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Abstract

Semantic parsing maps a sentence in natu-
ral language into a structured meaning rep-
resentation. Previous studies show that se-
mantic parsing with synchronous context-
free grammars (SCFGs) achieves favor-
able performance over most other alter-
natives. Motivated by the observation
that the performance of semantic pars-
ing with SCFGs is closely tied to the
translation rules, this paper explores ex-
tending translation rules with high qual-
ity and increased coverage in three ways.
First, we introduce structure informed
non-terminals, better guiding the parsing
in favor of well formed structure, instead
of using a uninformed non-terminal in
SCFGs. Second, we examine the differ-
ence between word alignments for seman-
tic parsing and statistical machine transla-
tion (SMT) to better adapt word alignment
in SMT to semantic parsing. Finally, we
address the unknown word translation is-
sue via synthetic translation rules. Eval-
uation on the standard GeoQuery bench-
mark dataset shows that our approach
achieves the state-of-the-art across various
languages, including English, German and
Greek.

1 Introduction

Semantic parsing, the task of mapping natural
language (NL) sentences into a formal meaning
representation language (MRL), has recently re-
ceived a significant amount of attention with vari-
ous models proposed over the past few years. Con-
sider the NL sentence paired with its correspond-
ing MRL in Figure 1(a). Semantic parsing can be

NL: What is the area of Seattle
MRL: answer(area_1(cityid(‘seattle’, _)))

(a) before pre-processing

NL’: what be the area of seattle
MRL": answer@1 area_1@1 cityid@2 seattle@s _@0

(b) after pre-processing

Figure 1: Example of a sentence pair in NL and MRL.

naturally viewed as a statistical machine transla-
tion (SMT) task, which translates a sentence in NL
(i.e., the source language in SMT) into its mean-
ing representation in MRL (i.e., the target lan-
guage in SMT). Indeed, many attempts have been
made to directly apply statistical machine transla-
tion (SMT) systems (or methodologies) to seman-
tic parsing (Papineni et al., 1997; Macherey et al.,
2001; Wong and Mooney, 2006; Andreas et al.,
2013). However, although recent studies (Wong
and Mooney, 2006; Andreas et al., 2013) show that
semantic parsing with SCFGs, which form the ba-
sis of most existing statistical syntax-based trans-
lation models (Yamada and Knight, 2001; Chiang,
2007), achieves favorable results, this approach is
still behind the most recent state-of-the-art. For
details, please see performance comparison in An-
dreas et al. (2013) and Lu (2014).

The key issues behind the limited success of ap-
plying SMT systems directly to semantic parsing
lie in the difference between semantic parsing and
SMT: MRL is not a real natural language with
different properties from natural language. First,
MRL is machine-interpretable and thus strictly
structured with the meaning representation in a
nested structure of functions and arguments. Sec-
ond, the two languages are intrinsically asymmet-
ric since each token in MRL carries specific mean-
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ing! while this does not hold in NL since auxil-
iary words and some function words usually have
no counterparts in MRL. Third and finally, the ex-
pressions in NL are more flexible with respect to
lexicon selection and token ordering. For exam-
ple, since sentences in NL ‘could you tell me the
states that utah borders’, ‘what states does utah
border’, and ‘utah borders what states’ convey the
same meaning, they should have the same expres-
sion in MRL.

Motivated by the above observations, we be-
lieve that semantic parsing with standard SMT
components is not an ideal approach. Alterna-
tively, this paper proposes an effective, yet simple
way to enrich SCFG in hierarchical phrase-based
SMT for better semantic parsing. Specifically,
since the translation rules play a critical role in
SMT, we explore to improve translation rule qual-
ity and increase its coverage in three ways. First,
we enrich non-terminal symbols as to capture con-
textual and structured information. The enrich-
ment of non-terminal symbols not only guides the
translation in favor of well formed structures, but
also is beneficial to translation. Second, we ex-
amine the difference between word alignments for
semantic parsing and SMT to better adapt word
alignment in SMT to semantic parsing. Third,
unlike most existing SMT systems that keep un-
known words untranslated and intact in transla-
tion, we exploit the translation of unknown words
via synthetic translation rules. Evaluation on Geo-
Query benchmark dataset shows that our approach
obtains consistent improvement and achieves the
state-of-the-art across various languages, includ-
ing English, German and Greek.

2 Background: Semantic Parsing as
Statistical Machine Translation

In this section, we present the framework of
semantic parsing as SMT, which was proposed
in Andreas et al. (2013).

Pre-Processing Various semantic formalisms
have been considered for semantic parsing. Ex-
amples include the variable-free semantic repre-
sentations (that is, the meaning representation for
each utterance is tree-shaped), the lambda calculus
expressions, and dependency-based compositional
semantic representations. In this work, we specifi-

'As seen in Section 2, delimiters, including parentheses
and commas which do not carry any meaning will be removed
in pre-processing and be recovered in post-processing

cally focus on the variable-free semantic represen-
tations, as shown in Figure 1. On the target side,
we convert these meaning representations to series
of strings similar to NL. To do so, we simply take a
preorder traversal of every functional form, and la-
bel every function with the number of arguments
it takes. Figure 1(b) shows an example of con-
verted meaning representation, where each token
is in the format of AQB where A is the symbol
while B is either s indicating that the symbol is
a string or a number indicating the symbol’s arity
(constants, including strings, are treated as zero-
argument functions).

On the source side, we perform stemming (for
English and German) and lowercasing to over-
come data sparseness.

Hereafter, we refer to the pre-processed NL and
MRL as NL' and MRL' respectively.

Translation Given a corpus of NL' sentences
paired with MRL/, we learn a semantic parser
by adopting a string-to-string translation system.
Typical components in such a translation system
include word alignments between the source and
the target languages, translation rule extraction,
language model learning, parameter tuning and
decoding. For more details about each component,
please refer to (Chiang, 2007). In the rest of this
paper, we refer to the source language (side) as
NL', and the target language (side) as MRL'.
Post-Processing We convert MRL’ back into
MRL by recovering parentheses and commas to
reconstruct the corresponding tree structure in
MRL. This can be easily done by examining each
symbol’s arity. It eliminates any possible ambi-
guity from the tree reconstruction: given any se-
quence of tokens in MRL/, we can always recon-
struct the tree structure (if one exists). For those
translations that can not be successfully converted,
we call them ill-formed translations.

3 Semantic Parsing with Enriched SCFG

In this section, we present the details of our en-
riched SCFG for semantic parsing.

3.1 Enriched SCFG

In hierarchical phrase-based (HPB) translation
models, synchronous rules take the form X —
(v,a,~), where X is the non-terminal sym-
bol, v and « are strings of lexical items and
non-terminals in the source and target side re-
spectively, and ~ indicates the one-to-one cor-
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respondence between non-terminals in v and a.
From an aligned phrase pair <state that border,
state@] next_to 2@]1> in Figure 2(a), for ex-
ample, we can get a synchronous rule X —
(state X[y, state@1 Xyj), where we use boxed in-
dices to indicate which nonterminal occurrences
are linked by ~. The fact that SCFGs in HPB mod-
els contain only one type of non-terminal symbol?
is responsible for ill-formed translation (e.g., an-
swer@ | state@1). To this end, we enrich the non-
terminals to capture the tree structure information,
guiding the translation in favor of well-formed
translations. The enrichment of non-terminals is
two-fold: first, it can handle MRL with a nested
structure to guarantee the well-formed transla-
tions; second, related studies in SMT have shown
that introducing multiple non-terminal symbols in
SCFGs benefits translation (Zollmann and Venu-
gopal, 2006; Li et al., 2012).

Given a word sequence eé from position ¢ to
position j in MRL', we enrich the non-terminal
symbol X to reflect the internal structure of the
word sequence of ez. . A correct translation rule
selection therefore not only maps source termi-
nals into target terminals, but is both constrained
and guided by structure information in the non-
terminals. As mentioned earlier, we regard the
nested structure in MRL' as function-argument
structure, where each function takes one or more
arguments as input while its return serves as an ar-
gument to the outside function. As in Figure 1,
function cityid holds two arguments and returns as
an argument to function area_I. For a word se-
quence eé, we examine its completeness, which is
defined as:

Definition 1. For word sequence eé-, it is regarded
as complete if it satisfies 1) every function (if ex-
ists) meets its argument requirement,; and 2) it can
serve as one argument to another function.

We use symbol C to label word sequences
which are complete. For an incomplete word se-
quence, we examine 1) the number of arguments
it requires on the right to be complete; and 2)
the arity of a function it requires on the left to
be complete. Then the sequence is labeled as
(C\Fm)/An, indicating it requires n arguments on
the right and a function with m arities on the left. 3

’In practice, non-terminal symbol S is used in glue rules.
However, this is not relevant in the present discussion.

3This is similar to the naming convention in combinatory
categorial grammar (CCG) (Steedman, 2000)

texas, stateid@1 texas@s

C— (texas, stateid @1 texas@s)
seattle, seattle@s _@0

C\F2— (seattle, seattle@s _@0)
that border, next_to 2@1

C/A1— (that border, next_to_2@1)

state that border, state @1 next_to 2@ 1
C/Al— <state C/AI, state@1 C/A 1>

(a) Examples of phrase pairs in enriched SCFG.

state that border , state@1 nextto 2@1
C/AT— <C/A] C/Al, C/Al C/AI>

state that border texas have the highest population,

l..one@1 p.._1@1 state@1 n..@1 5. @1 t..@s

C— (C C/A I, C/Alg Gy
(b) Examples of glue rules in enriched SCFG.

Table 1: Example of translation rules in enriched SCFG,
where underline and underwave indicate the first and the sec-
ond phrases respectively.

Specifically, we omit \Fm and /An if m = 0 and
n = 0 respectively.*

Table 1(a) demonstrates examples of phrase
pairs in our enriched SCFG. For instance, word
sequence stateid @ [ texas @s is complete, and thus
labeled as C. Similarly, to be complete, word se-
quence next_to_2@ ] requires one argument on the
right side, labeled as C'/A1 accordingly.

When extracting translation rules from aligned
datasets, we follow Chiang (2007) except that
we use enriched non-terminal symbols rather than
X. Each translation rule is associated with a
set of translation model features {¢;}, including
phrase translation probability p (« | «y) and its in-
verse p (v | @), the lexical translation probability
Diex (v | 7y) and its inverse pje, (7 | @), and a rule
penalty that learns the preference for longer or
shorter derivations.

Inverted Glue Rules In SMT decoding (Chiang,
2007), if no rule (e.g., a rule whose left-hand side
is X) can be applied or the length of the poten-
tial source span is larger than a pre-defined length
(e.g., 10 as in Chiang (2007)), a glue rule (either
S — (Xm, Xm) or S — (SpXa, SpXp)) will
be used to simply stitch two consequent translated
phrases together in a monotone way. Although
this will reduce computational and modeling chal-
lenges, it obviously prevents some reasonable
translation derivations because in certain cases,
the order of phrases may be inverted on the target

*If m = 0, it indicates that no function is needed.
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side. In this work, we additionally use an inverted
glue rule which combines two non-terminals in
a swapped way. Each glue rule, either straight
or inverted, contains only two non-terminal sym-
bols and is associated with two features, includ-
ing phrase translation probability p (« | 7), and a
glue rule penalty. Table 1(b) shows examples of
a straight and an inverted glue rules. Moreover,
these glue rules can be applied to any two neigh-
boring translation nodes if the non-terminal sym-
bols are matched.

3.2 Word Alignment for Semantic Parsing

Word alignment is an essential step for rule ex-
traction in SMT, where recognizing that wo shi in
Chinese is a good translation for I am in English
requires establishing a correspondence between
wo and I, and between shi and am. In the SMT
community, researchers have developed standard,
proven alignment tools such as GIZA++ (Och and
Ney, 2003), which can be used to train IBM Mod-
els 1-5. However, there is one fundamental prob-
lem with the IBM models (Brown et al., 1993):
each word on one side can be traced back to ex-
actly one particular on the other word (or the null
token which indicates the word aligns to no word
on the other side). Figure 2(a) shows an example
of GIZA++ alignment output from source side to
target side, from which we can see that each source
word aligns to exactly one target word. While
alignment of multiple target words to one source
word is common in SMT, a trick is then to run
IBM model training in both directions. Then two
resulting word alignments can be symmetrized, for
instance, taking the intersection or the union of
alignment points of each alignment. For example,
Figure 2(b) shows GIZA++ alignment output from
target side to source side while Figure 2(c) shows
the symmetrization result with widely used grow-
diag-final-and strategy.

Although symmetrization of word alignments
works for SMT, can it be applied to semantic pars-
ing? There are reasons to be doubtful. Word align-
ment for semantic parsing differs from alignment
for SMT in several important aspects, at least in-
cluding:

1. It is intrinsically asymmetric: within the se-
mantic formalism used in this paper, NL' is
often longer than MRL/, and commonly con-
tains words which have no counterpart in
MRL'.

2. Little training data is available. SMT align-
ment models are typically trained in unsu-
pervised fashion, inducing lexical correspon-
dences from massive quantities of sentence-
aligned bitexts.

Consequently, the symmetrization of word align-
ments may not work perfectly for semantic pars-
ing. According to word alignment in Figure 2(c),
a phrase extractor will generate a phrase pair
(have the highest, largest_one@I), which is non-
intuitive. By contrast, a more useful and general
phrase pair (highest, largest_one@]1) is typically
excluded because largest_one@] aligns to all of
have, the, and highest. Similarly, another useful
phrase pair (fexas, texas@s) is prohibited since
texas aligns to both stateid@ ] and texas@s.

Ideally a new semantic parsing aligner should
be able to capture the semantic equivalence. Un-
fortunately we are not aware of any research on
alignment for semantic parsing, possibly due to
lack of a paucity of high quality, publicly avail-
able data from which to learn. Instead of de-
veloping new alignment algorithm for semantic
parsing, we make use of all the alignments as
shown in Figure 2. That is to say, we triple
the training data with each sentence pair having
three alignments, i.e., two alignments in both di-
rections, and the symmetrization alignment.> The
advantages include: first, considering more pos-
sible alignments would increase the phrase cov-
erage, especially when the training data is little;
second, including the alignment from both direc-
tions would alleviate the error propagation caused
by mis-aligned stop words (e.g., be, the in NL" and
stateid@] in MRL'). As a result, the phrase ex-
tractor will include phrase pairs of both (highest,
largest_one@1) and (texas, texas@s). Our exper-
iment shows that using the combination of all the
three alignments achieve better performance than
using any one, or any combination of two. More-
over, we found that we could achieve comparable
performance even with manual alignment.

Combining multiple alignments from different alignment
models usually improves translation performance in SMT (Tu
et al., 2012). However, our preliminary experiments showed
that this did not yield higher improvement in semantic pars-
ing, which in turn also demonstrates the difference in align-
ments for semantic parsing and SMT.
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what state that™ border have the highest

answer@1|largest_one@1

state@1 next_to_2@1 stateid@1

(a) word alignment from source to target direction

the | highest

what state  that border have
| —_

answer@1|largest_one@1

state@1 next_to_2@1|stateid@1 texas@s

(b) word alignment from target to source direction

what state that border have the highest

‘ —

answer@1|largest_one@1

—

—_—
state@1 next_to_2@1|stateid@1 texas@s

(c) symmetrization of word alignment using grow-diag-final-and strategy

Figure 2: Example of a sentence pair with different alignments.

3.3 Synthetic Translation Rules for Unknown
Word Translation

Most NLP tasks face the problem of unknown
words, especially if only little training data is
available. For example, it is estimated that 5.7%
sentences in the (English) test data in our exper-
iments have unknown words. Unknown words
usually remain intact in the translation in most
machine translation systems (Koehn et al., 2007;
Dyer et al., 2010), resulting in the fact that cer-
tain translations can not be converted back to tree
structures. This indicates that in semantic pars-
ing the translation of a word can be from two cat-
egories: 1) a token in MRL; or 2) null (i.e., not
translated at all), we generate synthetic translation
rules for unknown word translation.

As a baseline, we simply skip unknown words
as Kwiatkowski et al. (2010) by adding translation
rules that translate them to null in MRL'. Each
such rule is accompanied with one feature indicat-
ing that it is a translation rule for unknown word.

Alternatively, taking advantage of publicly
available resources, we generate synthetic trans-
lation rules for unknown words pivoted by their
semantically close words. Algorithm 1 illustrates
the process to generate synthetic translation rules
for unknown word translation. Given an unknown
word w,, it generates its synthetic rules in two
steps: 1) finding top n (e.g., 5 as in our experi-
ments) close words via Word2Vec;® and 2) gener-
ating synthetic translation rules based on the close

It is available at http://code.google.com/p/word2vec/.
We use Word2Vec rather than other linguistic resources like
‘WordNet because the approach can be easily adopted to other
languages only if there exists large monolingual data to train
Word2Vec models.

Algorithm 1: Generating synthetic translation
rules for unknown words

Input: Unknown word w,, in the source language
Source side training data vocabulary: W
Lexical translation tables T1 and T2 (two
directions)

Output: Synthetic translation rule set R for w,,

1. foreach word w; in W

2. Si = StmM(Way, W;)

3. get the top n words W B = {wb;...wb, }

with the highest {s;}

4 R=¢

5. foreach wb; in W B

6.  foreach t; such (wb;,t;) in T1 and T2

7. R U = generate_rule(wy, wb;, t;, T1,Ts)

8. return R

stm;: returns the similarity between w,, and w;.

generate_rule: returns rule (w., t;) with a feature
indicating the similarity between w,, and wb;, and
two features indicating the lexical translation prob-
abilities from wb; to t; and the way around.

words. Note that it may generate a synthetic rule
with null at the target side since the lexical transla-
tion table derived from aligned training data con-
tains translation to null. Each synthetic translation
rule for unknown words is associated with three
features returned from function generate_rule.

4 Experimentation

In this section, we test our approach on the Geo-
Query dataset, which is publicly available.

4.1 Experimental Settings

Data GeoQuery dataset consists of 880 questions
paired with their corresponding tree structured se-
mantic representations. Following the experimen-
tal setup in Jones et al. (2012), we use the 600
question pairs to train and tune our SMT de-
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coder, and evaluated on the remaining 280. Note
that there is another version of GeoQuery dataset
where the semantic representation is annotated
with lambda calculus expressions and which is ex-
tensively studied (Zettlemoyer and Collins, 2005;
Wong and Mooney, 2007; Liang et al., 2011;
Kwiatkowski et al., 2013). Performance on the
version of lambda calculus is higher than that on
the tree structured version, however, the results ob-
tained over the two versions are not directly com-
parable.

SMT Setting We use cdec (Dyer et al., 2010) as
our HPB decoder. As mentioned above, 600 in-
stances are used to train and tune our decoder. To
get fair results, we split the 600 instances into 10
folds, each having 60 instances. Then for each
fold, we use it as the tuning data while the other
540 instances and the NP list are used as train-
ing data.” We use IRSTLM toolkit (Federico et
al., 2008) to train a 5-gram LM on the MRL' side
of the training data, using modified Kneser-Ney
smoothing. We use Mira (Chiang et al., 2008)
to tune the parameters of the system to maximize
BLEU (Papineni et al., 2002). When extracting
translation rules from aligned training data, we in-
clude both tight and untight phrases.

Evaluation We use the standard evaluation crite-
ria for evaluation by executing both the predicted
MRL and the gold standard against the database
and obtaining their respective answer. Specifi-
cally, we convert a translation from MRL’ into
MRL (if exists). The translation then is consid-
ered correct if and only if its MRL retrieves the
same answers as the gold standard MRL (Jones et
al., 2012), allowing for a fair comparison between
our systems and previous works. As in Jones et
al. (2012), we report accuracy, i.e. the percent-
age of translations with correct answers, and F1,
i.e. the harmonic mean of precision (the propor-
tion of correct answers out of translations with an
answer) and recall (the proportion of correct an-
swers out of all translations). In this section, we
report our performance scores and analysis num-
bers averaged on our 10 SMT models.

"The NP list is from GeoQUery dataset in Jones et al.
(2012), which contains MRs for every noun phrase that ap-
pears in the NL utterances of each language. As in Andreas
et al. (2013), the NP list is included by appending all entries
as extra training sentences with 50 times the weight of regular
training examples, to ensure that they are learned as transla-
tion rules.

SCFG alignment Acc. Fl
src2tgt 75.0 825
tgt2src 78.5 825
gdfa 77.5 83.5

non-enriched =0 oo ot [ 814 85.0

src2tgt + gdfa 77.1  83.1
tgt2src + gdfa 80.6  83.9

all 815 852
gold 824 86.2
src2tgt 763 829
tgt2sre 82.0 85.2
gdfa 78.9 839

enriched

src2tgt + tgt2src | 82.6  85.9
src2tgt + gdfa 78.8  83.7
tgt2src + gdfa 83.1 86.1
all 829 86.1
gold 84.1 87.1

Table 2: Performance of our (non-) enriched
SCFG systems with different alignment settings.

4.2 Experimental Results

Table 2 shows the results of (non-) enriched SCFG
systems over different alignment settings. In Ta-
ble 2, src2tgt and tgt2src indicate alignment of
source to target direction and alignment of tar-
get to source direction, respectively; gdfa indi-
cates symmetrization of alignment with grow-
diag-final-and strategy; src2tgt+tgt2src indicates
doubling the training data with each sentence pair
having both src2tgt and rgt2src alignments, sim-
ilar for src2tgt+gdfa and tgt2src+gdfa; all indi-
cates tripling the training data with each sentence
pair having three alignments. Finally, gold indi-
cates using gold alignment. 8

Effect of Enriched SCFG From Table 2, we
observe that enriched SCFG systems outperform
non-enriched SCFG systems over all alignment
settings, indicating the effect of enriching non-
terminals. In particular for zg#2src alignment, it
obtains improvements of 3.5% in accuracy and
2.7% in F1.

As mentioned earlier, the non-enriched SCFG
system may result in ill-formed translations,
which can not be converted back to tree struc-
ture. One natural way to overcome this issue,
as in Andreas et al. (2013), would be to simply
filter n-best translation till a well-formed one is
found. However, we see very limited performance
changes in accuracy and F1, suggesting that the ef-
fect of using n-best translation is very limited. For
example, after using n-best translation, the non-
enriched SCFG system with all alignment obtains
82.0 in accuracy (increased from 81.5) and 84.5 in

8We manually aligned sentence pairs in NL' and MRL'.
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alignment | Rec. Pre. Fl

src2tgt 963 68.8 803
tgt2src 90.0 77.0 83.0
gdfa 95.1 627 175.6

Table 3: Alignment performance.

F1 (reduced from 85.2).

Effect of Word Alignment With respect to the
performance over different alignment settings, we
have the following observations from Table 2:

e Semantic parsing is substantially sensitive
to alignment. Surprisingly, gdfa alignment,
which is widely adopted in SMT, is inferior
to tgt2src alignment. As expected, src2tgt
alignment achieves the worst performance.

e Thanks to the increased coverage, dou-
bling the training data (e.g., rows
of src2tgt+tgt2src,  src2tgt+gdfa, and
tgt2src+gdfa) usually outperforms its cor-
responding single alignment.  Moreover,
tripling the training data (e.g., rows of all)
achieves slightly better performance than
any way of doubling the training data. This
is expected since the gdfa alignment actually
comes from the alignments of src2tgt and
tgt2src, thus doubling the training with
src2tgt and tgf2src have already included
most aligns in gdfa alignment.

e Our approach of tripling the training data
achieves comparable performance to the one
with gold alignment, suggesting that instead
of developing a brand new algorithm for se-
mantic parsing alignment, we can simply
make use of GIZA++ alignment output.

In terms of the src2tgt, tgt2src and gdfa align-
ments, the trend of the results is consistent over
both non-enriched and enriched SCFG systems:
the systems with tgf2src alignment work best
while the systems with src2tgt alignment work
worst. Next we look at the non-enriched SCFG
systems to explore the behavior differences among
the three alignments.

We examine the alignment accuracy against the
gold alignment on training data (except the NP list
part). As shown in Table 3, src2tgt has the high-
est recall while #gf2src has the highest precision.
This is partly due to: 1) In src2tgt alignment, each
source word aligns to exactly one particular tar-
get word (or the null token), resulting in frequent

enriched + gdfa

correct | wrong

B correct 211 6
non-enriched + gdfa wrong 10 53
- correct 215 17
enriched + all wrong 6 42

Table 4: Confusion matrices of three SMT systems
on English test sentences.

alignment errors for source side words that have
no counterpart in target side. For example, both
words of the and be on source side, which play
functional roles in NL, rather than semantic roles,
align to 15 different target words. 2) Except for
a few words on target side, including stateid @1,
all@(0 which have strong occurrence patterns (e.g.,
stateid@] is always followed by a state name),
each word has counterpart on source side.

As to have a clearer understanding on the
individual contribution of using enriched non-
terminals and multiple word alignments, Table 4
presents two confusion matrices which show num-
bers of sentences that are correctly/wrongly parsed
by three SMT systems on English test sentences.
It shows that, for example, 211 sentences are cor-
rectly parsed by both non-enriched and enriched
SCFG systems with gdfa alignment. Moving
from performance of the non-enriched SMT sys-
tem with gdfa alignment to that of the enriched
SMT system with all alignment, we observe that
on average more than half of the improvement
comes from using multiple word alignments, the
rest from using enriched non-terminals.

Effect of Unknown Word Translation Since
each of our SMT model is actually trained on 540
instances (plus the NP list), the rate of unknown
words in the test data tends to be higher than that
in a system trained with the whole 600 instances.
Based on the system of enriched SCFG with all
alignment, Table 5 shows the results of applying
unknown word translation. It shows that translat-
ing all unknown words into null obtains 2.4 points
in accuracy over the system without it (e.g., 85.3
vs. 82.9). However, the slight improvement in F1
(e.g., 86.3 vs. 86.1) suggests that there are many
scenarios that translating unknown words into null
is incorrect. Fortunately, our semantic approach is
partially able to generate correct translation rules
for those unknown words which have translation
in MRL'. Actually, the effect of our approach is
highly dependent on the quality of the close words
found via Word2Vec. With a manual examination
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System Acc. Fl

No unknown word translation | 82.9  86.1
null: baseline 853 86.3
semantic: ours 86.3 87.1

Table 5: Performance with unknown word translation.

on the test data, we found that 11 out of all 17
unknown words should be translated into a corre-
sponding token in MRL. For 8 of them, the syn-
thetic translation rule set returned by Algorithm 1
contains correct translation rules.

Effect across Different Languages We have also
tested our approach on the same dataset with other
three languages. Specifically, while we are not
aware of public resources to looking for seman-
tically close words in German, Greek and Thai,
we translate unknown words into null for the three
languages. Table 6 shows the performance over
four different languages. It shows that our ap-
proach, including enriched SCFG, tripling train-
ing data with three alignments, and unknown word
translation, obtains consistent improvement over
the four languages.

Decoding Time Analysis We analyze the effect
on the decoding time of our approach, which is
closely related to the size of phrase tables. Firstly,
splitting non-terminal X into enriched ones in-
creases the size of phrase tables. ° This is not
surprising since a phrase with non-terminal X
(e.g., the X on the source side) may be further
specified as multiple phrases with various non-
terminals (e.g., the C, the C/Al, etc.). As a re-
sult, the average number of phrases per sentence
(in English test data, hereafter) increases from 453
to 893 while the decoding time of the SMT de-
coder increases from 0.11 seconds to 0.19 seconds
per sentence on average. Secondly, using multiple
alignments also leads to larger phrase tables. This
is illustrated by the increase of average number of
phrases per sentence from 893 to 2055 while the
decoding time moves from 0.19 seconds to 0.38
seconds per sentence on average. Finally, finding
similar words via Word2Vec, however, is quite fast
since this is bounded by the vocabulary size of our
training set. Thanks to the small size of unknown
words, adding unknown word translation rules has
a very limited impact on the size of phrase ta-
ble, consequently negligible changes on decoding
time.

°In cdec, we generate a phrase table for each sentence.

5 Related Work

While there has been substantial work on seman-
tic parsing, we focus our discussions on several
approaches (e.g., SCFG approach, hybrid tree ap-
proach, and others approaches) that focus on the
variable-free semantic representations.

WASP (Wong and Mooney, 2006) was strongly
influenced by SMT techniques. Although WASP
was also using multiple non-terminal symbols in
SCFG to guarantee well-formed translations, our
work differs from theirs in at least three ways.
First, we use a different inventory of non-terminal
symbols from theirs which was derived from MRL
parses in the GeoQuery dataset. Second, to avoid
the issues caused by word alignment between NL
and MRL, we triple training data with each sen-
tence pair having multiple alignments. However,
WASP used a sequence of productions to repre-
sent MRL before running GIZA++. Third, we use
typical features in HPB SMT (e.g., phrase transla-
tion probabilities, lexical translation probabilities,
language model feature, etc.) while WASP used
rule identity features. SM'T-SemParse (Andreas et
al., 2013) adapted standard SMT components for
semantic parsing. The present work is based on
theirs with all the extensions detailed in Section 3.

HYBRIDTREE+ (Lu et al.,, 2008) learned a
synchronous generative model which simultane-
ously generated a NL sentence and an MRL tree.
tsVB (Jones et al., 2012) used tree transducers,
which were similar to the hybrid tree structures, to
learn a generative process under a Bayesian frame-
work. RHT (Lu, 2014) defined distributions over
relaxed hybrid tree structures that jointly repre-
sented both sentences and semantics. Most re-
cently, f-RHT (Lu, 2015) introduced constrained
semantic forests to improve RHT model.

SCISSOR (Ge and Mooney, 2005) augmented
syntactic parse tree with semantic information and
then performed integrated semantic and syntac-
tic parsing to NL sentences. KRISP (Mooney,
2006) used string classifiers to label substrings of
an NL with entities from the meaning representa-
tion. UBL (Kwiatkowski et al., 2010) performed
semantic parsing with an automatically-induced
CCQG lexicon.

Table 7 shows the evaluation results of our sys-
tem as well as those of several other compara-
ble related works which share the same experi-
ment setup as ours. We can observe from Table 7
that semantic parsing with SMT components gives
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System English German Greek Thai
’ Acc. F1 Acc. F1 Acc. F1 Acc. F1
non-enriched + gdfa | 77.5 835 | 66.0 749 | 65.6 74.1 | 654 724
non-enriched +all | 81.5 852 | 72.1 76.8 | 752 805 | 72.7 764
enriched + gdfa | 789 839 | 66.7 746 | 67.8 76.1 | 68.5 74.1
enriched +all | 829 86.1 | 754 795 | 765 812 | 752 779
enriched + all + unknown word translation | 86.3 87.1 | 79.1 80.3 | 80.5 81.6 | 76.3 779

Table 6: Performance for the multilingual GeoQuery test set.

System English German Greek Thai

Acc. Fl Acc. Fl Acc. Fl Acc. Fl
WASP | 71.1 777 | 65.7 749 | 70.7 78.6 | 714 750
SMT-SemParse | 80.5 81.8 | 689 718 | 69.1 723 | 704 70.7
HYBRIDTREE+ | 76.8 81.0 | 62.1 685 | 693 74.6 | 73.6 76.7
tsVB | 793 793 | 746 74.6 | 754 754 | 782 182
RHT | 83.6 836 | 743 743 | 782 782 | 793 793
f-RHT | 86.8 86.8 | 757 757 | 793 79.3 | 80.7 80.7
UBL | 82.1 82.1 | 73.6 73.7 | 750 75.0 | 664 664
this work | 86.3 87.1 | 79.1 803 | 80.5 81.6 | 763 779

Table 7: Performance comparison for the multilingual GeoQuery test set. The performance of WASP,
HYBRIDTREE+, tsVB and UBL is taken from Jones et al. (2012).

competitive performance when all the extensions
(described in Section 3) are used. Specifically, it
significantly outperforms the semantic parser with
standard SMT components (Andreas et al., 2013).
Our approach reports the best accuracy and F1
scores on English, German, and Greek. While
we are able to obtain improvement on Thai, the
performance is still lower than those of RHT and
TREETRANS. This is probably because of the
low quality of word alignment output between this
Asian language and MRL.

6 Conclusion and Future Work

In this paper, we have presented an enriched SCFG
approach for semantic parsing which realizes the
potential of the SMT approach. The performance
improvement is contributed from the extension of
translation rules with informative symbols and in-
creased coverage. Such an extension share a sim-
ilar spirit as generalization of a CCG lexicon for
CCG-based semantic parser (Kwiatkowski et al.,
2011; Wang et al., 2014). Experiments on bench-
mark data have shown that our model is competi-
tive to previous work and achieves state-of-the-art
performance across a few different languages.
Recently the research of semantic parsing in
open domain with weakly (or un-) supervised se-
tups, under different settings where the goal was to
optimize the performance of certain downstream
NLP tasks such as answering questions, has re-
ceived a significant amount of attention (Poon and
Domingos, 2009; Clarke et al., 2010; Berant et
al., 2013; Berant and Liang, 2014). One direc-

tion of our future work is to extend the current
framework to support the generation of synthetic
translation rules from weaker signals (e.g., from
question-answer pairs), rather than from aligned
parallel data.

We also noticed recent advance in tree-based
SMT. Applying such string-to-tree or tree-to-tree
translation models (Yamada and Knight, 2001;
Shen et al., 2008) to semantic parsing will nat-
urally resolve the inconsistent semantic structure
issue, though they require additional information
to generate tree labels on the target side. However,
due to the constraint that each target phrase needs
to map to a syntactic constituent, phrase tables in
tree-based translation models usually suffer from
the low coverage issue, especially if the training
data size is small. Therefore, another direction of
our future work is to explore specific problems that
will emerge when employing tree-based SMT sys-
tems to semantic parsing, and provide solutions to
them.
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