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Abstract

We extend and improve upon recent work in struc-
tured training for neural network transition-based
dependency parsing. We do this by experimenting
with novel features, additional transition systems
and by testing on a wider array of languages. In par-
ticular, we introduce set-valued features to encode
the predicted morphological properties and part-of-
speech confusion sets of the words being parsed.
We also investigate the use of joint parsing and part-
of-speech tagging in the neural paradigm. Finally,
we conduct a multi-lingual evaluation that demon-
strates the robustness of the overall structured neu-
ral approach, as well as the benefits of the exten-
sions proposed in this work. Our research further
demonstrates the breadth of the applicability of neu-
ral network methods to dependency parsing, as well
as the ease with which new features can be added to
neural parsing models.

1 Introduction

Transition-based parsers (Nivre, 2008) are ex-
tremely popular because of their high accuracy
and speed. Inspired by the greedy neural net-
work transition-based parser of Chen and Man-
ning (2014), Weiss et al. (2015) and Zhou et al.
(2015) concurrently developed structured neural
network parsers that use beam search and achieve
state-of-the-art accuracies for English dependency
parsing.1 While very successful, these parsers
have made use only of a small fraction of the
rich options provided inside the transition-based
framework: for example, all of these parsers use
virtually identical atomic features and the arc-
standard transition system.

In this paper we extend this line of work and
introduce two new types of features that sig-
nificantly improve parsing performance: (1) a
set-valued (i.e., bag-of-words style) feature for

1There is of course a much longer tradition of neural net-
work dependency parsing models, going back at least to Titov
and Henderson (2007).

each word’s morphological attributes, and (2) a
weighted set-valued feature for each word’s k-best
POS tags. These features can be integrated nat-
urally as atomic inputs to the embedding layer of
the network and the model can learn arbitrary con-
junctions with all other features through the hid-
den layers. In contrast, integrating such features
into a model with discrete features requires non-
trivial manual tweaking. For example, Bohnet
and Nivre (2012) had to carefully discretize the
real-valued POS tag score in order to combine it
with the other discrete binary features in their sys-
tem. Additionally, we also experiment with differ-
ent transition systems, most notably the integrated
parsing and part-of-speech (POS) tagging system
of Bohnet and Nivre (2012) and also the swap sys-
tem of Nivre (2009).

We evaluate our parser on the CoNLL ’09
shared task dependency treebanks, as well as on
two English setups, achieving the best published
numbers in many cases.

2 Model

In this section, we review the baseline model, and
then introduce the features (which are novel) and
the transition systems (taken from existing work)
that we propose as extensions. We measure the
impact of each proposed change on the develop-
ment sets of the multi-lingual CoNLL ’09 shared
task treebanks (Hajič et al., 2009). For details on
our experimental setup, see Section 3.

2.1 Baseline Model
Our baseline model is the structured neural net-
work transition-based parser with beam search of
Weiss et al. (2015). We use a feed-forward net-
work with embedding, hidden and softmax lay-
ers. The input consists of a sequence of matrices
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Ca Ch Cz En Ge Ja Sp

Pipelined
baseline 87.67 79.10 81.26 88.34 86.79 93.26 87.31
+morph 88.77 ” 84.50 ” 87.26 93.31 88.86
+morph +ktags 88.75 79.42 84.45 88.62 87.13 93.35 89.40

Integrated Tagging & Parsing
+morph 88.93 79.71 84.41 88.57 87.07 93.32 89.35
+morph +ktags 89.23 80.03 84.27 88.55 87.88 93.50 89.76

Table 1: Ablation study on CoNLL’09 dev set. All scores in
this table are LAS with beam 32. The first three rows use a
pipeline of tagging and then parsing, while the last two rows
use integrated parsing and tagging. Chinese and English have
no morphology features provided in the dataset, so we omit
morphology for those languages.

extracted deterministically from a transition-based
parse configuration (consisting of a stack and a
buffer). Each matrix Xg, corresponds to a feature
group g (one of words, tags, or labels), and has di-
mension Fg ×Vg. Here, Xg

f v is 1 if the f ’th feature
takes on value v for group g, i.e. each row Xg is a
one-hot vector. These features are embedded and
then concatenated to form the embedding layer,
which in turn is input to the first hidden layer. The
concatenated embedding layer can then be written
as follows:

h0 = [XgEg | g ∈ {word, tag, label}] (1)

where Eg is a (learned) Vg × Dg embedding ma-
trix for group g, and Dg is the embedding dimen-
sion for group g. Beyond the embedding layer,
there are two non-linear hidden layers (with non-
linearity introduced using a rectified linear acti-
vation function), and a softmax layer that outputs
class probabilities for each possible decision.

Training proceeds in two stages: We first train
the network as a classifier by extracting decisions
from gold derivations of the training set, as in
Chen and Manning (2014). We then train a struc-
tured perceptron using the output of all network
activations as features, as in Weiss et al. (2015).
We use structured training and beam search during
inference in all experiments. We train our models
only on the treebank training set and do not use
tri-training or other semi-supervised learning ap-
proaches (aside from using pre-trained word em-
beddings).

2.2 New Features

Prior work using neural networks for dependency
parsing has not ventured beyond the use of one-hot
feature activations for each feature type-location
pair. In this work, we experiment with set-valued

Ca Ch Cz En Ge Ja Sp

CRF (k = 1) 98.60 93.19 98.25 97.55 96.73 97.47 98.02
Linear (k = 4) 98.75 93.71 98.48 97.70 97.27 97.75 98.33
Neural (k = 4) 99.09 94.62 99.37 97.85 97.77 98.01 98.97

BN’12 (k = 3) - 93.06 99.32 97.77 97.63 - -

Table 2: POS tagging results on the CoNLL ’09 test set for in-
tegrated POS tagging and parsing. We compare the accuracy
of our baseline CRF tagger, ‘Linear’ (our re-implementation
of Bohnet and Nivre (2012, BN’12)), ‘Neural’ (the neural
parser presented in this work), and results reported by BN’12.

features, in which a set (or bag) of features for a
given location fire at once, and are embedded into
the same embedding space. Note that for both of
the features we introduce, we extract features from
the same 20 tokens as used in the tags and words
features from Weiss et al. (2015), i.e. various lo-
cations on the stack and input buffer.

Morphology. It is well known that morpholog-
ical information is very important for parsing
morphologically rich languages (see for example
Bohnet et al. (2013)). We incorporate morpho-
logical information into our model using a set-
valued feature function. We define the feature
group morph as the matrix Xmorph such that, for
1 ≤ f ≤ Fmorph, 1 ≤ v ≤ Fmorph,

Xmorph
f ,v =

1/N f , token f has attribute v
0, otherwise

, (2)

where N f is the number of morphological features
active on the token indexed by f . In other words,
we embed a bag of features into a shared embed-
ding space by averaging the individual feature em-
beddings.

k-best Tags. The non-linear network models of
Weiss et al. (2015) and Chen and Manning (2014)
embed the 1-best tag, according to a first-stage tag-
ger, for a select set of tokens for any configura-
tion. Inspired by the work of Bohnet and Nivre
(2012), we embed the set of top tags according to
a first-stage tagger. Specifically, we define the fea-
ture group ktags as the matrix Xktags such that, for
1 ≤ f ≤ Fktags, 1 ≤ v ≤ Vktags,

Xktags
f ,v =

P(POS = v | f ), v ∈ top k tags for f
0, otherwise

,

(3)

where P(POS = v | f ) is the marginal probability
that the token indexed by f has the tag indexed by
v, according to the first-stage tagger.
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Catalan Chinese Czech English German Japanese Spanish
Method B UAS LAS UAS LAS UAS LAS UAS LAS UAS LAS UAS LAS UAS LAS

Best Shared Task Result - - 87.86 - 79.17 - 80.38 - 89.88 - 87.48 - 92.57 - 87.64

Pipelined
Zhang and McDonald (2014) - 91.41 87.91 82.87 78.57 86.62 80.59 92.69 90.01 89.88 87.38 92.82 91.87 90.82 87.34
Lei et al. (2014) - 91.33 87.22 81.67 76.71 88.76 81.77 92.75 90.00 90.81 87.81 94.04 91.84 91.16 87.38
This work linear 32 90.81 87.74 81.62 77.62 85.61 76.50 91.86 89.42 89.28 86.79 92.56 91.90 90.02 86.92
This work neural 32 92.31 89.17 83.34 79.50 88.35 83.50 92.37 90.21 90.12 87.79 93.99 93.10 91.71 88.68

Integrated Tagging & Parsing
Bohnet and Nivre (2012) 40 92.02 88.97 81.18 77.00 88.07 82.70 92.06 89.54 90.43 88.23 93.67 92.63 91.43 88.54
Bohnet and Nivre (2012)+G+C 80 92.44 89.60 82.52 78.51 88.82 83.73 92.87 90.60 91.37 89.38 93.52 92.63 92.24 89.60
This work linear 32 91.02 87.98 82.26 78.32 85.73 78.37 91.57 88.83 88.80 86.38 93.28 92.38 90.24 87.09
This work neural 32 92.21 89.15 83.57 79.90 88.45 83.57 92.70 90.56 90.58 88.20 93.85 92.97 92.26 89.33

Table 3: Final CoNLL ’09 test set results. The results not from this work were solicited from the respective authors.

Results. The contributions of our new features
for pipelined arc-standard parsing are shown in Ta-
ble 1. Morphology features (+morph) contributed
a labeled accuracy score (LAS) gain of 2.9% in
Czech, 1.5% in Spanish, and 0.9% in Catalan.
Adding the k-best tag feature (+morph +ktags)
provides modest gains (and modest losses), peak-
ing at 0.54% LAS for Spanish. This feature proves
more beneficial in the integrated transition system,
discussed in the next section. We note the ease
with which we can obtain these gains in a multi-
layer embedding framework, without the need for
any hand-tuning.

2.3 Integrating Parsing and Tagging
While past work on neural network transition-
based parsing has focused exclusively on the arc-
standard transition system, it is known that bet-
ter results can often be obtained with more so-
phisticated transition systems that have a larger set
of possible actions. The integrated arc-standard
transition system of Bohnet and Nivre (2012) al-
lows the parser to participate in tagging decisions,
rather than being forced to treat the tagger’s tags as
given, as in the arc-standard system. It does this by
replacing the shift action in the arc-standard sys-
tem with an action shiftp, which, aside from shift-
ing the top token on the buffer also assigns it one
of the k best POS tags from a first-stage tagger.
We also experiment with the swap action of Nivre
(2009), which allows reordering of the tokens in
the input sequence. This transition system is able
to produce non-projective parse trees, which is im-
portant for some languages.

Results. The effect of using the integrated tran-
sition system is quantified in the bottom part of Ta-
ble 1. The use of both 1) +morph +kbest features
and 2) integrated parsing and tagging achieves the
best score for 5 out of 7 languages tested. The use

of integrated parsing and tagging provides, for ex-
ample, a 0.8% LAS gain in German.

3 Experiments

In this section we provide final test set results for
our baseline and full models on three standard se-
tups from the literature: CoNLL ’09, English WSJ
and English Treebank Union.

3.1 General Setup

To train with predicted POS tags, we use a CRF-
based POS tagger to generate 5-fold jack-knifed
POS tags on the training set and predicted tags
on the dev, test and tune sets; our tagger gets
comparable accuracy to the Stanford POS tagger
(Toutanova et al., 2003) with 97.44% on the WSJ
test set. The candidate tags allowed by the inte-
grated transition system on every shiftp action are
chosen by taking the top 4 tags for a token accord-
ing to the CRF tagger, sorted by posterior proba-
bility, with no minimum posterior probability for a
tag to be selected. We report unlabeled attachment
score (UAS) and labeled attachment score (LAS).
Whether punctuation is included in the evaluation
is specified in each subsection.

We use 1024 units in all hidden layers, a choice
made based on the development set. We found
network sizes to be of critical importance for the
accuracy of our models. For example, LAS im-
provements can be as high as 0.98% in CoNLL’09
German when increasing the size of the two hid-
den layers from 200 to 1024. We use B = 16 or
B = 32 based on the development set performance
per language. For ease of experimentation, we de-
viate from Bohnet and Nivre (2012) and use a sin-
gle unstructured beam, rather than separate beams
for POS tag and parse differences.

We train our neural networks on the standard
training sets only, except for initializing with word
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Method B UAS LAS

Graph-based pipelined
Bohnet (2010) - 92.88 90.71
Martins et al. (2013) - 92.89 90.55
Zhang and McDonald (2014) - 93.22 91.02

Transition-based pipelined
Zhang and Nivre (2011) 32 93.00 90.95
Bohnet and Kuhn (2012) 80 93.27 91.19
Chen and Manning (2014) 1 91.80 89.60
Dyer et al. (2015) 1 93.20 90.90
Weiss et al. (2015), supervised 8 93.99 92.05
Weiss et al. (2015), semi-sup. 8 94.26 92.41

Transition-based integrated
Bohnet and Nivre (2012) 80 93.33 91.22
This work, supervised 32 94.23 92.36

Table 4: WSJ test set results on Stanford dependencies. Both
the best supervised and semi-supervised results are bolded.

embeddings generated by word2vec and using
cluster features in our POS tagger. Unlike Weiss et
al. (2015) we train our model only on the treebank
training set and do not use tri-training, which can
likely further improve the results.

3.2 CoNLL ’09

Our multilingual evaluation follows the setup of
the CoNLL ’09 shared task2 (Hajič et al., 2009).
As standard, we use the supplied predicted mor-
phological features from the shared task data;
however, we predict k-best tags with our own POS
tagger since k-best tags are not part of the given
data. We follow standard practice and include all
punctuation in the evaluation. We used the (inte-
grated) arc-standard transition system for all lan-
guages except for Czech where we added a swap
transition, obtaining a 0.4% absolute improvement
in UAS and LAS over just using arc-standard.

Results. In Table 3, we compare our models to
the winners of the CoNLL ’09 shared task, Ges-
mundo et al. (2009), Bohnet (2009), Che et al.
(2009), Ren et al. (2009), as well as to more recent
results on the same datasets. It is worth pointing
out that Gesmundo et al. (2009) is itself a neural
net parser. Our models achieve higher labeled ac-
curacy than the winning systems in the shared task
in all languages. Additionally, our pipelined neu-
ral network parser always outperforms its linear
counterpart, an in-house reimplementation of the
system of Zhang and Nivre (2011), as well as the
more recent and highly accurate parsers of Zhang
and McDonald (2014) and Lei et al. (2014). For
the integrated models our neural network parser

2http://ufal.mff.cuni.cz/conll2009-st/results/results.php

News Web QTB
Method UAS LAS UAS LAS UAS LAS

Bohnet (2010) 93.29 91.38 88.22 85.22 94.01 91.49
Martins et al. (2013) 93.10 91.13 88.23 85.04 94.21 91.54
Zhang et al. (2014) 93.32 91.48 88.65 85.59 93.37 90.69
Weiss et al. (2015) 93.91 92.25 89.29 86.44 94.17 92.06
This work (B=16) 94.10 92.55 89.55 86.85 94.74 93.04

Table 5: Final English Treebank Union test set results.

again outperforms its linear counterpart (Bohnet
and Nivre, 2012), however, in some cases the ad-
dition of graph-based and cluster features (Bohnet
and Nivre, 2012)+G+C can lead to even better re-
sults. The improvements in POS tagging (Table
2) range from 0.3% for English to 1.4% absolute
for Chinese and are always higher for the neural
network models compared to the linear models.

3.3 English WSJ
We experiment on English using the Wall Street
Journal (WSJ) part of the Penn Treebank (Marcus
et al., 1993), with standard train/test splits. We
convert the constituency trees to Stanford style de-
pendencies (De Marneffe et al., 2006) using ver-
sion 3.3.0 of the converter. We use predicted POS
tags and exclude punctuation from the evaluation,
as is standard for English.

Results. The results shown in Table 4, we find
that our full model surpasses, to our knowledge,
all previously reported supervised parsing models
for the Stanford dependency conversions. It sur-
passes its linear analog, the work of Bohnet and
Nivre (2012) on Stanford Dependencies UAS by
0.9% UAS and by 1.14% LAS. It also outperforms
the pipeline neural net model of Weiss et al. (2015)
by a considerable margin and matches the semi-
supervised variant of Weiss et al. (2015).

3.4 English Treebank Union
Turning to cross-domain results, and the “Tree-
bank Union” datasets, we use an identical setup to
the one described in Weiss et al. (2015). This setup
includes the WSJ with Stanford Dependencies, the
OntoNotes corpus version 5 (Hovy et al., 2006),
the English Web Treebank (Petrov and McDon-
ald, 2012), and the updated and corrected Ques-
tion Treebank (Judge et al., 2006). We train on
the union of each corpora’s training set and test on
each domain separately.

Results. The results of this evaluation are shown
in Table 5. As for the WSJ we find that the inte-
grated transition system combined with our novel
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features performs better than previous work and in
particular the model of Weiss et al. (2015), which
serves as the starting point for this work. The im-
provements on the out-of-domain Web and Ques-
tion corpora are particularly promising.

4 Conclusions

Weiss et al. (2015) presented a parser that ad-
vanced the state of the art for English Stanford de-
pendency parsing. In this paper we showed that
this parser can be significantly improved by in-
troducing novel set features for morphology and
POS tag ambiguities, which are added with almost
no feature engineering effort. The resulting parser
is already competitive in the multi-lingual setting
of the CoNLL’09 shared task, but can be further
improved by utilizing an integrated POS tagging
and parsing transition system. We find that for
all settings the dense neural network model pro-
duces higher POS tagging and parsing accuracy
gains than its sparse linear counterpart.
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Nianwen Xue, and Yi Zhang. 2009. The conll-2009
shared task: Syntactic and semantic dependencies
in multiple languages. In Proceedings of the Thir-
teenth Conference on Computational Natural Lan-
guage Learning: Shared Task, pages 1–18.

Eduard Hovy, Mitchell Marcus, Martha Palmer, Lance
Ramshaw, and Ralph Weischedel. 2006. Ontonotes:
The 90% solution. In Proceedings of the Human
Language Technology Conference of the NAACL,
Short Papers, pages 57–60.

John Judge, Aoife Cahill, and Josef van Genabith.
2006. Questionbank: Creating a corpus of parse-
annotated questions. In Proceedings of the 21st In-
ternational Conference on Computational Linguis-
tics and 44th Annual Meeting of the Association for
Computational Linguistics, pages 497–504.

Tao Lei, Yu Xin, Yuan Zhang, Regina Barzilay, and
Tommi Jaakkola. 2014. Low-rank tensors for scor-
ing dependency structures. In Proceedings of the
52nd Annual Meeting of the Association for Com-
putational Linguistics, pages 1381–1391.

Mitchell P. Marcus, Beatrice Santorini, and Mary Ann
Marcinkiewicz. 1993. Building a large annotated
corpus of English: The Penn Treebank. Computa-
tional Linguistics, 19(2):313–330.

1358



Andre Martins, Miguel Almeida, and Noah A. Smith.
2013. Turning on the turbo: Fast third-order non-
projective turbo parsers. In Proceedings of the 51st
Annual Meeting of the Association for Computa-
tional Linguistics, pages 617–622.

Joakim Nivre. 2008. Algorithms for deterministic in-
cremental dependency parsing. Computational Lin-
guistics, 34(4):513–553.

Joakim Nivre. 2009. Non-projective dependency pars-
ing in expected linear time. In Proceedings of the
Joint Conference of the 47th Annual Meeting of the
ACL and the 4th International Joint Conference on
Natural Language Processing of the AFNLP, pages
351–359.

Slav Petrov and Ryan McDonald. 2012. Overview of
the 2012 shared task on parsing the web. Notes of
the First Workshop on Syntactic Analysis of Non-
Canonical Language (SANCL).

Han Ren, Donghong Ji, Jing Wan, and Mingyao Zhang.
2009. Parsing syntactic and semantic dependen-
cies for multiple languages with a pipeline approach.
In Proceedings of the Thirteenth Conference on
Computational Natural Language Learning: Shared
Task, pages 97–102.

Ivan Titov and James Henderson. 2007. Constituent
parsing with incremental sigmoid belief networks.
In Proceedings of the 45th Annual Meeting of the As-
sociation of Computational Linguistics, pages 632–
639.

Kristina Toutanova, Dan Klein, Christopher D. Man-
ning, and Yoram Singer. 2003. Feature-rich part-of-
speech tagging with a cyclic dependency network.
In Proceedings of the 2012 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 173–180.

David Weiss, Chris Alberti, Michael Collins, and Slav
Petrov. 2015. Structured training for neural net-
work transition-based parsing. In Proceedings of the
53rd Annual Meeting of the Association for Compu-
tational Linguistics, pages 323–333.

Hao Zhang and Ryan McDonald. 2014. Enforcing
structural diversity in cube-pruned dependency pars-
ing. In Proceedings of the 52nd Annual Meeting
of the Association for Computational Linguistics,
pages 656–661.

Yue Zhang and Joakim Nivre. 2011. Transition-based
dependency parsing with rich non-local features. In
Proceedings of the 49th Annual Meeting of the Asso-
ciation for Computational Linguistics: Human Lan-
guage Technologies, pages 188–193.

Hao Zhou, Yue Zhang, and Jiajun Chen. 2015. A
neural probabilistic structured-prediction model for
transition-based dependency parsing. In Proceed-
ings of the 53rd Annual Meeting of the Association
for Computational Linguistics, pages 1213–1222.

1359


