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Abstract

Lexical selection is of great importance
to statistical machine translation. In this
paper, we propose a graph-based frame-
work for collective lexical selection. The
framework is established on a translation
graph that captures not only local associ-
ations between source-side content words
and their target translations but also target-
side global dependencies in terms of relat-
edness among target items. We also in-
troduce a random walk style algorithm to
collectively identify translations of source-
side content words that are strongly related
in translation graph. We validate the ef-
fectiveness of our lexical selection frame-
work on Chinese-English translation. Ex-
periment results with large-scale training
data show that our approach significantly
improves lexical selection.

1 Introduction

Lexical selection, which selects appropriate trans-
lations for lexical items on the source side, is a cru-
cial task in statistical machine translation (SMT).
The task is closely related to two factors: 1) asso-
ciations of selected translations with lexical items
on the source side, including corresponding source
items and their neighboring words, and 2) depen-
dencies1 between selected target translations and
other items on the target side.

As translation rules and widely-used n-gram
language models can only capture local associ-
ations and dependencies, we have witnessed in-

∗Corresponding author.
1Please note that dependencies in this paper are not nec-

essarily syntactic dependencies.

creasing efforts that attempt to incorporate non-
local associations/dependencies into lexical selec-
tion. Efforts using source-side associations mainly
focus on the exploitation of either sentence-level
context (Chan et al., 2007; Carpuat and Wu, 2007;
Hasan et al., 2008; Mauser et al., 2009; He et
al., 2008; Shen et al., 2009) or the utilization of
document-level context (Xiao et al., 2011; Ture et
al., 2012; Xiao et al., 2012; Xiong et al., 2013).
In contrast, target-side dependencies attract little
attention, although they have an important im-
pact on the accuracy of lexical selection. The
most common practice is to use language mod-
els to estimate the strength of target-side depen-
dencies (Koehn et al., 2003; Shen et al., 2008;
Xiong et al., 2011). However, conventional n-
gram language models are not good at capturing
long-distance dependencies. Consider the exam-
ple shown in Figure 1. As the translations of pol-
ysemous words “wèntı́”, “chı́yǒu” and “lı̀chǎng”
are far from each other, our baseline can only
correctly translate “lı̀chǎng” as “stance”. It in-
appropriately translates the other two words as
“problem” and null, respectively, even with the
support of an n-gram language model. If we
could model long-distance dependencies among
target translations of source words “wèntı́”(issue),
“chı́yǒu”(hold) and “lı̀chǎng”(stance), these trans-
lation errors could be avoided.

In order to model target-side global dependen-
cies, we propose a novel graph-based collective
lexical selection framework for SMT. Specifically,

• First, we propose a translation graph to model
not only local associations between source-
side content words and their target trans-
lations but also global relatedness among
target-side items.
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           wèntí = {problem,   question,   issue ...}
chíyŏu = {hold,   null,   possess ...}
lìchăng = {stance,   position ...}

  Tran: For this problem , two sides of the same or similar stance .
  Ref:    Both sides hold the same or similar position on this issue .

  Src: 对于/P 这/DT 问题/NN ，/PU 双方/PN 持有/VV 相同/VA 的/DEG 立场/NN
   duìyú      zhè        wèntí       ,  shuāngfāng   chíyŏu    xiāngtóng    de          lìchăng

Figure 1: A Chinese-English translation example to illustrate the importance of target-side long-distance dependencies for lex-
ical selection. Dotted lines show long-distance dependencies of source content words. Three content words “wèntı́”, “chı́yǒu”,
“lı̀chǎng”, and their candidate translations with high translation probabilities are also presented. Src: A Chinese sentence with
part-of-speech tags. Tran: system output. Ref: reference translation.

• Second, we introduce a collective lexical se-
lection algorithm, which can jointly identify
translations of all source-side content words
in the translation graph.

• Finally, we incorporate confidence scores
of candidate translations in the translation
graph, which are derived by the collective se-
lection algorithm, into SMT to improve lexi-
cal selection.

We validate the effectiveness of our graph-
based lexical selection framework on a hierarchi-
cal phrase-based system (Chiang, 2007). Exper-
iment results on the NIST Chinese-English test
sets show that our approach significantly improves
translation quality.

We begin in Section 2 with the construction
of translation graph for each translated sentence.
Then, we propose a graph-based collective lexical
selection framework for SMT in Section 3. Ex-
periment results are reported in Section 4. We
summarize and compare related work in Section
5. Finally, Section 6 presents conclusions and di-
rections for future research.

2 Translation Graph

Formally, a translation graph is a weighted graph
G=(N,E). In the node set N , each node repre-
sents either a source word or a target translation
that contains one or multiple target words. In the
edge set E, an edge linking a source word to a tar-
get translation is referred to as a source-target as-
sociation edge, and an edge connecting two target
translations is called as a target-target relatedness
edge. In Section 2.1 and 2.2, we will answer the
following two questions on the translation graph:

• Which source words and their translations
should be included in the translation graph?

• How can we measure the strength of the
above two types of relations in the graph with
edge weights?

2.1 Graph Nodes

For a source sentence, the most ideal translation
graph is a graph that includes all source words
and their candidate translations. However, this
ideal graph has two problems: intensive compu-
tation for graph inference and difficulty in mod-
eling dependencies between function and content
words. In order to get around these two issues, we
only consider lexical selection for source content
words2.

We first identify source-side content word pairs
using statistical metrics, and then keep word pairs
with a high relatedness strength in the translation
graph. To be specific, we use pointwise mutual in-
formation (PMI) (Church and Hanks, 1990) and
co-occurrence frequency to measure the related-
ness strength of two source-side words s and s′

within a window ds. Content word pairs will
be kept when their co-occurrence frequencies are
more than εcf times in our training corpus and
PMI values are larger than εpmi. In this process,
we remove noisy word pairs using the following
heuristic rules: (1) As an adjective only has rela-
tions with its head nouns or dependent adverbs,
we remove all word pairs where an adjective is
paired with words other than its head nouns or
dependent adverbs; (2) We apply a similar con-
straint to adverbs too, since the same thing hap-
pens to an adverb and its head verb or head ad-

2In this work, we consider nouns, verbs, adjectives and
adverbs as content words in the source/target language.
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Figure 2: Translation graph of the example shown in Figure 1. Relatedness scores on edges are shown for two group of
translations {“problem”, null, “stance”} (green) and {“issue”, “hold”, “position”} (blue), which are estimated with PMI.
Note that the null node does not have any relations with other nodes. Besides, two translation combinations {“problem”, null,
“stance”} (green) and {“issue”, “hold”, “position”} (blue) have different strengths of relatedness.

jective. For example, in the Chinese sentence in
Figure 1, the adjective “xiāngtóng” is only related
to the noun “lı̀chǎng” although it also frequently
co-occur with “wèntı́”.

After identifying source-side content word
pairs, we collect all target translations of these
content words from extracted bilingual rules ac-
cording to word alignments. These content words
and target translations are used to build a transla-
tion graph, where each node represents a source-
side content word or a candidate target transla-
tion. Note that there may be hundreds of differ-
ent translations for a source word. For simplicity,
we only consider target translations from transla-
tion options that are adopted by the decoder after
rule filtering. Let’s revisit the example in Figure 2,
we include the following target translations in the
translation graph: “problem”, “question”, “issue”,
“hold”, null, “possess”, “stance” and “position”.

2.2 Edges and Weights

In this section, we introduce how we calculate
weights for two kinds of edges in a translation
graph.

2.2.1 Source-Target Association Edge
Connecting a source-side content word and its
candidate target translations, a source-target asso-
ciation edge provides a way to propagate transla-
tion association evidence from a source word to
its candidate translations. Obviously, the stronger
the association between a source word and its can-
didate translation, the more evidence the corre-
sponding edge will propagate. For each source-
side content word, we obtain its candidate trans-

lations via the kept word alignments. Following
Xiong et al. (2014), we allow a target translation
to be either a phrase of length up to 3 words or
null when s is not aligned to any word in the cor-
responding bilingual rule. We define the weight of
the edge from a source-side content word s to its
target translation t̃ as follows:

Weight(s→ t̃) =
TP (s, t̃)∑

t̃′∈N(s) TP (s, t̃′)
(1)

where N(s) denotes the set of candidate target
translations of s kept on the translation graph,
and TP (s, t̃) measures the probability of s be-
ing translated to t̃. It is very important to note
that there is no evidence propagated from a target
translation to a source word, as source-target asso-
ciation edges only go from a source-side content
word to its translations.

We compute TP (s, t̃) according to the principle
of maximal likelihood as follows:

TP (s, t̃) =
count(s, t̃)
count(s)

(2)

where count(s, t̃) indicates how often s is aligned
to t̃ in the training corpus. Using this method,
we can compute the translation probabilities of
the source-target association edges in Figure 2 as
follows: TP(“wèntı́”, “issue”)=0.31, TP(“chı́yǒu”,
“hold”)=0.22 and TP(“lı̀chǎng”, “position”)=0.47.

2.2.2 Target-Target Relatedness Edge
Connecting two target translations of different re-
lated source content words, a target-target relat-
edness edge enables translation graph to capture
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dependencies between translations of any two dif-
ferent source words.

Computing the weight of a target-target related-
ness edge is crucial for our method. Intuitively,
the stronger co-occurrence strength two transla-
tions have, the more evidence should be propa-
gated between them. Therefore we calculate the
weight of a target-target related edge based on the
co-occurrence strength of two translations linked
by the edge. Formally, given the translation t̃ of
source-side content word s and the translation t̃′

of source-side content word s′, the weight of the
edge from t̃ to t̃′ is defined as follows:

Weight(t̃→ t̃′)=
RS(t̃, t̃′)∑

t̃′′∈N(t̃)RS(t̃, t̃′′)
(3)

where N(t̃) denotes the set of candidate transla-
tions that link to t̃, and RS(t̃, t̃′) measures the
strength of relatedness between t̃ and t̃′ which is
calculated as the average word-level relatedness
over all content words in these two translations t̃
and t̃′.

As for the word-level relatedness RS(t, t′) for
a content word pair (t, t′), we estimate it with
the following two approaches over collected co-
occurring word pairs within a window of size dt:
(1) RS(t, t′) is computed as a bigram conditional
probability plm(t′|t) via the language model; (2)
Following (Xiong et al., 2011) and (Liu et al.,
2014), we employ PMI to define RS(t, t′) as
ln p(t,t′)

p(t)p(t′) .

3 Collective Lexical Selection Algorithm

Based on the translation graph, we propose a col-
lective lexical selection algorithm to jointly iden-
tify translations of all source words in the graph.

3.1 Problem Statement and Solution Method

As stated previously, the translation of a source-
side content word s should be: 1) associated with
s; 2) related to the translations of other source-side
content words. Thus, in the translation graph, the
translation of s should be a target-side node which
has: 1) an association edge with the node of s;
2) many relatedness edges with other target-side
nodes that represent translations of other source
words.

Let’s revisit Figure 2. If we know that the trans-
lation of “wèntı́” is “issue”, the relatedness be-
tween (“issue”, “hold”) and between (“issue”,

“position”) can provide evidences that “hold” and
“position” are the correct translations of “chı́yǒu”
and “lı̀chǎng”, respectively. On the other hand,
the candidate translation “problem” is less related
to “hold” and “position”, which may suggest that
it is not likely to be the correct translation of
“wèntı́”, even if it has a strong source-target as-
sociation relation with “wèntı́”. However, in the
translation graph, the correct target translation of
a source word depends on correct translations of
other source words in the graph, and vice versa.
So how do we find these correct translations?

We propose a Random Walk (Gobel and Jagers,
1974) style algorithm to solve this problem, aim-
ing to use both local source-target associations
and global target-target relatedness simultane-
ously during translation. In our algorithm, we as-
sign each node an evidence score in the transla-
tion graph, which indicates either the importance
of a source word (for a source word node) or the
confidence of a target translation being a correct
translation (for a target word node). Specifically,
we perform collective inference on the translation
graph as follows:

• First, we set initial evidence scores for nodes
in the translation graph.

• Second, evidence scores are simultaneously
updated by propagating evidences along
edges in the translation graph.

In the following sub-section, we describe the two
steps in detail.

3.2 Details of Our Algorithm

Using the algorithm shown in Algorithm 1, we
iteratively derive evidence scores for candidate
translations.

3.2.1 Notations
For a translation graph with n nodes, we assign
each node an index from 1 to n and use this index
to represent the node. We also use the following
two notations:

• The evidence vector V: an n-dimensional
vector where the ith component Vi is the ev-
idence score contained in this node (if node
i corresponds to a source word), or the evi-
dence score from the related translations (if
node i corresponds to a target translation). In
particular, we use V(0) to denote the initial
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Algorithm 1 Collective Inference in Translation Graph.

Input: S: the set of source-side content words, and S(i)

denotes the source word of node i;
k: the number of source-side content words ;
T: the set of all candidate target translations, and T (j)

denotes the target translation of node j;
l: the number of candidate target translations;
λ: the reallocation weight;
maxIter: the maximum iteration number;
ε: the difference threshold;

1: for i = 1, 2..., k
2: for j = 1, 2..., l
3: if S(i) is linked to T(j)

4: Mk+j,i←Weight(S(i)→ T(j))
5: for j1 = 1, 2..., l
6: for j2 = 1, 2..., l
7: if T(j1) is linked to T(j2)

8: Mk+j2,k+j1 →Weight(T(j1)→ T(j2))
9: for i = 1, 2..., k

10: V(0)
i ← Importance(S(i))

11: for j = 1, 2..., l
12: V(0)

k+j ← 0

13: δ←∞
14: r← 1
15: while r ≤maxIter && δ > ε do
16: V(r)← (1− λ) ×M × V(r−1) + λ × V(0)

17: δ← ‖V(r) − V(r−1)‖2
18: r← r + 1

19: end while
20: for i = 1, 2..., k
21: for j = 1, 2..., l
22: if S(i) is linked to T(j)

23: LexiTable(S(i), T(j))← normalize(V(r)
k+j)

Return: LexiTable;

evidence vector, and V(r) to represent the ev-
idence vector we obtain at the rth iteration.

• The evidence propagation matrix M: an
n×n matrix where Mij is the evidence prop-
agation ratio from node j to node i, and its
value is the weight of the edge from node j
to node i.

3.2.2 Algorithm
In Algorithm 1, we jointly infer the evidence
scores of all candidate translations in the follow-
ing three steps.

In Step 1, we calculate the evidence propaga-
tion matrix M according to the method described
in Section 2.2 (equations (1) and (3)) (Lines 1-8).

In Step 2, we adopt different methods to set the
value of V(0) according to the node type. If the
node corresponds to a source word, we set the ini-
tial value using its importance score in the trans-

lation graph, as implemented in (Han et al. 2011)
(Lines 9-10). We calculate the importance score
of the source word s using tf.idf as follows:

Importance(s) =
tf.idf(s)∑

s′∈Nsrc
tf.idf(s′)

(4)

where Nsrc is the set of source words in the trans-
lation graph. If the node corresponds to a target
translation, its initial evidence score is 0 (Lines
11-12).

In Step 3, evidences are simultaneously rein-
forced by propagating them among semantically
related translations (Lines 13-19). Specific to our
algorithm, we update them by propagating evi-
dences according to different types of relations in
the evidence propagation matrix M. Formally, the
recursive update of the evidence vector is defined
as follows:

V(r) = M× V(r−1) (5)

where r is the number of iterations.
One problem with the above equation is that

some nodes in the translation graph do not have
evidence outgoing edges, such as translation nodes
containing only function words or the null node.
The evidence will disappear when passing through
these nodes. To solve this problem, we propagate
evidence in the form of reallocation: we reallocate
a fraction of evidence to the initial evidence vector
V(0) at each step. The new recursive update of the
evidence vector is formulated as follows:

V(r) = (1− λ)×M× V(r−1) + λ× V(0) (6)

where λ ∈ (0, 1) is the fraction of the reallocated
evidence. We keep updating the evidence vec-
tor according to this equation (Line 16), until the
maximal number of iteration maxIter is reached
or the Euclidean distance (Line 17) between evi-
dence vectors calculated in two consecutive itera-
tions is less than a pre-defined threshold ε (Line
15).

In this way, we jointly infer the evidence scores
of all candidate target translations in the transla-
tion graph. Table 1 gives the evidence scores of
the example in Figure 2. We can find that our sys-
tem enhanced with target translation dependencies
is able to select correct translations.

3.2.3 Integration of Derived Evidence Score
For each translated sentence, we may build multi-
ple translation graphs. For each translation graph,
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scores of the source words scores of the target translations
wèntı́ chı́yǒu lı̀chǎng problem question issue hold null possess stance position

V(0) 0.2015 0.3989 0.3996 0 0 0 0 0 0 0 0
V(r) 0.0302 0.0598 0.0599 0.0533 0.0774 0.1071 0.1218 0.0244 0.0604 0.1186 0.1486

Table 1: The initial and final evidence scores of some source words and their target translations in Figure 2. Here we set the
reallocation weight λ as 0.15. Note that the translations “issue”, “hold” and “position” are given high evidence scores.

we infer evidence scores of translations repre-
sented by graph nodes using the above-mentioned
algorithm before decoding. Then, for each can-
didate translation of a source-side content word,
we normalize its evidence score over the cor-
responding translation graph to form an addi-
tional lexical translation probability (Lines 20-
23). For instance, the normalized evidence score
of “chı́yǒu” translated into “hold” is calculated as
0.1218/(0.1218 + 0.0244 + 0.0604) ≈ 0.5895. In
this way, for each bilingual rule with word align-
ments, we will obtain a new lexical weight which
can be used together with the original translation
probabilities and lexical weight to improve lexical
selection in SMT.

4 Experiments

4.1 Setup
Our bilingual training corpus is the combina-
tion of the FBIS corpus and Hansards part of
LDC2004T07 corpus (1M parallel sentences,
54.6K documents, with 25.2M Chinese words
and 29M English words). We word-aligned them
using GIZA++ (Och and Ney, 2003) with the op-
tion “grow-diag-final-and”. We chose the NIST
evaluation set of 2005 (MT05) as the development
set, and the sets of MT06/MT08 as test sets. We
used SRILM Toolkit (Stolcke, 2002) to train one
5-gram language model on the Xinhua portion of
Gigaword corpus.

To construct translation graphs, we first used the
ZPar toolkit3 and the Stanford toolkit4 to prepro-
cess (word segmentation, PoS tagging and so on)
Chinese and English sentences, respectively. We
used the Chinese part of our bilingual corpus and
an additional Chinese LDC Xinhua news corpus
(10.2M sentences with 279.9M words) as train-
ing data to collect Chinese word pairs. We set
window size ds=15, thresholds εpmi=0, εcf =5 to
identify Chinese related word pairs in the NIST
translated sentences. Averagely, these three sets
contain 13.5, 10.3 and 9.5 content words used

3http://people.sutd.edu.sg/∼yue zhang/doc/index.html
4http://nlp.stanford.edu/software

to build translation graphs per sentence, respec-
tively. Using the English part of our bilingual cor-
pus and the Xinhua portion of Gigaword corpus
as training data, we set window size dt=20, and
used the SRILM toolkit with Witten-Bell smooth-
ing and PMI to calculate relatedness strengths for
target-side translations. To avoid data sparseness,
we build the graph using the surface forms of
words while calculating the word relatedness at
the lemma level. To achieve this, we converted
each word into its corresponding lemma with the
exception of adjectives and adverbs. In the proce-
dure of collective lexical selection, the difference
threshold ε was set as 10−10, and the maximal it-
eration number maxIter 100.

We reimplemented the decoder of Hiero (Chi-
ang, 2007), a famous hierarchical phrase-based
(HPB) system. HPB system is a formally syntax-
based system and delivers good performance in
various translation evaluations. During decod-
ing, we set the ttable-limit as 20, the stack-size as
100. The translation quality is evaluated by case-
insensitive BLEU-4 metric (Papineni et al., 2002).
To alleviate the impact of the instability of MERT
(Och, 2003), we ran it three times for each exper-
iment and reported the average BLEU scores as
suggested in (Clark et al., 2011). Finally, we con-
ducted paired bootstrap sampling (Koehn, 2004)
to test the significance in BLEU score differences.

4.2 Our Method vs Other Methods

In the first group of experiments, we investigated
the effectiveness of our model by comparing it
against the baseline as well as two additional mod-
els: (1) lexicalized rule selection model (He et
al., 2008) (LRSM), which employs local context
to improve rule selection in the HPB system; (2)
topic similarity model (Xiao et al., 2012)5 (TSM),
which explores document-level topic information
for translation rule selection in the HPB system.
Furthermore, we combined our model with the
two models to see if we could obtain further im-
provements. For this, we integrated the new lexi-

5We used 30 topics following (Xiao et al., 2012).
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System MT06 MT08 Avg
Baseline 30.25 21.25 25.75

LRSM 31.12 21.98 26.55
TSM 30.79 21.90 26.35

GM(LM) 30.64 21.78 26.21
GM(PMI) 31.02 21.77 26.40

LRSM +GM(PMI) 31.66 22.23 26.95
TSM +GM(PMI) 31.34 22.26 26.80

Table 2: Experiment results on the test sets with λ=0.15. Avg
= average BLEU scores, GM(LM) and GM(PMI) denote our
model using the measure based on language model and PMI,
respectively.

cal weight learned by our model as a new feature
into the LRSM/TSM system.

Table 2 reports the results. All models outper-
form the baseline. Especially, our graph-based
lexical selection model GM(PMI) achieves an av-
erage BLEU score of 26.40 on the two test sets,
which is higher than that of the baseline by 0.65
BLEU points. This improvement is statistically
significant at p<0.01. The BLEU score of our
model is close to those of LRSM and TSM, which
achieve an average BLEU score of 26.55 and
26.35 on the two test sets, respectively. As PMI
is slightly better than LM in our model, we use
PMI in experiments hereafter.

The combination of our model and LRSM is
able to further improve translation quality in terms
of BLEU. In this case, the average BLEU score
of the improved system is 26.95, with 0.4 BLEU
points higher than LRSM. When combining our
model with TSM, we obtain an average BLEU
score of 26.80, which is better than TSM by
0.45 BLEU points. The two improvements over
LRSM and TSM are also statistically significant
at p<0.05. These experiment results suggest that
exploring long-distance dependencies among tar-
get translations is complementary to the previous
lexical selection methods which focus on source-
side context information.

In order to know how our approach improves
the performance of the HPB system, we compared
the best translations of the HPB system using dif-
ferent models. We find that our approach really
improves translation quality by utilizing target-
side long-distance dependencies which are, on the
contrary, ignored in previous methods.

For example, the source sentence “... ;â.Å
�c 9�Ú [n] ��/«... ©|� í{³
å...” is translated as follows:

• Ref: ... musharraf and some tribal leaders in

the northern region of [pakistan] last septem-
ber ... the remnant forces of the taliban ...

• Baseline: ... musharraf last september and
[palestine] north of tribal leaders ... the rem-
nants of the taliban ...

• LRSM: ... musharraf last september and
some tribal chiefs of the northern region of
[palestine] ... the remnants of the taliban ...

• LRSM+GM(PMI): ... last september
musharraf and some tribal chiefs of the
northern region of [pakistan] ... the remnants
of the taliban ...

Here both the baseline and LRSM fail to ob-
tain the right translation for the word “n” be-
cause “palestine” has a higher probability than
“pakistan” (0.0374 vs 0.0285). However, in our
model, the long-distance dependencies between
(“musharraf”, “pakistan”) and (“taliban”, “pak-
istan”) help the decoder correctly choose the
translation “pakistan” for “n”.

In yet another example, the source sentence “{
F" � Ø ¯K [�Æ] �� �¡ �1” is
translated as follows:

• Ref: us hopes agreement on north korean nu-
clear issue be fully implemented

• Baseline: us hoped that the dprk nuclear is-
sue is the full implementation

• TSM: us hope that the full implementation of
the nuclear issue

• TSM+GM(PMI): us hope that the dprk
nuclear issue [agreement] to be fully
implemented

Even with TSM, the HPB system did not trans-
late “�Æ” at all because translation rules “X1

�Æ �� ||| X1 is” and “X1 �Æ X2 �1
||| X2 implementation of X1” are used to trans-
late the source sentence by the baseline and TSM
systems respectively. However, in the combined
model TSM+GM(PMI), the differences in relat-
edness scores between (“nuclear”, “agreement”),
(“issue”, “agreement”) and (“agreement”, “im-
plemented”) encourage the enhanced system to se-
lect right translation for this word.
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Figure 3: Experiment results on the test sets using different
reallocation weights.

4.3 Effect of Reallocation Weight λ.

In Eq. (6), the reallocation weight λ determines
which part plays a more important role in our
method. In order to investigate the effect of λ
on our method, we tried different values for λ:
from 0.1 to 0.5 with an increment of 0.05 each
time. The experimental setup is the same as the
previous experiments. Figure 3 shows the aver-
age BLEU scores on the two test sets. Our sys-
tem performs well when λ ranges from 0.1 to 0.25.
The performance drops when λ is larger than 0.25.
A small reallocation weight λ reduces the impact
of initial evidences and local source-side associa-
tions in the collective lexical selection algorithm,
but increases the impact of global dependencies
of target-side translation, which are normally not
considered in previous lexical selection methods.
This performance curve on the values of λ sug-
gests that target-side global dependencies are im-
portant for lexical selection.

5 Related Work

The collective inference algorithm is partially in-
spired by Han et al. (2011) who propose a graph-
based collective entity linking (EL) method to
model global interdependences among different
EL decisions. We successfully adapt this algo-
rithm to lexical selection in SMT. Other related
work mainly includes the following two strands.

(1) Lexical selection in SMT. In order to cap-
ture source-side context for lexical selection, some
researchers propose trigger-based lexicon models
to capture long-distance dependencies (Hasan et
al., 2008; Mauser et al., 2009), and many more re-
searchers build classifiers with rich context infor-
mation to select desirable translations during de-
coding (Chan et al., 2007; Carpuat and Wu, 2007;
He et al., 2008; Liu et al., 2008). Shen et al. (2009)
introduce four new linguistic and contextual fea-

tures for HPB system. We have also witnessed in-
creasing efforts in the exploitation of document-
level context information. Xiao et al. (2011)
impose a hard constraint to guarantee the trans-
lation consistency in document-level translation.
Ture et al. (2012) soften this consistency con-
straint by integrating three counting features into
decoder. Hardmeier et al. (2012, 2013) introduce
a document-wide phrase-based decoder and inte-
grate a semantic language model that cross sen-
tence boundaries into the decoder. Based on topic
models, Xiao et al. (2012) present a topic simi-
larity model for HPB system, where each rule is
assigned with a topic distribution. Also relevant is
the work of Xiong et al. (2013), who use three
different models to capture lexical cohesion for
document-level machine translation. Compared
with the above-mentioned studies, our method fo-
cuses on the exploitation of global dependencies
among target translations, which has attracted lit-
tle attention before.

Different from exploring source-side context,
other researchers pay attention to the utilization
of target-side context information. The com-
mon practice in SMT is to use an n-gram lan-
guage model to capture local dependencies be-
tween translations (Koehn et al., 2003; Xiong et
al., 2011). Yet another approach exploring target-
side context information is proposed by Shen et al.
(2008), who use a dependency language model to
capture long-distance relations on the target side.
Moreover, Zhang et al. (2014) treat translation as
an unconstrained target sentence generation task,
using soft features to capture lexical and syntac-
tic correspondences between the source and tar-
get language. Recently, many researcher have
proposed to use deep neural networks to model
long-distance dependencies of arbitrary length for
SMT (Auli et al., 2013; Kalchbrenner and Blun-
som, 2013; Devlin et al., 2014; Hu et al., 2014;
Liu et al., 2014; Sundermeyer et al., 2014). Our
work is significantly different from these meth-
ods. We use a graph representation to capture local
and global context information, which, to the best
of our knowledge, is the first attempt to explore
graph-based representations for lexical selection.
Furthermore, our model do not resort to any syn-
tactic resources such as dependency parsers of the
target language.

(2) Random walk for SMT. Because of the
advantage of global consistency, random walk al-
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gorithm has been applied in SMT. For example,
Cui et al. (2013) develop an effective approach
to optimize phrase scoring and corpus weighting
jointly using graph-based random walk. Zhu et
al. (2013) apply a random walk method to dis-
cover implicit relations between the phrases of dif-
ferent languages. Aiming to better evaluate trans-
lation quality at the document level, Gong and Li
(2013) run PageRank algorithm to assign weights
to words in translation evaluation. Different from
these studies, the key interest of our research lies
in the lexical selection with random walk.

6 Conclusion and Future Work

This paper has presented a novel graph-based
collective lexical selection method for SMT. We
build translation graphs to capture local source-
side associations and global target-side dependen-
cies, and propose a purely collective inference al-
gorithm to jointly identify target translations of
source-side content words in translation graphs.
Our method capitalizes on capabilities of transla-
tion graphs to represent both local and global rela-
tions on the source/target side. Experiment results
demonstrate the effectiveness of our method.

In the future, we plan to further improve our
model by capturing semantic relatedness among
source words. Additionally, we also want to
jointly model different levels of context informa-
tion in a unified framework for SMT.
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