excellence in Active Living for the Elderly (LILY),
Nanyang Technological University, Singapore

2Tsinghua University, P.R. China
lish0018@ntu.edu.sg, dcszj@tsinghua.edu.cn, ascymiao@ntu.edu.sg

Abstract

Most existing word embedding methods
can be categorized into Neural Embedding
Models and Matrix Factorization (MF)-
based methods. However some mod-
els are opaque to probabilistic interpre-
tation, and MF-based methods, typically
solved using Singular Value Decomposi-
tion (SVD), may incur loss of corpus in-
formation. In addition, it is desirable to
incorporate global latent factors, such as
topics, sentiments or writing styles, into
the word embedding model. Since gen-
erative models provide a principled way
to incorporate latent factors, we propose a
generative word embedding model, which
is easy to interpret, and can serve as a
basis of more sophisticated latent factor
models. The model inference reduces to
a low rank weighted positive semidefinite
approximation problem. Its optimization
is approached by eigendecomposition on a
submatrix, followed by online blockwise
regression, which is scalable and avoids
the information loss in SVD. In experi-
ments on 7 common benchmark datasets,
our vectors are competitive to word2vec,
and better than other MF-based methods.

1 Introduction

The task of word embedding is to model the distri-
bution of a word and its context words using their
corresponding vectors in a Euclidean space. Then
by doing regression on the relevant statistics de-
rived from a corpus, a set of vectors are recovered
which best fit these statistics. These vectors, com-
monly referred to as the embeddings, capture se-
mantic/syntactic regularities between the words.

The core of a word embedding method is the
link function that connects the input — the embed-
dings, with the output — certain corpus statistics.

Based on the link function, the objective function
is developed. The reasonableness of the link func-
tion impacts the quality of the obtained embed-
dings, and different link functions are amenable
to different optimization algorithms, with different
scalability. Based on the forms of the link func-
tion and the optimization techniques, most meth-
ods can be divided into two classes: the traditional
neural embedding models, and more recent low
rank matrix factorization methods.

The neural embedding models use the softmax
link function to model the conditional distribution
of a word given its context (or vice versa) as a
function of the embeddings. The normalizer in the
softmax function brings intricacy to the optimiza-
tion, which is usually tackled by gradient-based
methods. The pioneering work was (Bengio et
al., 2003). Later Mnih and Hinton (2007) propose
three different link functions. However there are
interaction matrices between the embeddings in all
these models, which complicate and slow down
the training, hindering them from being trained
on huge corpora. Mikolov et al. (2013a) and
Mikolov et al. (2013b) greatly simplify the condi-
tional distribution, where the two embeddings in-
teract directly. They implemented the well-known
“word2vec”, which can be trained efficiently on
huge corpora. The obtained embeddings show ex-
cellent performance on various tasks.

Low-Rank Matrix Factorization (MF in short)
methods include various link functions and opti-
mization methods. The link functions are usu-
ally not softmax functions. MF methods aim to
reconstruct certain corpus statistics matrix by the
product of two low rank factor matrices. The ob-
jective is usually to minimize the reconstruction
error, optionally with other constraints. In this
line of research, Levy and Goldberg (2014b) find
that “word2vec” is essentially doing stochastic
weighted factorization of the word-context point-
wise mutual information (PMI) matrix. They then

1599

factorize this matrix directly as a new method.
Pennington et al. (2014) propose a bilinear regres-
sion function of the conditional distribution, from
which a weighted MF problem on the bigram log-
frequency matrix is formulated. Gradient Descent
is used to find the embeddings. Recently, based
on the intuition that words can be organized in se-
mantic hierarchies, Yogatama et al. (2015) add hi-
erarchical sparse regularizers to the matrix recon-
struction error. With similar techniques, Faruqui
et al. (2015) reconstruct a set of pretrained embed-
dings using sparse vectors of greater dimensional-
ity. Dhillon et al. (2015) apply Canonical Corre-
lation Analysis (CCA) to the word matrix and the
context matrix, and use the canonical correlation
vectors between the two matrices as word embed-
dings. Stratos et al. (2014) and Stratos et al. (2015)
assume a Brown language model, and prove that
doing CCA on the bigram occurrences is equiva-
lent to finding a transformed solution of the lan-
guage model. Arora et al. (2015) assume there is a
hidden discourse vector on a random walk, which
determines the distribution of the current word.
The slowly evolving discourse vector puts a con-
straint on the embeddings in a small text window.
The maximum likelihood estimate of the embed-
dings within this text window approximately re-
duces to a squared norm objective.

There are two limitations in current word em-
bedding methods. The first limitation is, all MF-
based methods map words and their context words
to two different sets of embeddings, and then em-
ploy Singular Value Decomposition (SVD) to ob-
tain a low rank approximation of the word-context
matrix M . As SVD factorizes M>M , some in-
formation in M is lost, and the learned embed-
dings may not capture the most significant regu-
larities inM . Appendix A gives a toy example on
which SVD does not work properly.

The second limitation is, a generative model for
documents parametered by embeddings is absent
in recent development. Although (Stratos et al.,
2014; Stratos et al., 2015; Arora et al., 2015) are
based on generative processes, the generative pro-
cesses are only for deriving the local relationship
between embeddings within a small text window,
leaving the likelihood of a document undefined.
In addition, the learning objectives of some mod-
els, e.g. (Mikolov et al., 2013b, Eq.1), even have
no clear probabilistic interpretation. A genera-
tive word embedding model for documents is not

only easier to interpret and analyze, but more im-
portantly, provides a basis upon which document-
level global latent factors, such as document topics
(Wallach, 2006), sentiments (Lin and He, 2009),
writing styles (Zhao et al., 2011b), can be incor-
porated in a principled manner, to better model the
text distribution and extract relevant information.

Based on the above considerations, we pro-
pose to unify the embeddings of words and con-
text words. Our link function factorizes into three
parts: the interaction of two embeddings capturing
linear correlations of two words, a residual captur-
ing nonlinear or noisy correlations, and the uni-
gram priors. To reduce overfitting, we put Gaus-
sian priors on embeddings and residuals, and ap-
ply Jelinek-Mercer Smoothing to bigrams. Fur-
thermore, to model the probability of a sequence
of words, we assume that the contributions of
more than one context word approximately add up.
Thereby a generative model of documents is con-
structed, parameterized by embeddings and resid-
uals. The learning objective is to maximize the
corpus likelihood, which reduces to a weighted
low-rank positive semidefinite (PSD) approxima-
tion problem of the PMI matrix. A Block Co-
ordinate Descent algorithm is adopted to find an
approximate solution. This algorithm is based
on Eigendecomposition, which avoids information
loss in SVD, but brings challenges to scalability.
We then exploit the sparsity of the weight matrix
and implement an efficient online blockwise re-
gression algorithm. On seven benchmark datasets
covering similarity and analogy tasks, our method
achieves competitive and stable performance.

The source code of this method is provided at
https://github.com/askerlee/topicvec.

2 Notations and Definitions

Throughout the paper, we always use a uppercase
bold letter asS,V to denote a matrix or set, a low-
ercase bold letter as vwi to denote a vector, a nor-
mal uppercase letter as N,W to denote a scalar
constant, and a normal lowercase letter as si, wi to
denote a scalar variable.

Suppose a vocabulary S = {s1, · · · , sW} con-
sists of all the words, where W is the vocab-
ulary size. We further suppose s1, · · · , sW are
sorted in decending order of the frequency, i.e.
s1 is most frequent, and sW is least frequent.
A document di is a sequence of words di =
(wi1, · · · , wiLi), wij ∈ S. A corpus is a collec-

1600

Name Description
S Vocabulary {s1, · · · , sW}
V Embedding matrix (vs1 , · · · ,vsW)

D Corpus {d1, · · · , dM}
vsi Embedding of word si

asisj Bigram residual for si, sj

P̃ (si,sj) Empirical probability of si, sj in the corpus

u Unigram probability vector (P (s1),· · ·, P (sW))

A Residual matrix (asisj)

B Conditional probability matrix
(
P (sj |si)

)
G PMI matrix

(
PMI(si, sj)

)
H Bigram empirical probability matrix

(
P̃ (si, sj)

)
Table 1: Notation Table

tion of M documents D = {d1, · · · , dM}. In the
vocabulary, each word si is mapped to a vector vsi

in N -dimensional Euclidean space.
In a document, a sequence of words is referred

to as a text window, denoted by wi, · · · , wi+l, or
wi:wi+l in shorthand. A text window of chosen
size c before a word wi defines the context of wi
as wi−c, · · · , wi−1. Here wi is referred to as the
focus word. Each context word wi−j and the focus
word wi comprise a bigram wi−j , wi.

The Pointwise Mutual Information between two
words si, sj is defined as

PMI(si, sj) = log
P (si, sj)
P (si)P (sj)

.

3 Link Function of Text

In this section, we formulate the probability of a
sequence of words as a function of their embed-
dings. We start from the link function of bigrams,
which is the building blocks of a long sequence.
Then this link function is extended to a text win-
dow with c context words, as a first-order approx-
imation of the actual probability.

3.1 Link Function of Bigrams
We generalize the link function of “word2vec” and
“GloVe” to the following:

P (si, sj) = exp
{
v>sj
vsi + asisj

}
P (si)P (sj) (1)

The rationale for (1) originates from the idea of
the Product of Experts in (Hinton, 2002). Sup-
pose different types of semantic/syntactic regu-
larities between si and sj are encoded in differ-
ent dimensions of vsi ,vsj . As exp{v>sj

vsi} =∏
l exp{vsi,l · vsj ,l}, this means the effects of dif-

ferent regularities on the probability are combined

by multiplying together. If si and sj are indepen-
dent, their joint probability should be P (si)P (sj).
In the presence of correlations, the actual joint
probability P (si, sj) would be a scaling of it. The
scale factor reflects how much si and sj are pos-
itively or negatively correlated. Within the scale
factor, v>sj

vsi captures linear interactions between
si and sj , the residual asisj captures nonlinear or
noisy interactions. In applications, only v>sj

vsi is
of interest. Hence the bigger magnitude v>sj

vsi is
of relative to asisj , the better.

Note that we do not assume asisj = asjsi .
This provides the flexibility P (si, sj) 6= P (sj , si),
agreeing with the asymmetry of bigrams in natu-
ral languages. At the same time, v>sj

vsi imposes a
symmetric part between P (si, sj) and P (sj , si).

(1) is equivalent to

P (sj |si)=exp
{
v>sj
vsi + asisj + logP (sj)

}
, (2)

log
P (sj |si)
P (sj)

= v>sj
vsi + asisj . (3)

(3) of all bigrams is represented in matrix form:

V >V +A = G, (4)

whereG is the PMI matrix.

3.1.1 Gaussian Priors on Embeddings
When (1) is employed on the regression of empir-
ical bigram probabilities, a practical issue arises:
more and more bigrams have zero frequency as
the constituting words become less frequent. A
zero-frequency bigram does not necessarily imply
negative correlation between the two constituting
words; it could simply result from missing data.
But in this case, even after smoothing, (1) will
force v>sj

vsi + asisj to be a big negative number,
making vsi overly long. The increased magnitude
of embeddings is a sign of overfitting.

To reduce overfitting of embeddings of infre-
quent words, we assign a Spherical Gaussian prior
N (0, 1

2µi
I) to vsi :

P (vsi) ∼ exp{−µi‖vsi‖2},
where the hyperparameter µi increases as the fre-
quency of si decreases.

3.1.2 Gaussian Priors on Residuals
We wish v>sj

vsi in (1) captures as much corre-
lations between si and sj as possible. Thus the
smaller asisj is, the better. In addition, the more
frequent si, sj is in the corpus, the less noise
there is in their empirical distribution, and thus the
residual asisj should be more heavily penalized.

1601

To this end, we penalize the residual asisj

by f(P̃(si, sj))a2
sisj

, where f(·) is a nonnega-
tive monotonic transformation, referred to as the
weighting function. Let hij denote P̃ (si, sj), then
the total penalty of all residuals are the square of
the weighted Frobenius norm ofA:∑

si,sj∈S
f(hij)a2

sisj
= ‖A‖2f(H). (5)

By referring to “GloVe”, we use the following
weighting function, and find it performs well:

f(hij) =


√
hij

Ccut

√
hij < Ccut, i 6= j

1
√
hij ≥ Ccut, i 6= j

0 i = j

,

where Ccut is chosen to cut the most frequent
0.02% of the bigrams off at 1. When si = sj , two
identical words usually have much smaller proba-
bility to collocate. Hence P̃ (si, si) does not reflect
the true correlation of a word to itself, and should
not put constraints to the embeddings. We elimi-
nate their effects by setting f(hii) to 0.

If the domain of A is the whole space RW×W ,
then this penalty is equivalent to a Gaussian prior
N
(

0, 1
2f(hij)

)
on each asisj . The variances of the

Gaussians are determined by the bigram empirical
probability matrixH .

3.1.3 Jelinek-Mercer Smoothing of Bigrams
As another measure to reduce the impact of miss-
ing data, we apply the commonly used Jelinek-
Mercer Smoothing (Zhai and Lafferty, 2004)
to smooth the empirical conditional probability
P̃ (sj |si) by the unigram probability P̃ (sj) as:

P̃smoothed(sj |si) = (1−κ)P̃ (sj |si)+κP (sj). (6)

Accordingly, the smoothed bigram empirical
joint probability is defined as

P̃ (si, sj) = (1−κ)P̃ (si, sj)+κP (si)P (sj). (7)

In practice, we find κ = 0.02 yields good re-
sults. When κ ≥ 0.04, the obtained embeddings
begin to degrade with κ, indicating that smoothing
distorts the true bigram distributions.

3.2 Link Function of a Text Window
In the previous subsection, a regression link func-
tion of bigram probabilities is established. In
this section, we adopt a first-order approximation
based on Information Theory, and extend the link
function to a longer sequence w0, · · · , wc−1, wc.

Decomposing a distribution conditioned on n
random variables as the conditional distributions

on its subsets roots deeply in Information The-
ory. This is an intricate problem because there
could be both (pointwise) redundant information
and (pointwise) synergistic information among the
conditioning variables (Williams and Beer, 2010).
They are both functions of the PMI. Based on an
analysis of the complementing roles of these two
types of pointwise information, we assume they
are approximately equal and cancel each other
when computing the pointwise interaction infor-
mation. See Appendix B for a detailed discussion.

Following the above assumption, we have
PMI(w2;w0, w1) ≈ PMI(w2;w0)+PMI(w2;w1):

log
P(w0, w1|w2)
P(w0, w1)

≈log
P(w0|w2)
P(w0)

+log
P(w1|w2)
P(w1)

.

Plugging (1) and (3) into the above, we obtain

P (w0, w1, w2)

≈ exp
{ 2∑
i,j=0
i 6=j

(v>wi
vwj + awiwj) +

2∑
i=0

logP (wi)
}
.

We extend the above assumption to that the
pointwise interaction information is still close to
0 within a longer text window. Accordingly the
above equation extends to a context of size c > 2:

P (w0, · · · , wc)

≈ exp
{ c∑
i,j=0
i 6=j

(v>wi
vwj + awiwj) +

c∑
i=0

logP (wi)
}
.

From it derives the conditional distribution of
wc, given its context w0, · · · , wc−1:

P (wc | w0 : wc−1)=
P (w0, · · · , wc)
P (w0, · · · , wc−1)

≈P (wc) exp
{
v>wc

c−1∑
i=0

vwi +
c−1∑
i=0

awiwc

}
. (8)

4 Generative Process and Likelihood

We proceed to assume the text is generated from a
Markov chain of order c, i.e., a word only depends
on words within its context of size c. Given the
hyperparameter µ = (µ1, · · ·, µW), the generative
process of the whole corpus is:

1. For each word si, draw the embedding vsi

from N (0, 1
2µi
I);

2. For each bigram si, sj , draw the residual

asisj from N
(

0, 1
2f(hij)

)
;

3. For each document di, for the j-th word,
draw word wij from S with probability
P (wij | wi,j−c : wi,j−1) defined by (8).

1602

vw0 vw1 vwc· · ·

d

V A

µi

vsi

hij

aij

Figure 1: The Graphical Model of PSDVec

The above generative process for a document d is
presented as a graphical model in Figure 1.

Based on this generative process, the probabil-
ity of a document di can be derived as follows,
given the embeddings and residuals V ,A:

P (di|V ,A)

=
Li∏
j=1

P (wij) exp
{
v>wij

j−1∑
k=j−c

vwik
+

j−1∑
k=j−c

awikwij

}
.

The complete-data likelihood of the corpus is:

p(D,V ,A)

=
W∏
i=1

N (0,
I

2µi
)
W,W∏
i,j=1

N
(

0,
1

2f(hij)

) M∏
i=1

p(di|V,A)

=
1

Z(H,µ)
exp
{
−
W,W∑
i,j=1

f(hi,j)a2
sisj
−

W∑
i=1

µi‖vsi‖2
}

·
M,Li∏
i,j=1

P (wij) exp
{
v>wij

j−1∑
k=j−c

vwik
+

j−1∑
k=j−c

awikwij

}
,

where Z(H,µ) is the normalizing constant.
Taking the logarithm of both sides of

p(D,A,V) yields

log p(D,V ,A)

=C0 − logZ(H,µ)− ‖A‖2f(H)−
W∑
i=1

µi‖vsi‖2

+
M,Li∑
i,j=1

{
v>wij

j−1∑
k=j−c

vwik
+

j−1∑
k=j−c

awikwij

}
, (9)

where C0 =
∑M,Li

i,j=1 logP (wij) is constant.

5 Learning Algorithm

5.1 Learning Objective
The learning objective is to find the embeddings
V that maximize the corpus log-likelihood (9).

Let xij denote the (smoothed) frequency of bi-
gram si, sj in the corpus. Then (9) is sorted as:

log p(D,V ,A)

=C0 − logZ(H,µ)− ‖A‖2f(H) −
W∑
i=1

µi‖vsi‖2

+
W,W∑
i,j=1

xij(v>si
vsj + asisj). (10)

As the corpus size increases,∑W,W
i,j=1 xij(v

>
si
vsj +asisj) will dominate the

parameter prior terms. Then we can ignore the
prior terms when maximizing (10).

max
∑

xij(v>si
vsj +asisj)

=
(∑

xij

)
·max

∑
P̃smoothed(si, sj) logP (si, sj).

As both {P̃smoothed(si, sj)} and {P (si, sj)}
sum to 1, the above sum is maximized when
P (si, sj) = P̃smoothed(si, sj).

The maximum likelihood estimator is then:

P (sj |si) = P̃smoothed(sj |si),

v>si
vsj + asisj = log

P̃smoothed(sj |si)
P (sj)

. (11)

Writing (11) in matrix form:

B∗ =
(
P̃smoothed(sj |si)

)
si,sj∈S

G∗ = logB∗ − logu⊗ (1 · · · 1), (12)

where “⊗” is the outer product.

Now we fix the values of v>si
vsj + asisj at the

above optimal. The corpus likelihood becomes

log p(D,V ,A) =C1 − ‖A‖2f(H) −
W∑
i=1

µi‖vsi‖2,

subject to V >V +A = G∗, (13)

where C1 = C0 +
∑
xij log P̃smoothed(si, sj) −

logZ(H,µ) is constant.

5.2 Learning V as Low Rank PSD
Approximation

OnceG∗ has been estimated from the corpus using
(12), we seek V that maximizes (13). This is to
find the maximum a posteriori (MAP) estimates
of V ,A that satisfy V >V +A = G∗. Applying
this constraint to (13), we obtain

1603

Algorithm 1 BCD algorithm for finding a unreg-
ularized rank-N weighted PSD approximant.
Input: matrixG∗, weight matrixW = f(H),
iteration number T , rank N

Randomly initializeX(0)

for t = 1, · · · , T do
Gt = W ◦G∗ + (1−W) ◦X(t−1)

X(t) = PSD Approximate(Gt, N)
end for
λ,Q = Eigen Decomposition(X(T))
V ∗ = diag(λ

1
2 [1:N]) ·Q>[1:N]

Output: V ∗

arg max
V

log p(D,V ,A)

= arg min
V

‖G∗−V >V ‖f(H) +
W∑
i=1

µi‖vsi‖2. (14)

Let X = V >V . Then X is positive semidef-
inite of rank N . Finding V that minimizes (14)
is equivalent to finding a rank-N weighted posi-
tive semidefinite approximant X ofG∗, subject to
Tikhonov regularization. This problem does not
admit an analytic solution, and can only be solved
using local optimization methods.

First we consider a simpler case where all the
words in the vocabulary are enough frequent, and
thus Tikhonov regularization is unnecessary. In
this case, we set ∀µi = 0, and (14) becomes an
unregularized optimization problem. We adopt the
Block Coordinate Descent (BCD) algorithm1 in
(Srebro et al., 2003) to approach this problem. The
original algorithm is to find a generic rank-N ma-
trix for a weighted approximation problem, and
we tailor it by constraining the matrix within the
positive semidefinite manifold.

We summarize our learning algorithm in Al-
gorithm 1. Here “◦” is the entry-wise prod-
uct. We suppose the eigenvalues λ returned by
Eigen Decomposition(X) are in descending or-
der. Q>[1:N] extracts the 1 to N rows fromQ>.

One key issue is how to initialize X . Srebro et
al. (2003) suggest to set X(0)=G∗, and point out
that X(0) = 0 is far from a local optimum, thus
requires more iterations. However we find G∗ is
also far from a local optimum, and this setting con-
verges slowly too. Setting X(0) = G∗/2 usually

1It is referred to as an Expectation-Maximization algo-
rithm by the original authors, but we think this is a misnomer.

yields a satisfactory solution in a few iterations.
The subroutine PSD Approximate() computes

the unweighted nearest rank-N PSD approxima-
tion, measured in F-norm (Higham, 1988).

5.3 Online Blockwise Regression of V

In Algorithm 1, the essential subroutine
PSD Approximate() does eigendecomposi-
tion on Gt, which is dense due to the logarithm
transformation. Eigendecomposition on a W ×W
dense matrix requires O(W 2) space and O(W 3)
time, difficult to scale up to a large vocabulary. In
addition, the majority of words in the vocabulary
are infrequent, and Tikhonov regularization is
necessary for them.

It is observed that, as words become less fre-
quent, fewer and fewer words appear around them
to form bigrams. Remind that the vocabulary
S = {s1, · · · , sW } are sorted in decending or-
der of the frequency, hence the lower-right blocks
of H and f(H) are very sparse, and cause these
blocks in (14) to contribute much less penalty rela-
tive to other regions. Therefore these blocks could
be ignored when doing regression, without sacri-
ficing too much accuracy. This intuition leads to
the following online blockwise regression.

The basic idea is to select a small set (e.g.
30,000) of the most frequent words as the core
words, and partition the remaining noncore words
into sets of moderate sizes. Bigrams consist-
ing of two core words are referred to as core bi-
grams, which correspond to the top-left blocks of
G and f(H). The embeddings of core words
are learned approximately using Algorithm 1, on
the top-left blocks of G and f(H). Then we fix
the embeddings of core words, and find the em-
beddings of each set of noncore words in turn.
After ignoring the lower-right regions of G and
f(H) which correspond to bigrams of two non-
core words, the quadratic terms of noncore em-
beddings are ignored. Consequently, finding these
embeddings becomes a weighted ridge regression
problem, which can be solved efficiently in closed-
form. Finally we combine all embeddings to get
the embeddings of the whole vocabulary. The de-
tails are as follows:

1. Partition S into K consecutive groups
S1, · · · ,Sk. Take K = 3 as an example.
The first group is core words;

2. Accordingly partitionG into K ×K blocks,

1604

in this example as

 G11 G12 G13

G21 G22 G23

G31 G32 G33

 .

Partition f(H),A in the same way.
G11, f(H)11,A11 correspond to core bi-

grams. Partition V into

(
︸︷︷︸
S1

V 1 ︸︷︷︸
S2

V 2 ︸︷︷︸
S3

V 3

)
;

3. Solve V >
1V 1 +A11 = G11 using Algorithm

1, and obtain core embeddings V ∗1;
4. Set V 1 = V ∗1, and find V ∗2 that minimizes

the total penalty of the 12-th and 21-th blocks
of residuals (the 22-th block is ignored due to
its high sparsity):

arg min
V 2

‖G12 − V >
1V 2‖2f(H)12

+ ‖G21 − V >
2V 1‖2f(H)21

+
∑
si∈S2

µi‖vsi‖2

= arg min
V 2

‖G12−V >
1V 2‖2f̄(H)12

+
∑
si∈S2

µi‖vsi‖2,

where f̄(H)12 = f(H)12 + f(H)>21;

G12 =
(
G12 ◦ f(H)12 + G>

21 ◦ f(H)>21

)
/
(
f(H)12 + f(H)>21

)
is the weighted aver-

age ofG12 andG>
21, “◦” and “/” are element-

wise product and division, respectively. The
columns in V 2 are independent, thus for each
vsi , it is a separate weighted ridge regression
problem, whose solution is (Holland, 1973):
v∗si

=(V >
1 diag(f̄ i)V 1+µiI)−1V >

1 diag(f̄ i)ḡi,
where f̄ i and ḡi are columns corresponding
to si in f̄(H)12 andG12, respectively;

5. For any other set of noncore words Sk, find
V ∗k that minimizes the total penalty of the 1k-
th and k1-th blocks, ignoring all other kj-th
and jk-th blocks;

6. Combine all subsets of embeddings to form
V ∗. Here V ∗ = (V ∗1,V

∗
2,V

∗
3).

6 Experimental Results

We trained our model along with a few state-of-
the-art competitors on Wikipedia, and evaluated
the embeddings on 7 common benchmark sets.

6.1 Experimental Setup
Our own method is referred to as PSD. The com-
petitors include:

• (Mikolov et al., 2013b): word2vec2, or
SGNS in some literature;

2https://code.google.com/p/word2vec/

• (Levy and Goldberg, 2014b): the PPMI ma-
trix without dimension reduction, and SVD
of PPMI matrix, both yielded by hyperwords;

• (Pennington et al., 2014): GloVe3;

• (Stratos et al., 2015): Singular4, which does
SVD-based CCA on the weighted bigram fre-
quency matrix;

• (Faruqui et al., 2015): Sparse5, which learns
new sparse embeddings in a higher dimen-
sional space from pretrained embeddings.

All models were trained on the English Wikipedia
snapshot in March 2015. After removing non-
textual elements and non-English words, 2.04 bil-
lion words were left. We used the default hyperpa-
rameters in Hyperwords when training PPMI and
SVD. Word2vec, GloVe and Singular were trained
with their own default hyperparameters.

The embedding sets PSD-Reg-180K and PSD-
Unreg-180K were trained using our online block-
wise regression. Both sets contain the embed-
dings of the most frequent 180,000 words, based
on 25,000 core words. PSD-Unreg-180K was
traind with all µi = 0, i.e. disabling Tikhonov
regularization. PSD-Reg-180K was trained with

µi =


2 i ∈ [25001, 80000]
4 i ∈ [80001, 130000]
8 i ∈ [130001, 180000]

, i.e. increased

regularization as the sparsity increases. To con-
trast with the batch learning performance, the per-
formance of PSD-25K is listed, which contains the
core embeddings only. PSD-25K took advantages
that it contains much less false candidate words,
and some test tuples (generally harder ones) were
not evaluated due to missing words, thus its scores
are not comparable to others.

Sparse was trained with PSD-180K-reg as the
input embeddings, with default hyperparameters.

The benchmark sets are almost identical to
those in (Levy et al., 2015), except that (Luong et
al., 2013)’s Rare Words is not included, as many
rare words are cut off at the frequency 100, mak-
ing more than 1/3 of test pairs invalid.

Word Similarity There are 5 datasets: Word-
Sim Similarity (WS Sim) and WordSim Related-
ness (WS Rel) (Zesch et al., 2008; Agirre et al.,
2009), partitioned from WordSim353 (Finkelstein
et al., 2002); Bruni et al. (2012)’s MEN dataset;

3http://nlp.stanford.edu/projects/glove/
4https://github.com/karlstratos/singular
5https://github.com/mfaruqui/sparse-coding

1605

Similarity Tasks Analogy Tasks
Method WS Sim WS Rel MEN Turk SimLex Google MSR

word2vec 0.742 0.543 0.731 0.663 0.395 0.734 / 0.742 0.650 / 0.674
PPMI 0.735 0.678 0.717 0.659 0.308 0.476 / 0.524 0.183 / 0.217
SVD 0.687 0.608 0.711 0.524 0.270 0.230 / 0.240 0.123 / 0.113

GloVe 0.759 0.630 0.756 0.641 0.362 0.535 / 0.544 0.408 / 0.435
Singular 0.763 0.684 0.747 0.581 0.345 0.440 / 0.508 0.364 / 0.399
Sparse 0.739 0.585 0.725 0.625 0.355 0.240 / 0.282 0.253 / 0.274

PSD-Reg-180K 0.792 0.679 0.764 0.676 0.398 0.602 / 0.623 0.465 / 0.507
PSD-Unreg-180K 0.786 0.663 0.753 0.675 0.372 0.566 / 0.598 0.424 / 0.468

PSD-25K 0.801 0.676 0.765 0.678 0.393 0.671 / 0.695 0.533 / 0.586

Table 2: Performance of each method across different tasks.

Radinsky et al. (2011)’s Mechanical Turk dataset;
and (Hill et al., 2014)’s SimLex-999 dataset. The
embeddings were evaluated by the Spearman’s
rank correlation with the human ratings.

Word Analogy The two datasets are MSR’s
analogy dataset (Mikolov et al., 2013c), with 8000
questions, and Google’s analogy dataset (Mikolov
et al., 2013a), with 19544 questions. After filtering
questions involving out-of-vocabulary words, i.e.
words that appear less than 100 times in the cor-
pus, 7054 instances in MSR and 19364 instances
in Google were left. The analogy questions were
answered using 3CosAdd as well as 3CosMul pro-
posed by Levy and Goldberg (2014a).

6.2 Results

Table 2 shows the results on all tasks. Word2vec
significantly outperformed other methods on anal-
ogy tasks. PPMI and SVD performed much worse
on analogy tasks than reported in (Levy et al.,
2015), probably due to sub-optimal hyperparam-
eters. This suggests their performance is unstable.
The new embeddings yielded by Sparse systemat-
ically degraded compared to the old embeddings,
contradicting the claim in (Faruqui et al., 2015).

Our method PSD-Reg-180K performed well
consistently, and is best in 4 similarity tasks.
It performed worse than word2vec on analogy
tasks, but still better than other MF-based meth-
ods. By comparing to PSD-Unreg-180K, we see
Tikhonov regularization brings 1-4% performance
boost across tasks. In addition, on similarity tasks,
online blockwise regression only degrades slightly
compared to batch factorization. Their perfor-
mance gaps on analogy tasks were wider, but this
might be explained by the fact that some hard
cases were not counted in PSD-25K’s evaluation,

due to its limited vocabulary.

7 Conclusions and Future Work

In this paper, inspired by the link functions in
previous works, with the support from Informa-
tion Theory, we propose a new link function of a
text window, parameterized by the embeddings of
words and the residuals of bigrams. Based on the
link function, we establish a generative model of
documents. The learning objective is to find a set
of embeddings maximizing their posterior likeli-
hood given the corpus. This objective is reduced to
weighted low-rank positive-semidefinite approxi-
mation, subject to Tikhonov regularization. Then
we adopt a Block Coordinate Descent algorithm,
jointly with an online blockwise regression algo-
rithm to find an approximate solution. On seven
benchmark sets, the learned embeddings show
competitive and stable performance.

In the future work, we will incorporate global
latent factors into this generative model, such as
topics, sentiments, or writing styles, and develop
more elaborate models of documents. Through
learning such latent factors, important summary
information of documents would be acquired,
which are useful in various applications.

Acknowledgments

We thank Omer Levy, Thomas Mach, Peilin Zhao,
Mingkui Tan, Zhiqiang Xu and Chunlin Wu for
their helpful discussions and insights. This re-
search is supported by the National Research
Foundation, Prime Minister’s Office, Singapore
under its IDM Futures Funding Initiative and ad-
ministered by the Interactive and Digital Media
Programme Office.

1606

Appendix A Possible Trap in SVD

SupposeM is the bigram matrix of interest. SVD
embeddings are derived from the low rank approx-
imation ofM>M , by keeping the largest singular
values/vectors. When some of these singular val-
ues correspond to negative eigenvalues, undesir-
able correlations might be captured. The follow-
ing is an example of approximating a PMI matrix.

A vocabulary consists of 3 words s1, s2, s3.
Two corpora derive two PMI matrices:

M (1) =
(

1.4 0.8 0
0.8 2.6 0
0 0 2

)
, M (2) =

(
0.2 −1.6 0
−1.6 −2.2 0

0 0 2

)
.

They have identical left singular matrix and sin-
gular values (3, 2, 1), but their eigenvalues are
(3, 2, 1) and (−3, 2, 1), respectively.

In a rank-2 approximation, the largest two
singular values/vectors are kept, and M (1) and
M (2) yield identical SVD embeddings V =
(0.45 0.89 0

0 0 1) (the rows may be scaled depending on
the algorithm, without affecting the validity of the
following conclusion). The embeddings of s1 and
s2 (columns 1 and 2 of V) point at the same di-
rection, suggesting they are positively correlated.
However as M (2)

1,2 = M
(2)
2,1 = −1.6 < 0, they are

actually negatively correlated in the second cor-
pus. This inconsistency is because the principal
eigenvalue of M (2) is negative, and yet the corre-
sponding singular value/vector is kept.

When using eigendecomposition, the largest
two positive eigenvalues/eigenvectors are kept.
M (1) yields the same embeddings V . M (2)

yields V (2) =
(−0.89 0.45 0

0 0 1.41

)
, which correctly

preserves the negative correlation between s1, s2.

Appendix B Information Theory

Redundant information refers to the reduced un-
certainty by knowing the value of any one of the
conditioning variables (hence redundant). Syner-
gistic information is the reduced uncertainty as-
cribed to knowing all the values of conditioning
variables, that cannot be reduced by knowing the
value of any variable alone (hence synergistic).

The mutual information I(y;xi) and the redun-
dant information Rdn(y;x1, x2) are defined as:

I(y;xi) = EP (xi,y)[log
P (y|xi)
P (y)

]

Rdn(y;x1, x2) = EP (y)

[
min
x1,x2

EP (xi|y)[log
P (y|xi)
P (y)

]
]

The synergistic information Syn(y;x1, x2) is
defined as the PI-function in (Williams and Beer,
2010), skipped here.

I(y;x1) I(y;x2)

Syn(y;x1,x2)
I(y;x1,x2)

Rdn(y;x1,x2)

Figure 2: Different types of information among
3 random variables y, x1, x2. I(y;x1, x2) is
the mutual information between y and (x1, x2).
Rdn(y;x1, x2) and Syn(y;x1, x2) are the redun-
dant information and synergistic information be-
tween x1, x2, conditioning y, respectively.

The interaction information Int(x1, x2, y) mea-
sures the relative strength of Rdn(y;x1, x2) and
Syn(y;x1, x2) (Timme et al., 2014):

Int(x1, x2, y)
=Syn(y;x1, x2)− Rdn(y;x1, x2)
=I(y;x1, x2)− I(y;x1)− I(y;x2)

=EP (x1,x2,y)[log
P (x1)P (x2)P (y)P (x1, x2, y)
P (x1, x2)P (x1, y)P (x2, y)

]

Figure 2 shows the relationship of different
information among 3 random variables y, x1, x2

(based on Fig.1 in (Williams and Beer, 2010)).
PMI is the pointwise counterpart of mutual

information I . Similarly, all the above concepts
have their pointwise counterparts, obtained by
dropping the expectation operator. Specifically,
the pointwise interaction information is defined as
PInt(x1, x2, y) = PMI(y;x1, x2)− PMI(y;x1)−
PMI(y;x2) = log P (x1)P (x2)P (y)P (x1,x2,y)

P (x1,x2)P (x1,y)P (x2,y) .
If we know PInt(x1, x2, y), we can recover
PMI(y;x1, x2) from the mutual information over
the variable subsets, and then recover the joint
distribution P (x1, x2, y).

As the pointwise redundant information
PRdn(y;x1, x2) and the pointwise synergistic
information PSyn(y;x1, x2) are both higher-
order interaction terms, their magnitudes are
usually much smaller than the PMI terms. We
assume they are approximately equal, and thus
cancel each other when computing PInt. Given
this, PInt is always 0. In the case of three
words w0, w1, w2, PInt(w0, w1, w2) = 0 leads to
PMI(w2;w0, w1) = PMI(w2;w0)+PMI(w2;w1).

1607

References
Eneko Agirre, Enrique Alfonseca, Keith Hall, Jana

Kravalova, Marius Paşca, and Aitor Soroa. 2009.
A study on similarity and relatedness using distribu-
tional and wordnet-based approaches. In Proceed-
ings of Human Language Technologies: The 2009
Annual Conference of the North American Chap-
ter of the Association for Computational Linguistics,
pages 19–27. Association for Computational Lin-
guistics.

Sanjeev Arora, Yuanzhi Li, Yingyu Liang, Tengyu
Ma, and Andrej Risteski. 2015. Random walks
on discourse spaces: a new generative language
model with applications to semantic word embed-
dings. ArXiv e-prints, arXiv:1502.03520 [cs.LG].

Yoshua Bengio, Réjean Ducharme, Pascal Vincent, and
Christian Jauvin. 2003. A neural probabilistic lan-
guage model. Journal of Machine Learning Re-
search, pages 1137–1155.

David M Blei, Andrew Y Ng, and Michael I Jordan.
2003. Latent dirichlet allocation. The Journal of
Machine Learning Research, 3:993–1022.

Elia Bruni, Gemma Boleda, Marco Baroni, and Nam-
Khanh Tran. 2012. Distributional semantics in tech-
nicolor. In Proceedings of the 50th Annual Meet-
ing of the Association for Computational Linguis-
tics: Long Papers-Volume 1, pages 136–145. Asso-
ciation for Computational Linguistics.

Scott C. Deerwester, Susan T Dumais, and Richard A.
Harshman. 1990. Indexing by latent semantic anal-
ysis. J. Am. Soc. Inf. Sci.

Paramveer Dhillon, Dean P Foster, and Lyle H Ungar.
2011. Multi-view learning of word embeddings via
cca. In Proceedings of Advances in Neural Informa-
tion Processing Systems, pages 199–207.

Paramveer S Dhillon, Dean P Foster, and Lyle H Ungar.
2015. Eigenwords: Spectral word embeddings. The
Journal of Machine Learning Research.

Manaal Faruqui, Yulia Tsvetkov, Dani Yogatama, Chris
Dyer, and Noah A. Smith. 2015. Sparse overcom-
plete word vector representations. In Proceedings of
ACL 2015.

Lev Finkelstein, Evgeniy Gabrilovich, Yossi Matias,
Ehud Rivlin, Zach Solan, Gadi Wolfman, and Ey-
tan Ruppin. 2002. Placing search in context: The
concept revisited. ACM Trans. Inf. Syst., 20(1):116–
131, January.

Amir Globerson, Gal Chechik, Fernando Pereira, and
Naftali Tishby. 2007. Euclidean embedding of co-
occurrence data. Journal of Machine Learning Re-
search, vol. 8 (2007):2265–2295, Oct.

Nicholas J. Higham. 1988. Computing a nearest sym-
metric positive semidefinite matrix. Linear Algebra
and its Applications, 103(0):103 – 118.

Felix Hill, Roi Reichart, and Anna Korhonen. 2014.
Simlex-999: Evaluating semantic models with (gen-
uine) similarity estimation. CoRR, abs/1408.3456.

Geoffrey Hinton. 2002. Training products of experts
by minimizing contrastive divergence. Neural Com-
putation, 14(8):1771–1800.

Paul W. Holland. 1973. Weighted Ridge Regression:
Combining Ridge and Robust Regression Methods.
NBER Working Papers 0011, National Bureau of
Economic Research, Inc, September.

Daniel Hsu, Sham M Kakade, and Tong Zhang. 2012.
A spectral algorithm for learning hidden markov
models. Journal of Computer and System Sciences,
78(5):1460–1480.

Omer Levy and Yoav Goldberg. 2014a. Linguistic reg-
ularities in sparse and explicit word representations.
In Proceedings of CoNLL-2014, page 171.

Omer Levy and Yoav Goldberg. 2014b. Neural word
embeddings as implicit matrix factorization. In Pro-
ceedings of NIPS 2014.

Omer Levy, Yoav Goldberg, and Ido Dagan. 2015. Im-
proving distributional similarity with lessons learned
from word embeddings. Transactions of the Associ-
ation for Computational Linguistics, 3:211–225.

Chenghua Lin and Yulan He. 2009. Joint senti-
ment/topic model for sentiment analysis. In Pro-
ceedings of the 18th ACM conference on Informa-
tion and Knowledge Management, pages 375–384.
ACM.

Minh-Thang Luong, Richard Socher, and Christo-
pher D Manning. 2013. Better word representa-
tions with recursive neural networks for morphol-
ogy. CoNLL-2013, 104.

Thomas Mach. 2012. Eigenvalue Algorithms for Sym-
metric Hierarchical Matrices. Dissertation, Chem-
nitz University of Technology.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey
Dean. 2013a. Efficient estimation of word represen-
tations in vector space. In Proceedings of Workshop
at ICLR 2013.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013b. Distributed representa-
tions of words and phrases and their compositional-
ity. In Proceedings of NIPS 2013, pages 3111–3119.

Tomas Mikolov, Wen-tau Yih, and Geoffrey Zweig.
2013c. Linguistic regularities in continuous space
word representations. In Proceedings of HLT-
NAACL 2013, pages 746–751.

Andriy Mnih and Geoffrey Hinton. 2007. Three new
graphical models for statistical language modelling.
In Proceedings of the 24th International Conference
on Machine learning, pages 641–648. ACM.

1608

Jeffrey Pennington, Richard Socher, and Christopher D
Manning. 2014. Glove: Global vectors for
word representation. Proceedings of the Empiricial
Methods in Natural Language Processing (EMNLP
2014), 12.

Kira Radinsky, Eugene Agichtein, Evgeniy
Gabrilovich, and Shaul Markovitch. 2011. A
word at a time: Computing word relatedness using
temporal semantic analysis. In Proceedings of the
20th International Conference on World Wide Web,
WWW ’11, pages 337–346, New York, NY, USA.
ACM.

Nathan Srebro, Tommi Jaakkola, et al. 2003. Weighted
low-rank approximations. In Proceedings of ICML
2003, volume 3, pages 720–727.

Karl Stratos, Do-kyum Kim, Michael Collins, and
Daniel Hsu. 2014. A spectral algorithm for learn-
ing class-based n-gram models of natural language.
In Proceedings of the Association for Uncertainty in
Artificial Intelligence.

Karl Stratos, Michael Collins, and Daniel Hsu. 2015.
Model-based word embeddings from decomposi-
tions of count matrices. In Proceedings of ACL
2015.

Mingkui Tan, Ivor W. Tsang, Li Wang, Bart Vander-
eycken, and Sinno Jialin Pan. 2014. Riemannian
pursuit for big matrix recovery. In Proceedings of
ICML 2014, pages 1539–1547.

Nicholas Timme, Wesley Alford, Benjamin Flecker,
and John M Beggs. 2014. Synergy, redundancy,
and multivariate information measures: an experi-
mentalist’s perspective. Journal of Computational
Neuroscience, 36(2):119–140.

Hanna M Wallach. 2006. Topic modeling: beyond
bag-of-words. In Proceedings of the 23rd interna-
tional conference on Machine learning, pages 977–
984. ACM.

Paul L Williams and Randall D Beer. 2010. Non-
negative decomposition of multivariate information.
arXiv preprint arXiv:1004.2515.

Yan Yan, Mingkui Tan, Ivor Tsang, Yi Yang, Chengqi
Zhang, and Qinfeng Shi. 2015. Scalable maximum
margin matrix factorization by active riemannian
subspace search. In Proceedings of IJCAI 2015.

Dani Yogatama, Manaal Faruqui, Chris Dyer, and
Noah A Smith. 2015. Learning word representa-
tions with hierarchical sparse coding. In Proceed-
ings of ICML 2015.

Torsten Zesch, Christof Müller, and Iryna Gurevych.
2008. Using wiktionary for computing semantic re-
latedness. In Proceedings of AAAI 2008, volume 8,
pages 861–866.

Chengxiang Zhai and John Lafferty. 2004. A study of
smoothing methods for language models applied to
information retrieval. ACM Transactions on Infor-
mation Systems (TOIS), 22(2):179–214.

Peilin Zhao, Steven CH Hoi, and Rong Jin. 2011a.
Double updating online learning. The Journal of
Machine Learning Research, 12:1587–1615.

Wayne Xin Zhao, Jing Jiang, Jianshu Weng, Jing
He, Ee-Peng Lim, Hongfei Yan, and Xiaoming
Li. 2011b. Comparing twitter and traditional me-
dia using topic models. In Advances in Informa-
tion Retrieval (Proceedings of the 33rd Annual Eu-
ropean Conference on Information Retrieval Re-
search), pages 338–349. Springer.

1609

