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Abstract

Models that learn to represent textual and
knowledge base relations in the same con-
tinuous latent space are able to perform
joint inferences among the two kinds of re-
lations and obtain high accuracy on knowl-
edge base completion (Riedel et al., 2013).
In this paper we propose a model that cap-
tures the compositional structure of tex-
tual relations, and jointly optimizes entity,
knowledge base, and textual relation rep-
resentations. The proposed model signifi-
cantly improves performance over a model
that does not share parameters among tex-
tual relations with common sub-structure.

1 Introduction

Representing information about real-world enti-
ties and their relations in structured knowledge
base (KB) form enables numerous applications.
Large, collaboratively created knowledge bases
have recently become available e.g., Freebase
(Bollacker et al., 2008), YAGO (Suchanek et al.,
2007), and DBPedia (Auer et al., 2007), but even
though they are impressively large, their coverage
is far from complete. This has motivated research
in automatically deriving new facts to extend a
manually built knowledge base, by using infor-
mation from the existing knowledge base, textual
mentions of entities, and semi-structured data such
as tables and web forms (Nickel et al., 2015).

In this paper we build upon the work of Riedel
et al. (2013), which jointly learns continuous rep-
resentations for knowledge base and textual rela-
tions. This common representation in the same
vector space can serve as a kind of “universal
schema” which admits joint inferences among

∗This research was conducted during the author’s intern-
ship at Microsoft Research.

Knowledge Base

Barack 
Obama

United 
States

Honolulu

Textual Mentions

Barack Obama is the 44th and current 
President of United States.

Obama was born in the United States 
just as he has always said.

…

ClueWeb

place_of_birth
city_of

nationality

Figure 1: A knowledge base fragment coupled with textual
mentions of pairs of entities.

KBs and text. The textual relations represent the
relationships between entities expressed in indi-
vidual sentences (see Figure 1 for an example).
Riedel et al. (2013) represented each textual men-
tion of an entity pair by the lexicalized depen-
dency path between the two entities (see Figure 2).
Each such path is treated as a separate relation in
a combined knowledge graph including both KB
and textual relations. Following prior work in la-
tent feature models for knowledge base comple-
tion, every textual relation receives its own contin-
uous representation, learned from the pattern of its
co-occurrences in the knowledge graph.

However, largely synonymous textual relations
often share common sub-structure, and are com-
posed of similar words and dependency arcs.
For example, Table 1 shows a collection of
dependency paths co-occurring with the per-
son/organizations founded relation.

In this paper we model this sub-structure
and share parameters among related dependency
paths, using a unified loss function learning entity
and relation representations to maximize perfor-
mance on the knowledge base link prediction task.

We evaluate our approach on the FB15k-237
dataset, a knowledge base derived from the Free-
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base subset FB15k (Bordes et al., 2013) and
filtered to remove highly redundant relations
(Toutanova and Chen, 2015). The knowledge base
is paired with textual mentions for all entity pairs
derived from ClueWeb121 with Freebase entity
mention annotations (Gabrilovich et al., 2013).

We show that using a convolutional neural net-
work to derive continuous representations for tex-
tual relations boosts the overall performance on
link prediction, with larger improvement on entity
pairs that have textual mentions.

2 Related Work

There has been a growing body of work on learn-
ing to predict relations between entities without re-
quiring sentence-level annotations of textual men-
tions at training time. We group such related work
into three groups based on whether KB, text, or
both sources of information are used. Addition-
ally, we discuss related work in the area of super-
vised relation extraction using continuous repre-
sentations of text, even though we do not use su-
pervision at the level of textual mentions.

Knowledge base completion

Nickel et al. (2015) provide a broad overview of
machine learning models for knowledge graphs,
including models based on observed graph fea-
tures such as the path ranking algorithm (Lao et
al., 2011), models based on continuous represen-
tations (latent features), and model combinations
(Dong et al., 2014). These models predict new
facts in a given knowledge base, based on infor-
mation from existing entities and relations. From
this line of work, most relevant to our study is
prior work evaluating continuous representation
models on the FB15k dataset. Yang et al. (2015)
showed that a simple variant of a bilinear model
DISTMULT outperformed TRANSE (Bordes et al.,
2013) and more richly parameterized models on
this dataset. We therefore build upon the best per-
forming prior model DISTMULT from this line of
work, as well as additional models E and F devel-
oped in the context of text-augmented knowledge
graphs (Riedel et al., 2013), and extend them to in-
corporate compositional representations of textual
relations.

1http://lemurproject.org/clueweb12/
FACC1/

Relation extraction using distant supervision

A number of works have focused on extracting
new instances of relations using information from
textual mentions, without sophisticated model-
ing of prior knowledge from the knowledge base.
Mintz et al. (2009) demonstrated that both surface
context and dependency path context were help-
ful for the task, but did not model the composi-
tional sub-structure of this context. Other work
proposed more sophisticated models that reason
about sentence-level hidden variables (Riedel et
al., 2010; Hoffmann et al., 2011; Surdeanu et al.,
2012) or model the noise arising from the incom-
pleteness of knowledge bases and text collections
(Ritter et al., 2013), inter alia. Our work focuses
on representing the compositional structure of sen-
tential context for learning joint continuous repre-
sentations of text and knowledge bases.

Combining knowledge base and text
information

A combination of knowledge base and textual in-
formation was first shown to outperform either
source alone in the framework of path-ranking al-
gorithms in a combined knowledge base and text
graph (Lao et al., 2012). To alleviate the spar-
sity of textual relations arising in such a com-
bined graph, (Gardner et al., 2013; Gardner et al.,
2014) showed how to incorporate clusters or con-
tinuous representations of textual relations. Note
that these vector representations are based on the
co-occurrence patterns for the textual relations
and not on their compositional structure. Co-
occurrence based textual relation representations
were also learned in (Neelakantan et al., 2015).
Wang et al. (2014a) combined knowledge base and
text information by embedding knowledge base
entities and the words in their names in the same
vector space, but did not model the textual co-
occurrences of entity pairs and the expressed tex-
tual relations. Weston et al. (2013) combined con-
tinuous representations from a knowledge base
and textual mentions for prediction of new rela-
tions. The two representations were trained inde-
pendently of each other and using different loss
functions, and were only combined at inference
time. Additionally, the employed representations
of text were non-compositional.

In this work we train continuous representations
of knowledge base and textual relations jointly,
which allows for deeper interactions between the
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sources of information. We directly build on the
universal schema approach of Riedel et al. (2013)
as well as the universal schema extension of the
DISTMULT model mentioned previously, to im-
prove the representations of textual relations by
capturing their compositional structure. Addition-
ally, we evaluate the approach on a dataset that
contains rich prior information from the training
knowledge base, as well as a wealth of textual in-
formation from a large document collection.

Continuous representations for supervised
relation extraction

In contrast to the work reviewed so far, work on
sentence-level relation extraction using direct su-
pervision has focused heavily on representing sen-
tence context. Models using hand-crafted fea-
tures have evolved for more than a decade, and
recently, models using continuous representations
have been found to achieve new state-of-the-art
performance (Zeng et al., 2014; Gormley et al.,
2015). Compared to work on representation learn-
ing for sentence-level context, such as this recent
work using LSTM models on constituency or de-
pendency trees (Tai et al., 2015), our approach us-
ing a one-hidden-layer convolutional neural net-
work is relatively simple. However, even such a
simple approach has been shown to be very com-
petitive (Kim, 2014).

3 Models for knowledge base completion

We begin by introducing notation to define the
task, largely following the terminology in Nickel
et al. (2015). We assume knowledge bases are rep-
resented using RDF triples, in the form (subject,
predicate, object), where the subject and object are
entities and the predicate is the type of relation.
For example, the KB fragment shown in Figure 1
is shown as a knowledge graph, where the enti-
ties are the nodes, and the relations are shown as
directed labeled edges: we see three entities par-
ticipating in three relation instances indicated by
the edges. For brevity, we will denote triples by
(es, r, eo), where es and eo denote the subject and
object entities, respectively.

The task is, given a training KB consisting of
entities with some relations between them, to pre-
dict new relations (links) that do not appear in the
training KB. More specifically, we will build mod-
els that rank candidate entities for given queries
(es, r, ?) or (?, r, eo), which ask about the object

Barack Obama is the 44th and currrent President of United States .

nsubj prep pobj

SUBJECT
nsubj �� president

prep��! of
obj�! OBJECT

1

Figure 2: Textual relation extracted from an entity
pair mention.

or subject of a given relation.
This task setting has been used in models for

KB completion previously, e.g. (Dong et al., 2014;
Gardner et al., 2014), even though it has not been
standard in evaluations of distant supervision for
relation extraction (Mintz et al., 2009; Riedel et
al., 2013). The advantage of this evaluation set-
ting is that it enables automatic evaluation without
requiring humans to label candidate extractions,
while making only a local closed world assump-
tion for the completeness of the knowledge base
— i.e., if one object eo for a certain subject / rela-
tion pair (es, r) is present in the knowledge base,
it is assumed likely that all other objects (es, r, e′o)
will be present. Such an assumption is particularly
justified for nearly functional relations.

To incorporate textual information, we follow
prior work (Lao et al., 2012; Riedel et al., 2013)
and represent both textual and knowledge base re-
lations in a single graph of “universal” relations.
The textual relations are represented as full lexi-
calized dependency paths, as illustrated in Figure

2. An instance of the textual relation SUBJECT
nsubj←−−−

president
prep−−→ of

obj−→OBJECT connecting the entities
BARACK OBAMA and UNITED STATES, is added to the
knowledge graph based on this sentential occur-
rence.

To present the models for knowledge base
completion based on such combined knowledge
graphs, we first introduce some notation. Let E
denote the set of entities in the knowledge graph
and let R denote the set of relation types. We de-
note each possible triple as T = (es, r, eo) where
es, eo ∈ E , r ∈ R, and model its presence with
a binary random variable yT ∈ {0, 1} which in-
dicates whether the triple exists. The models we
build score possible triples (es, r, eo) using contin-
uous representations (latent features) of the three
elements of the triple. The models use scoring
function f(es, r, eo) to represent the model’s con-
fidence in the existence of the triple. We present
the models and then the loss function used to train
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Figure 3: The continuous representations for
model F, E and DISTMULT.

their parameters.

3.1 Basic Models

We begin with presenting the three models from
prior work that this research builds upon. They
all learn latent continuous representations of rela-
tions and entities or entity pairs, and score possible
triples based on the learned continuous represen-
tations. Each of the models can be defined on a
knowledge graph containing entities and KB rela-
tions only, or on a knowledge graph additionally
containing textual relations. We use models F and
E from (Riedel et al., 2013) where they were used
for a combined KB+text graph, and model DIST-
MULT from (Yang et al., 2015), which was origi-
nally used for a knowledge graph containing only
KB relations.

As shown in Figure 3, model F learns a K-
dimensional latent feature vector for each can-
didate entity pair (es, eo), as well as a same-
dimensional vector for each relation r, and the
scoring function is simply defined as their inner
product: f(es, r, eo) = v(r)ᵀv(es, eo). Therefore,
different pairs sharing the same entity would not
share parameters in this model.

Model E does not have parameters for entity
pairs, and instead has parameters for individual
entities. It aims to capture the compatibility be-

tween entities and the subject and object posi-
tions of relations. For each relation type r, the
model learns two latent feature vectors v(rs) and
v(ro) of dimension K. For each entity (node) ei,
the model also learns a latent feature vector of
the same dimensionality. The score of a candi-
date triple (es, r, eo) is defined as f(es, r, eo) =
v(rs)ᵀv(es) + v(ro)ᵀv(eo). It can be seen that
when a subject entity is fixed in a query (es, r, ?),
the ranking of candidate object entity fillers ac-
cording to f does not depend on the subject entity
but only on the relation type r.

The third model DISTMULT, is a special form
of a bilinear model like RESCAL (Nickel et al.,
2011), where the non-diagonal entries in the rela-
tion matrices are assumed to be zero. This model
was proposed in Yang et al. (2015) and was shown
to outperform prior work on the FB15k dataset.
In this model, each entity ei and each relation r
is assigned a latent feature vector of dimensionK.
The score of a candidate triple (es, r, eo) is defined
as f(es, r, eo) = v(r)ᵀ (v(es) ◦ v(eo)), where ◦
denotes the element-wise vector product. In this
model, entity pairs which share an entity also share
parameters, and the ranking of candidate objects
for queries (es, r, ?) depends on the subject entity.

Denote Ne = |E|, Nr = |R|, and K = di-
mension of latent feature vectors, then model E
has KNe + 2KNr parameters and model DIST-
MULT has KNe + KNr parameters. Model F
has KN2

e + KNr parameters, although most en-
tity pairs will not co-occur in the knowledge base
or text.

In the basic models, knowledge base and textual
relations are treated uniformly, and each textual re-
lation receives its own latent representation of di-
mensionality K. When textual relations are added
to the training knowledge graph, the total number
of relations |R| grows substantially (it increases
from 237 to more than 2.7 million for the dataset
in this study), resulting in a substantial increase in
the total number of independent parameters.

Note that in all of these models queries
about the arguments of knowledge base relations
(es, r, ?) are answered by scoring functions look-
ing only at the entity and KB relation represen-
tations, without using representations of textual
mentions. The textual mention information and
representations are only used at training time to
improve the learned representations of KB rela-
tions and entities.
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3.2 CONV: Compositional Representations of
Textual Relations

In the standard latent feature models discussed
above, each textual relation is treated as an atomic
unit receiving its own set of latent features. How-
ever, many textual relations differ only slightly
in the words or dependency arcs used to express
the relation. For example, Table 1 shows sev-
eral textual patterns that co-occurr with the re-
lation person/organizations founded in the train-
ing KB. While some dependency paths occur fre-
quently, many very closely related ones have been
observed only once. The statistical strength of the
model could be improved if similar dependency
paths have a shared parameterization. We build on
work using similar intuitions for other tasks and
learn compositional representations of textual re-
lations based on their internal structure, so that the
derived representations are accurate for the task of
predicting knowledge base relations.

We use a convolutional neural network applied
to the lexicalized dependency paths treated as a se-
quence of words and dependency arcs with direc-
tion. Figure 4 depicts the neural network archi-
tecture. In the first layer, each word or directed la-
beled arc is mapped to a continuous representation
using an embedding matrix V. In the hidden layer,
every window of three elements is mapped to a
hidden vector using position-specific maps W, a
bias vector b, and a tanh activation function. A
max-pooling operation over the sequence is ap-
plied to derive the final continuous representation
for the dependency path.

The CONV representation of textual relations
can be used to augment any of the three basic mod-
els. The difference between a basic model and its
CONV-augmented variant is in the parameteriza-
tion of textual mentions. The basic models learn
distinct latent feature vectors of dimensionality K
for all textual relation types, whereas the CONV

models derive the K-dimensional latent feature
vectors for textual relation types as the activation
at the top layer of the convolutional network in
Figure 4, given the corresponding lexicalized de-
pendency path as input.

3.3 Training loss function

All basic and CONV-augmented models use the
same training loss function. Our loss function
is motivated by the link prediction task and the
performance measures used. As previously men-

tioned, the task is to predict the subject or ob-
ject entity for given held-out triples (es, r, eo),
i.e., to rank all entities with respect to their like-
lihood of filling the respective position in the
triple2. We would thus like the model to score cor-
rect triples (es, r, eo) higher than incorrect triples
(e′, r, eo) and (es, r, e′) which differ from the cor-
rect triple by one entity. Several approaches
(Nickel et al., 2015) use a margin-based loss func-
tion. We use an approximation to the negative log-
likelihood of the correct entity filler instead3. We
define the conditional probabilities p(eo|es, r) and
p(es|r, eo) for object and subject entities given the
relation and the other argument as follows:

p(eo|es, r; Θ) =
ef(es,r,eo;Θ)∑

e′∈Neg(es,r,?) e
f(es,r,e′;Θ)

Conditional probabilities for subject entities
p(es|eo, r; Θ) are defined analogously. Here Θ de-
notes all the parameters of latent features. The
denominator is defined using a set of entities
that do not fill the object position in any relation
triple (es, r, ?) in the training knowledge graph.
Since the number of such entities is impractically
large, we sample negative triples from the full
set. We also limit the candidate entities to ones
that have types consistent with the position in the
relation triple (Chang et al., 2014; Yang et al.,
2015), where the types are approximated follow-
ing Toutanova and Chen (2015). Additionally,
since the task of predicting textual relations is aux-
iliary to the main task, we use a weighting factor τ
for the loss on predicting the arguments of textual
relations (Toutanova and Chen, 2015).

Denote T as a set of triples, we define the loss
L(T ; Θ) as:

L(T ; Θ) = −
∑

(es,r,eo)∈T
log p(eo|es, r; Θ)

−
∑

(es,r,eo)∈T
log p(es|eo, r; Θ)

Let TKB and Ttext represent the set of knowl-
edge base triples and textual relation triples re-
spectively. The final training loss function is de-

2Our experimental comparison focuses on predicting ob-
ject entities only, but we consider both argument types in the
training loss function.

3Note that both margin-based and likelihood-based loss
functions are susceptible to noise from potential selection of
false negative examples. An empirical comparison of training
loss functions would be interesting.
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Textual Pattern Count

SUBJECT
appos−−−→founder

prep−−→of
pobj−−→OBJECT 12

SUBJECT
nsubj←−−−co-founded

dobj−−→OBJECT 3

SUBJECT
appos−−−→co-founder

prep−−→of
pobj−−→OBJECT 3

SUBJECT
conj−−→co-founder

prep−−→of
pobj−−→OBJECT 3

SUBJECT
pobj←−−with

prep←−−co-founded
dobj−−→OBJECT 2

SUBJECT
nsubj←−−−signed

xcomp−−−→establishing
dobj−−→OBJECT 2

SUBJECT
pobj←−−with

prep←−−founders
prep−−→of

pobj−−→OBJECT 2

SUBJECT
appos−−−→founders

prep−−→of
pobj−−→OBJECT 2

SUBJECT
nsubj←−−−one

prep−−→of
pobj−−→founders

prep−−→of
pobj−−→OBJECT 2

SUBJECT
nsubj←−−−founded

dobj−−→production
conj−−→OBJECT 2

SUBJECT
appos←−−−partner

pobj←−−with
prep←−−founded

dobj−−→production
conj−−→OBJECT 2

SUBJECT
pobj←−−by

prep←−−co-founded rcmod←−−−OBJECT 1

SUBJECT
nn←−co-founder

prep−−→of
pobj−−→OBJECT 1

SUBJECT
dep−−→co-founder

prep−−→of
pobj−−→OBJECT 1

SUBJECT
nsubj←−−−helped

xcomp−−−→establish
dobj−−→OBJECT 1

SUBJECT
nsubj←−−−signed

xcomp−−−→creating
dobj−−→OBJECT 1

Table 1: Textual patterns occurring with entity pairs in a person/organizations founded relationship. The
count indicates the number of training set instances that have this KB relation, which co-occur with each
textual pattern.

SUBJECT
appos���! co-founder

prep��! of
pobj��! OBJECT

vi = V ei

hi = tanh(W�1vi�1 + W 0vi + W 1vi+1 + b)

r = max{hi}

1

Figure 4: The convolutional neural network architecture for representing textual relations.

fined as:

L(TKB; Θ) + τL(Ttext; Θ) + λ‖Θ‖2,

where λ is the regularization parameter, and τ is
the weighing factor of the textual relations.

The parameters of all models are trained using a
batch training algorithm. The gradients of the ba-
sic models are straightforward to compute, and the
gradients of the convolutional network parameters
for the CONV-augmented models are also not hard
to derive using back-propagation.

4 Experiments

Dataset and Evaluation Protocol
We use the FB15k-237 4 dataset, which is a sub-
set of FB15k (Bordes et al., 2013) that excludes
redundant relations and direct training links for
held-out triples, with the goal of making the task
more realistic (Toutanova and Chen, 2015). The
FB15k dataset has been used in multiple stud-
ies on knowledge base completion (Wang et al.,
2014b; Yang et al., 2015). Textual relations for

4Check the first author’s website for a release of the
dataset.
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FB15k-237 are extracted from 200 million sen-
tences in the ClueWeb12 corpus coupled with
Freebase mention annotations (Gabrilovich et al.,
2013), and include textual links of all co-occurring
entities from the KB set. After pruning5, there are
2.7 million unique textual relations that are added
to the knowledge graph. The set of textual rela-
tions is larger than the set used in Toutanova and
Chen (2015) (25,000 versus 2.7 million), leading
to improved performance.

The number of relations and triples in the train-
ing, validation and test portions of the data are
given in Table 2. The two rows list statistics for
the KB and text portions of the data separately.
The 2.7 million textual relations occur in 3.9 mil-
lion text triples. Almost all entities occur in tex-
tual relations (13,937 out of 14,541). The num-
bers of triples for textual relations are shown as
zero for the validation and test sets because we
don’t evaluate on prediction of textual relations
(all text triples are used in training). The per-
centage of KB triples that have textual relations
for their pair of entities is 40.5% for the training,
26.6% for the validation, and 28.1% for the test
set. While 26.6% of the validation set triples have
textual mentions, the percentage with textual re-
lations that have been seen in the training set is
18.4%. Having a mention increases the chance
that a random entity pair has a relation from 0.1%
to 5.0% — a fifty-fold increase.

Given a set of triples in a set disjoint from a
training knowledge graph, we test models on pre-
dicting the object of each triple, given the subject
and relation type. We rank all entities in the train-
ing knowledge base in order of their likelihood of
filling the argument position. We report the mean
reciprocal rank (MRR) of the correct entity, as
well as HITS@10 — the percentage of test triples
for which the correct entity is ranked in the top
10. We use filtered measures following the pro-
tocol proposed in Bordes et al. (2013) — that is,
when we rank entities for a given position, we re-
move all other entities that are known to be part of
an existing triple in the training, validation, or test
set. This avoids penalizing the model for ranking
other correct fillers higher than the tested entity.

5The full set of 37 million textual patterns connecting the
entity pairs of interest was pruned based on the count of pat-
terns and their tri-grams, and their precision in indicating that
entity pairs have KB relations.

Implementation details

We used a value of λ = 1 for the weight of the
L2 penalty for the main results in Table 3, and
present some results on the impact of λ at the end
of this section. We used batch optimization af-
ter initial experiments with AdaGrad showed in-
ferior performance. L-BFGS (Liu and Nocedal,
1989) and RProp (Riedmiller and Braun, 1993)
were found to converge to similar function values,
with RProp converging significantly faster. We
thus used RProp for optimization. We initialized
the KB+text models from the KB-only models and
also from random initial values (sampled from a
Gaussian distribution), and stopped optimization
when the overall MRR on the validation set de-
creased. For each model type, we chose the better
of random and KB-only initialization. The word
embeddings in the CONV models were initialized
using the 50-dimensional vectors from Turian et
al. (2010) in the main experiments, with a slight
positive impact. The effect of initialization is dis-
cussed at the end of the section.

The number of negative examples for each triple
was set to 200. Performance improved substan-
tially when the number of negative examples was
increased and reached a plateau around 200. We
chose the optimal number of latent feature dimen-
sions via a grid search to optimize MRR on the
validation set, testing the values 5, 10, 15, 35, 50,
100, 200 and 500. We also performed a grid search
over the values of the parameter τ , testing values
in the set {0.01, 0.1, 0.25, 0.5, 1}. The best dimen-
sion for latent feature vectors was 10 for most KB-
only models (not including model F), and 5 for the
two model configurations including F. We used
K = 10 for all KB+text models, as higher dimen-
sion was also not helpful for them.

Experimental results

In Table 3 we show the performance of differ-
ent models and their combinations6, both when
using textual mentions (KB+text), and when us-
ing only knowledge base relations (KB only). In
the KB+text setting, we evaluate the contribution
of the CONV representations of the textual rela-
tions. The upper portion of the Table shows the
performance of models that have been trained us-
ing knowledge graphs including only knowledge

6Different models are combined by simply defining a
combined scoring function which adds the scores from in-
dividual models. Combined models are trained jointly.
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# Relations # Entities # Triples in Train / Validation / Test
KB 237 14,541 272,115 / 17,535 / 20, 466
Text 2,740k 13,937 3,978k / 0 / 0

Table 2: The statistics of dataset FB15k-237.

Model Overall With mentions Without mentions
MRR HITS@10 MRR HITS@10 MRR HITS@10

KB only
F 16.9 24.5 26.4 49.1 13.3 15.5
E 33.2 47.6 25.5 37.8 36.0 51.2
DISTMULT 35.7 52.3 26.0 39.0 39.3 57.2
E+DISTMULT 37.3 55.2 28.6 42.9 40.5 59.8
F+E+DISTMULT 33.8 50.1 15.0 26.1 40.7 59.0

KB and text
F (τ = 1) 19.4 27.9 35.4 61.6 13.4 15.5
CONV-F (τ = 1) 19.2 28.4 34.9 63.7 13.3 15.4
E (τ = 0) 33.2 47.6 25.5 37.8 36.0 51.2
CONV-E (τ = 0) 33.2 47.6 25.5 37.8 36.0 51.2
DISTMULT (τ = 0.01) 36.1 52.7 26.5 39.5 39.6 57.5
CONV-DISTMULT (τ = 0.25) 36.6 53.5 28.3 43.4 39.7 57.2
E + DISTMULT (τ = 0.01) 37.7 55.7 28.9 43.4 40.9 60.2
CONV-E + CONV-DISTMULT (τ = 0.25) 40.1 58.1 33.9 49.9 42.4 61.1

Table 3: Results on FB15k-237 for KB only and KB+text inference, with basic models versus the pro-
posed CONV-augmented models. The values of the hyper-parameter τ (as shown in the Table) were
chosen to maximize MRR on the validation set. The reported numbers were obtained for the test set.

base relations, and are not using any information
from textual mentions. The lower portion of the
Table shows the performance when textual rela-
tions are added to the training knowledge graph
and the corresponding training loss function. Note
that all models predict based on the learned knowl-
edge base relation and entity representations, and
the textual relations are only used at training time
when they can impact these representations.

The performance of all models is shown as an
overall MRR (scaled by 100) and HITS@10, as
well as performance on the subset of triples that
have textual mentions (column With mentions),
and ones that do not (column Without mentions).
Around 28% of the test triples have mentions and
contribute toward the measures in the With men-
tions column, and the other 72% of the test triples
contribute to the Without mentions column.

For the KB-only models, we see the perfor-
mance of each individual model F, E, and DIST-
MULT. Model F was the best performing single
model from (Riedel et al., 2013), but it does not
perform well when textual mentions are not used.
In our implementation of model F, we created en-
tity pair parameters only for entity pairs that co-
occur in the text data (Riedel et al. (2013) also
trained pairwise vectors for co-occuring entities

only, but all of the training and test tuples in their
study were co-occurring)7. Without textual in-
formation, model F is performing essentially ran-
domly, because entity pairs in the test sets do not
occur in training set relations (by construction of
the dataset). Model E is able to do surprisingly
well, given that it is making predictions for each
object position of a relation without considering
the given subject of the relation. DISTMULT is
the best performing single model. Unlike model
F, it is able to share parameters among entity pairs
with common subject or object entities, and, un-
like model E, it captures some dependencies be-
tween the subject and object entities of a relation.
The combination of models E+DISTMULT im-
proves performance, but combining model F with
the other two is not helpful.

The lower portion of Table 3 shows results when
textual relations are added to the training knowl-
edge graph. The basic models treat the textual re-
lations as atomic and learn a separate latent feature
vector for each textual relation. The CONV- mod-
els use the compositional representations of tex-

7Learning entity pair parameters for all entity pairs would
result in 2.2 billion parameters for vectors with dimensional-
ity 10 for our dataset. This was infeasible and was also not
found useful based on experiments with vectors of lower di-
mensionality.
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tual relations learned using the convolutional neu-
ral network architecture shown in Figure 4. We
show the performance of each individual model
and its corresponding variant with a CONV pa-
rameterization. For each model, we also show the
optimal value of τ , the weight of the textual re-
lations loss. Model F is able to benefit from tex-
tual relations and its performance increases by 2.5
points in MRR, with the gain in performance be-
ing particularly large on test triples with textual
mentions. Model F is essentially limiting its space
of considered argument fillers to ones that have co-
occurred with the given subject entity. This gives it
an advantage on test triples with textual mentions,
but model F still does relatively very poorly over-
all when taking into account the much more nu-
merous test triples without textual mentions. The
CONV parameterization performs slightly worse
in MRR, but slightly better in HITS@10, com-
pared to the atomic parameterization. For model
E and its CONV variant, we see that text does not
help as its performance using text is the same as
that when not using text and the optimal weight
of the text is zero. Model DISTMULT benefits
from text, and its convolutional text variant CONV-
DISTMULT outperforms the basic model, with the
gain being larger on test triples with mentions.

The best model overall, as in the KB-only
case, is E+DISTMULT. The basic model bene-
fits from text slightly and the model with compo-
sitional representations of textual patterns CONV-
E+CONV-DISTMULT, improves the performance
further, by 2.4 MRR overall, and by 5 MRR on
triples with textual mentions. It is interesting
that the text and the compositional representations
helped most for this combined model. One hy-
pothesis is that model E, which provides a prior
over relation arguments, is needed in combination
with DISTMULT to prevent the prediction of un-
likely arguments based on noisy inference from
textual patterns and their individual words and de-
pendency links.

Hyperparameter Sensitivity

To gain insight into the sensitivity of the model to
hyper-parameters and initialization, we report on
experiments starting with the best model CONV-
E + CONV-DISTMULT from Table 3 and varying
one parameter at a time. This model has weight
of the textual relations loss τ = 0.25, weight of
the L2 penalty λ = 1, convolution window size of

three, and is initialized randomly for the entity and
KB relation vectors, and from pre-trained embed-
dings for word vectors (Turian et al., 2010). The
overall MRR of the model is 40.4 on the validation
set (test results are shown in the Table).

When the weight of τ is changed to 1 (i.e., equal
contribution of textual and KB relations), the over-
all MRR goes down to 39.6 from 40.4, indicat-
ing the usefulness of weighting the two kinds of
relations non-uniformly. When λ is reduced to
0.04, MRR is 40.0 and when λ is increased to
25, MRR goes down to 38.9. This indicates the
L2 penalty hyper-parameter has a large impact on
performance. When we initialize the word embed-
dings randomly instead of using pre-trained word
vectors, performance drops only slightly to 40.3.
If we initialize from a model trained using KB-
only information, performance goes down sub-
stantially to 38.7. This indicates that initialization
is important and there is a small gain from using
pre-trained word embeddings. There was a drop
in performance to MRR 40.2 when using a win-
dow size of one for the convolutional architecture
in Figure 4, and an increase to 40.6 when using a
window size of five.

5 Conclusion and Future Work

Here we explored an alternative representation
of textual relations for latent feature models that
learn to represent knowledge base and textual re-
lations in the same vector space. We showed that
given the large degree of sharing of sub-structure
in the textual relations, it was beneficial to com-
pose their continuous representations out of the
representations of their component words and de-
pendency arc links. We applied a convolutional
neural network model and trained it jointly with a
model mapping entities and knowledge base rela-
tions to the same vector space, obtaining substan-
tial improvements over an approach that treats the
textual relations as atomic units having indepen-
dent parameterization.
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