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Abstract

We investigate the need for bigram align-
ment models and the benefit of super-
vised alignment techniques in grapheme-
to-phoneme (G2P) conversion. Moreover,
we quantitatively estimate the relation-
ship between alignment quality and over-
all G2P system performance. We find
that, in English, bigram alignment models
do perform better than unigram alignment
models on the G2P task. Moreover, we
find that supervised alignment techniques
may perform considerably better than their
unsupervised brethren and that few manu-
ally aligned training pairs suffice for them
to do so. Finally, we estimate a highly
significant impact of alignment quality on
overall G2P transcription performance and
that this relationship is linear in nature.

1 Introduction

Grapheme-to-phoneme (G2P) conversion is the
problem of converting a string of letters into a
string of phonetic symbols. Closely related to
G2P are other string transduction problems in nat-
ural language processing (NLP) such as transliter-
ation (Sherif and Kondrak, 2007), lemmatization
(Dreyer et al., 2008), and spelling error correc-
tion (Brill and Moore, 2000). The classical learn-
ing paradigm in each of these settings is to train
a model on pairs of strings {(x,y)} and then to
evaluate model performance on test data. While
there are exceptions (e.g., (Rao et al., 2015)), most
state-of-the-art modelings (e.g., (Jiampojamarn et
al., 2007; Bisani and Ney, 2008; Jiampojamarn
et al., 2008; Jiampojamarn et al., 2010; Novak et
al., 2012)) view string transduction as a two-stage
process in which string pairs (x,y) in the train-
ing data are first aligned, and then a subsequent
(e.g., sequence labeling) module is learned on the
aligned data.

ph oe n i x
f i n I ks

Table 1: Sample monotone many-to-many align-
ment between x = phoenix and y = finIks.

State-of-the-art alignments in G2P are charac-
terized by the following properties:

(i) Alignments are monotone in that the ordering
of characters in input and output sequences
is preserved by the alignments. Furthermore,
they are many-to-many in the sense that sev-
eral x sequence characters may be matched
up with several y sequence characters as il-
lustrated in Table 1.

(ii) The alignment is a latent variable and learnt
in an unsupervised manner from pairs of
strings in the training data.

(iii) The unsupervised alignment models are un-
igram alignment models insofar as the over-
all score that the alignment model assigns an
alignment is the same for all orderings of the
matched-up subsequences (context indepen-
dence).

To illustrate point (iii), consider, in the field of
lemmatization, the case of aligning an inflected
word form with the extended infinitive in German,
such as absagt (‘rejects’) with abzusagen (‘to re-
ject’). Critically, the insertion -zu- appears in in-
fixal position and a plausible alignment might be
as in Table 2. Then, correctly aligning certain

a b ε s a g t
a b zu s a g en

Table 2: Alignment between absagen and
abzusagen. Empty string denoted by ε.

analogous forms such as zusagt (‘accepts’) with
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their corresponding extended infinitive zuzusagen
(‘to accept’) is beyond the scope of a unigram
alignment model since this cannot distinguish the
linguistically correct alignment from the following
linguistically incorrect alignment

ε z u s a g t
zu z u s a g en

precisely because it has no notion of context.
In this work, we firstly address bigram align-

ment models in G2P. We investigate whether there
are phenomena in G2P that require bigram align-
ment models and, more generally, whether bigram
alignment models produce better alignments —
with respect to a human gold standard — than un-
igram alignment models within the G2P setting.
We do so, secondly, in a supervised setting where
the model learns from gold-standard alignments.
While this may seem an odd scenario at first sight,
modern alignment toolkits in the related field of
machine translation typically include the possibil-
ity to learn both in a supervised and unsupervised
manner (Liu et al., 2010; Liu and Sun, 2015).
The rationale behind supervised learning models
may be that they perform better than unsupervised
models, and if alignment quality has a large impact
upon subsequent string translation performance,
then a supervised model may be a suitable alterna-
tive. Thirdly, we investigate how alignment qual-
ity affects overall G2P performance. This allows
us to address whether it is worthwhile to work
on better alignment models, which bigram and
supervised alignment models promise to be. To
our knowledge, all three outlined aspects of align-
ments — bigram models, supervised learning, and
systematically estimating the relationship between
alignment quality and overall string transduction
performance — are novel in the G2P setting and
its related fields as outlined; however, see also the
related work section.

This work is structured as follows. Section 2
presents definitions and algorithms for uni- and bi-
gram alignment models. Section 3 surveys related
work. Section 4 presents our data and Section 5
our experiments. We conclude in Section 6.

2 Uni- and bigram alignment models

We first formally define the problem of aligning
two strings x and y over arbitrary alphabets in a
monotone and many-to-many manner. Let `x =
|x| and `y = |y| denote the lengths of x and y,
respectively. Let N = {0, 1, 2, . . .}, and let S ⊆

N2\{(0, 0)} be a set defining the valid match-up
operations between x characters and y characters.
In other words, when (s, t) ∈ S, then this means
we allow matches of subsequences of x of length
s and subsequences of y of length t.1

It is convenient to define a monotone many-to-
many alignment of x and y as a 2×k (for k ≥ 1 ar-
bitrary) nonnegative integer matrix Ax,y ∈ N2×k

satisfying Ax,y1k =
(
`x
`y

)
, i.e., the two rows

of Ax,y sum up to the lengths of the respective
strings,2 and where each column of Ax,y lies in
S. For any such alignment, we let (x1, . . . ,xk) be
the corresponding induced segmentation of x and
(y1, . . . ,yk) be the corresponding induced seg-
mentation of y.

Example. For any S ⊇ {(1, 1), (1, 2), (2, 1)},
the alignment of x = phoenix and y = finIks
shown in Table 1 may be represented by the ma-

trix Ax,y =
(

2 2 1 1 1
1 1 1 1 2

)
. The correspond-

ing induced segmentations are (ph,oe,n,i,x) and
(f,i,n,I,ks).

Let AS(x,y) denote the class of all alignments
of x and y. We call a function f : AS(x,y)→ R
an alignment model. We call an alignment model
f a unigram alignment model if f takes the form,
for any Ax,y ∈ AS(x,y),

f(Ax,y) =
k∑
i=1

sim1(xi,yi) (1)

where sim1 is an arbitrary (real-valued) similar-
ity function measuring similarity of two subse-
quences. We call an alignment model f a bigram
alignment model if f takes the form

f(Ax,y) =
k∑
i=1

sim2

(
(xi,yi), (xi−1,yi−1)

)
(2)

where sim2 is an arbitrary (real-valued) similarity
function measuring similarity of successive pairs
of subsequences.

Example. Let sim1(u,v) be equal to |u| · |v| and
let funi(Ax,y) be as in Eq. (1). Then, funi is a
unigram alignment model that assigns the score

1This is sometimes denoted in the manner M -N (e.g., 3-
2, 1-0), indicating that M characters of one string may be
matched up with N characters of the other string. Analo-
gously, we could write here s-t rather than (s, t).

2Here, 1k denotes the unit vector of dimension k.
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1 + 1 + 0 + 1 + 1 + 1 + 2 = 7 to the alignment
given in Table 2.

Example. Let sim2

(
(u,v), (u′,v′)

)
= (|u| ·

|v|)|v′| if |u| = |u′| − 1 or u = v and −2 oth-
erwise. Let fbi(Ax,y) be as in Eq. (2). Then, fbi
is a bigram alignment model assigning the score
(1 · 1)0 + (1 · 1)1 + (0 · 2)1 + (1 · 1)2 + (1 · 1)1 +
(1 · 1)1 − 2 = 3 to the alignment in Table 2.

In statistical alignment modeling, the task is to
find an optimal alignment (i.e., one with maxi-
mal score) given strings x and y and given the
alignment model f . When f is a unigram model,
this can be solved efficiently via dynamic pro-
gramming (DP). When f is a bigram alignment
model, then finding the optimal alignment can
still be solved via DP, by introducing a variable
Mijqw denoting the score of the best alignment
of x(1 : i) and y(1 : j) that ends in the match-
up of x(q : i) with y(w : j).3 The variable
Mijqw satisfies a recurrence leading to a DP al-
gorithm, shown in Algorithm 1. The actual align-
ment can be found by storing pointers to the maxi-
mizing steps taken. Running time of the algorithm
is O(`2x`

2
y|S|). Note also that the sketched algo-

rithm is supervised insofar as it assumes that the
similarity values sim2(·, ·) are known. Typically,
such alignment algorithms can be converted into
unsupervised algorithms in which similarity mea-
sures sim are learnt iteratively, e.g., in an EM-like
fashion (cf., e.g., Eger (2012), Eger (2013)); how-
ever, in this paper, we only investigate the super-
vised base version as indicated.

3 Related work

Monotone alignments have a long tradition in
NLP. The classical Needleman-Wunsch algo-
rithm (Needleman and Wunsch, 1970) computes
the optimal alignment between two sequences
when only single character matches, mismatches,
and skips are allowed. It is a special case
of the unigram model (1) for which S =
{(1, 0), (0, 1), (1, 1)} and sim1 takes on values
from {0,−1}, depending on whether compared
subsequences match or not. As is well-known, this
alignment specification is equivalent to the edit
distance problem (Levenshtein, 1966) in which
the minimal number of insertions, deletions and
substitutions is sought that transforms one string

3We denote by x(a : b) the substring xaxa+1 · · ·xb of
the string x1x2 · · ·xt.

into another. Substring-to-substring edit oper-
ations — or equivalently, (monotone) many-to-
many alignments — have appeared in the NLP
context, e.g., in Deligne et al. (1995), Brill and
Moore (2000), Jiampojamarn et al. (2007), Bisani
and Ney (2008), Jiampojamarn et al. (2010), or,
significantly earlier, in Ukkonen (1985), Véronis
(1988). Learning edit distance/monotone align-
ments in an unsupervised manner has been the
topic of, e.g., Ristad and Yianilos (1998), Cot-
terell et al. (2014), besides the works already men-
tioned. All of these approaches are special cases of
our unigram model — i.e., they consider particular
S (most prominently, S = {(1, 0), (0, 1), (1, 1)})
and sim1.4 Eger (2015b), Yao and Kondrak
(2015), and Eger (2015a) generalize to alignments
of multiple strings, but likewise only consider un-
igram alignment models in their experiments.

Probably the most closely related work to ours
is Jiampojamarn and Kondrak (2010). There,
older and specialized alignment techniques such
as ALINE (Kondrak, 2000) (as well as partly
heuristic/semi-automatic alignment methods) are
compared with variants of the M2M alignment
algorithm, which we also survey. This work
does not consider supervised alignments or bigram
alignments, as we do. Moreover, Jiampojamarn
and Kondrak (2010) also evaluate the impact of
alignment quality on overall G2P system accuracy
by running a few experiments, finding that better
alignment quality does not always translate into
better G2P accuracy, but that there is a “strong
correlation” between the two. We more thorougly
investigate this question, using, arguably, more
heterogeneous aligners, and many more experi-
ments. We also quantitatively estimate how align-
ment quality influences G2P system accuracy on
two different languages via linear regression.

Goldwater et al. (2006) study the effect of
context in (unsupervised) word/sequence seg-
mentation, which may be considered the one-
dimensional specialization of sequence alignment,
using a Bayesian method. They find that bigram
models greatly outperform unigram models for
their task.

Of course, our study is also related to the field
of machine translation and its studies on the rela-

4In Cotterell et al. (2014), context influences alignments,
so that the approach goes beyond the unigram model sketched
in (1) (but does not allow for many-to-many match-ups). The
contextual dependencies in this model are set up differently
from the bigram dependencies in our paper.

1177



Algorithm 1
1: procedure BIGRAM-ALIGN(x = x1 . . . xn,y = y1 . . . ym; S, sim2)
2: Mijqw ← −∞ for all (i, j, q, w) ∈ Z4

3: M0000 ← 0
4: for i = 0 . . . n do
5: for j = 0 . . .m do
6: for q = 0 . . . i+ 1 do
7: for w = 0 . . . j + 1 do
8: if (i, j, q, w) 6= (0, 0, 0, 0) then
9: if (i− q + 1, j − w + 1) ∈ S then

10: Mijqw= max
(a,b)∈S

Mq−1,w−1,q−a,w−b+sim2

((
x(q:i),y(w:j)

)
,
(
x(q−a:q−1),y(w−b:w−1)

))

tionship between alignment quality and translation
performance (Ganchev et al., 2008). In machine
translation, the monotonicity assumption of string
transduction does typically not hold, however, ren-
dering alignment and translation techniques differ-
ent and more heuristic in nature.

4 Data and systems

4.1 Data

For English, we conduct experiments on the Gen-
eral American (GA) variant of the Combilex data
set (Richmond et al., 2009). This contains about
128 000 grapheme-phoneme pairs as exemplified
in Table 3. Importantly, Combilex provides gold-
standard alignments, which we will make use of
for the supervised alignment models as well as for
measuring alignment quality. For German, we ran-

Grapheme string Phoneme string
g-e-n-e-r-a-l dZ-E-n-@-r-@-l

p-r-o-b-a-t-ion-a-r-y p-r-@U-b-eI-S-n=-E-r-i
w-oo-d-e-d w-U-d-@-d

M-u-r-m-a-n-s-k m-U@-r-m-A-n-s-k

Table 3: Sample grapheme-phoneme string pairs
in Combilex, using Combilex notation for the
phoneme strings. Gold-standard alignments indi-
cated in an intuitive manner.

domly extract 3 000 G2P string pairs from CELEX
(Baayen et al., 1995). We had a native speaker
manually align them so that gold standard align-
ments are available here, too. Both data sets con-
tain quite complex match-ups of character subse-
quences such as (2,3) as in English s-oi-r-ee-s/s-
wOA-r-P-z or (4,1) as in w-eigh-t/w-P-t but the
majority of match-ups are of type (1,1), (2,1), and,
to a lesser degree, (1,2) and (3,1).

4.2 Alignment toolkits/models

The M2M aligner (Jiampojamarn et al., 2007),
which is based on EM maximum likelihood es-
timation of alignment parameters, is the classi-
cal unsupervised unigram many-to-many aligner
in G2P. As has been pointed out (Kubo et al.,
2011), M2M greatly overfits the data.5 This
means that when the M2M aligner is given the
freedom to align two sequences without restric-
tions, it matches them up as a whole. The rea-
son is that a (probabilistic) unigram alignment
model adds log-probabilities of matched-up sub-
sequences, which, if not appropriately corrected
for, makes alignments with few match-ups a pri-
ori more likely than alignments with many match-
ups, when probabilities of individual match-ups
are uniformly or randomly initialized (as is typi-
cally the case for EM maximum likelihood esti-
mation in unsupervised models). To address this,
M2M must artifically restrain, in our language, the
set S to be {(1, 1), (1, 2), (2, 1)}. In contrast, the
Mpaligner (Kubo et al., 2011) introduces a prior
(or penalty) in the alignment model which favors
‘short’ matches (s, t) over ‘long’ ones. Finally, the
Phonetisaurus aligner (Novak et al., 2012) mod-
ifies the M2M aligner by adding additional soft
constraints.

Our own alignment model is, as indicated, su-
pervised. We implement a unigram alignment
model where we specify sim1(u,v) as

α · logp((u,v)) + β · logp((|u|, |v|))
+γ · logp(u) + δ · logp(v).

Here, logp(z) denotes the log-probability — esti-
mated from the training data — of observing the

5See also the discussion in (Goldwater et al., 2006) for the
related word segmentation problem.
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object z, and α, β, γ and δ are parameters. This
specification says that the subsequences u and v
are similar insofar as (i) u and v have been paired
frequently in the training data, (ii) the length of u
and the length of v have been paired frequently,
(iii)/(iv) u/v by itself is likely. We refer to this
unigram alignment model as uniα,β,γ,δ. We also
implement a bigram alignment model where we
specify sim2

(
(u,v), (u′,v′)

)
as

α · logp
(
(u,v) | (u′,v′))

+β · logp
(
(|u|, |v|) | (|u′|, |v′|))

+γ · logp
(
u|u′)+ δ · logp

(
v|v′).

Here, logp(z | z′) denotes the logarithm of the con-
ditional probability of observing the object z fol-
lowing the object z′. We refer to this bigram align-
ment model as biα,β,γ,δ.

4.3 Transduction systems
We use two string transduction systems for our ex-
periments. The first one is DirecTL+ (Jiampo-
jamarn et al., 2010), a discriminative string-to-
string translation system incorporating joint n-
gram features. DirecTL+ is an extension of the
model presented in Jiampojamarn et al. (2008)
which treats string transduction as a source se-
quence segmentation and subsequent sequence la-
beling task. In addition, we use Phonetisaurus
(Novak et al., 2012), a weighted finite state-based
joint n-gram model employing recurrent neural
network language model N -best rescoring in de-
coding. Both systems take aligned pairs of strings
as input and from this construct a monotone trans-
lation model.6

4.4 Measuring alignment quality
We employ two measures of alignment quality.
First, we use word accuracy, defined as the frac-
tion of correctly aligned sequence pairs in a test
sample. This is a very strict measure that penalizes
even tiny deviations from the gold standard. Addi-
tionally, we measure the edit distance between the
true alignment Ax,y and the predicted alignment
Âx,y. To implement this, we view the two induced
segmentations that constitute an alignment — e.g.,
(ph,oe,n,i,x) and (f,i,n,I,ks) — as strings includ-
ing splitting signs. Thus, we can compute the edit
distance between the gold-standard segmented x

6We run both systems with parameters determined by
some manual tuning, without trying to systematically opti-
mize their individual performances, however.

string and the predicted segmentation, and analo-
gously for the y sequence. Then, we define the
edit distance between Ax,y and Âx,y as the sum
of these two string edit distances. For a test sam-
ple, we indicate so-defined average edit distance,
averaged over all pairs in the sample.

5 Experiments

5.1 Alignment quality

To measure alignment quality for the different sys-
tems, for English, we run experiments on sets of
size x+5 000, where x = 1 000, 2 000, 5 000,
10 000, and 20 000. For the supervised models,
we consider x as the training data and the 5 000
additional string pairs as test data.7 To quantify
effects when training data is very little, we let x
also range over 100 and 500 string pairs for the
supervised models. For the unsupervised models,
we simply take all x+5 000 string pairs as data to
learn from (but evaluate performance only on the
5 000 string pairs, for comparability).

Results are shown in Tables 4, 5, and 6. We
first note (Table 4) that the unsupervised mod-
els perform decently, obtaining accuracy rates of
80% and beyond under appropriate parametriza-
tions. We also observe the M2M aligner’s de-
terioration in performance as we increase its de-
grees of freedom (allowing it to match subse-
quences of larger length), confirming our previous
remarks. The Mpaligner does not suffer from this
problem as it penalizes large matches. Phoneti-
saurus suffers from the same problems as M2M,
but to a lesser degree. Overall, we find that, under
optimal parametrizations, Phonetisaurus produces
best alignments, followed by Mpalign and M2M.
However, peak performances of all three unsu-
pervised aligners are close. Unsurprisingly, the
supervised alignment models perform better than
the unsupervised ones (Tables 5 and 6). Surpris-
ingly, however, they do so with very little train-
ing data; fewer than 100 aligned string pairs suf-
fice to outperform the unsupervised models under
good calibrations. When there is sufficient train-
ing data, the supervised models perform splen-
didly, with a peak accuracy of 99.43% for the bi-
gram alignment model that includes appropriate
features (scoring lengths of aligned subsequences,

7For all our below experiments involving the supervised
aligners, we set S to a (‘pessimistically’ large) value of
{(a, b) | 1 ≤ a ≤ 6, 1 ≤ b ≤ 6}. Also, for the bigram
models, we add special sequence boundary markers.
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etc.). We also note that the bigram alignment
model is almost consistently better than the uni-
gram alignment model, with a surplus of about 1%
point, depending on specific parametrizations.

We performed an analogous analysis for the
German data. Results are quite similar except that
unigram and bigram alignment model have indis-
tinguishable performance on the German data, in-
dicating (the known fact) that G2P is a more com-
plex task in English, apparently not requiring bi-
gram alignment models.

x uni0,0,1,1 uni1,0,0,0 uni1,1,1,1
100 70.34 58.13 87.22
500 81.94 84.64 95.60

1000 84.56 90.38 96.17
2000 85.41 93.47 97.13
5000 86.56 96.11 97.72

10000 86.13 97.07 98.14
20000 86.60 97.90 98.34

Table 5: Unigram model and its alignment accura-
cies in % for various training sizes.

x bi0,0,1,1 bi1,0,0,0 bi1,1,1,1
100 73.96 58.02 87.28
500 87.62 85.31 95.26

1000 91.87 90.73 97.32
2000 93.29 94.11 97.96
5000 95.58 97.01 99.03

10000 96.07 98.12 99.17
20000 97.21 98.73 99.43

Table 6: Bigram model and its alignment accura-
cies in % for various training sizes.

Error analysis Concerning errors that the uni-
gram model commits and the bigram model does
not, the majority of errors (roughly 80%) involve
match-ups of ed/d and d. For example, the uni-
gram model aligns as in

t w i n k le d
t w I N k @l d

while the gold-standard alignment is

t w i n k l ed
t w I N k @l d

While all match-ups in both alignments are plau-
sible, the bigram model assigns here higher proba-
bility to the correct ed/d match-up in terminal po-
sition (consistently favored in the data set), which

has a particular meaning there, namely, that of
a suffix marker for past tense.8,9 In the German
data, there is a single instance where the unigram
and bigram alignment model disagree, namely, in
the alignment of s-t-o-ff-f-l-a-sch-e/S-t-O-f-f-l-&-
S-@, which the unigram model falsely aligns as
s-t-o-f-ff-l-a-sch-e/S-t-O-f-f-l-&-S-@; note that in
the correct alignment f must follow ff, not vice
versa, which depends on context information, e.g.,
that o/O signifies a short vowel which is followed
by a double consonant, not a single consonant.

All remaining errors that the bigram align-
ment models commits are, for the best considered
parametrization and training set size, typically due
to match-up types not seen in the training data,
and thus mostly concern foreign names or writings
(e.g., Bh-u-tt-o/b-u-t-F, falsely aligned as B-hu-tt-
o/b-u-t-F). A few other errors might be corrected
when the feature coefficients α, β, γ, δ were opti-
mized on a development set rather than set manu-
ally. We find no indication that our G2P data, ei-
ther for English or German, would further benefit
from n-gram alignment models of order n > 2.

5.2 Alignment quality vs. overall G2P
performance

Next, we estimate the relationship between align-
ment quality and overall G2P performance (tran-
scription accuracy). To this end, for the English
data, we use the 5 000 aligned string pairs from
the previous experiment on alignment quality and
feed them in — as training data — to either Di-
recTL+ or Phonetisaurus as outlined in Section 4.
We then evaluate G2P performance — in terms of
word accuracy (fraction of correctly transcribed
strings) — on a distinct test set of size 10 000.
Figure 1 shows a plot of overall G2P accuracy
vs. training set size for the aligner (ranging over
the x values in the last section); and a second plot
that sketches G2P accuracy as a function of corre-
sponding alignment accuracy. We first note that,
as the supervised aligner receives more training

8Similar cases are, e.g., alignments of the type f-ee-d-b-
a-ck/f-i-d-b-a-k, which the unigram model falsely aligns as
f-e-ed-b-a-ck/f-i-d-b-a-k. Here, too, the unigram is unable to
account for the almost exclusive terminal position of the ed/d
match-up in the data.

9Other errors involve ‘unusual/foreign’
spelling/pronunciation pairs such as Ph-oe-n-i-c-ia/f-@-
n-i-S-@ (wrongly aligned as Ph-o-en-i-c-ia/f-@-n-i-S-@ by
the unigram model) or m-a-d-e-m-oi-s-e-ll-e-’s/m-a-d-@-m-
w@-z-E-l-0-z (m-a-d-e-m-o-i-s-e-ll-e-’s/m-a-d-@-m-w-@-
z-E-l-0-z), where the bigram alignment model has apparently
gathered the more appropriate statistics.
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x Mpalign M2M2,2 M2M3,3 M2M6,6 Phon2,2 Phon3,3 Phon6,6

1000 76.48 77.87 34.59 18.96 78.27 78.15 11.70
2000 78.05 78.03 34.45 18.87 79.24 77.07 12.43
5000 76.68 77.93 35.09 19.72 79.77 80.47 17.63

10000 78.86 77.97 35.03 21.35 79.60 81.30 23.57
20000 79.87 78.60 37.09 22.90 80.09 83.37 34.61

Table 4: Unsupervised aligners and their alignment accuracies in % for various data sizes as described
in the text. Subscripts a, b denote restrictions on maximal lengths of subsequences allowed in match-ups
(a/b corresponds to x/y subsequences).
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Figure 1: Left: Overall G2P accuracy as a function of training set size of supervised aligner uni1,0,0,0.
Right: G2P accuracy as a function of alignment quality (measured in accuracy).

data from which to align the 5 000 string pairs,
the overall G2P accuracy of both DirecTL+ and
Phonetisaurus increase substantially (and as a con-
vex function of training set size). Apparently, the
better alignments produced by more training data
for the particular supervised aligner considered di-
rectly translate into better overall G2P accuracy.
The other plot in the figure shows that, indeed,
there seems to be a linear trend coupling align-
ment quality with overall G2P performance. Table
7 pairs G2P accuracy with alignment accuracy of
selected systems, all run in the x = 20 000 set-
ting. While, in the table, better alignments do not
necessarily imply better overall G2P performance,
the two best alignments also lead to the two best
overall G2P performances (although, in this case,
the second best alignment is paired with the best
overall G2P performance); conversely, the worst
alignment quality is coupled with the worst over-
all G2P performance.

Overall, we ran 249 experiments (including the
German data) in which we trained DirecTL+ or
Phonetisaurus with alignments of specific quali-

Alignment acc. Phon. DirecTL+
Mpalign 79.87 55.48 57.54
M2M3,3 37.09 49.25 53.71
Phon3,3 83.37 54.05 56.11
uni0,0,1,1 86.60 53.19 55.49
uni1,1,1,1 98.34 55.72 57.78
bi1,1,1,1 99.43 55.71 57.71

Table 7: Systems, alignment accuracies of corre-
sponding produced alignments and transcription
accuracy of Phonetisaurus and DirecTL+ when
trained with the respective alignments.

ties obtained from particularly parametrized align-
ers. In each of these cases, we obtained an align-
ment quality score and a subsequent overall G2P
system performance. The English part of this
data is sketched in Figure 2. This figure seems
to corroborate the linear relationship (apparently
present in Figure 1) between alignment quality and
overall G2P system accuracy, particularly, when
alignment quality is measured in the more fine-
grained metric of edit distance. To formally test
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Figure 2: Overall G2P accuracy vs. alignment quality. Left: Alignment quality measured in accuracy.
Right: Alignment quality measured in edit distance. English data only.

this, we regress overall G2P system performance
(measured in word accuracy) on edit distance and
other variables.10 This yielded the coefficients as
given in Table 8; in each case, the goodness-of-
fit of the linear model was quite large, with R2

values above 90% for the English data and about
84% for the German data. Also, the coefficients
on alignment quality were highly significantly dif-
ferent from zero. The table shows that the co-
efficients are on the order of about −3.80% to
−4.70%, meaning that, all else being equal, in-
creasing alignment quality by 1 edit distance to the
gold-standard alignment increases overall G2P by
about 3.80 to 4.70%.

DirecTL+ Phonetisaurus
English −3.80∗∗∗ −4.14∗∗∗

German - −4.68∗∗∗

Table 8: Coefficients on edit distance in the regres-
sion of G2P accuracy on edit distance and further
variables. For German, DirecTL+ is omitted due
to its long run times.

So far, we have estimated the effects of align-
ment quality on overall G2P system performance
for a fixed size of training data, namely, 5 000
aligned string pairs. To see whether this relation-
ship changes when we vary the amount of train-
ing data, we run several more experiments. In
these, we align training sets of sizes 100, 500,

10These include binary dummy variables for the specific
systems as well as alignment consistency and its square —
measured in conditional entropy H(Y |X) (Pervouchine et
al., 2009) — in the regression.

1 000, 2 000, 10 000, 20 000, 40 000 and 60 000
via our several alignment systems. Then we feed
the aligned data to the Phonetisaurus system (we
omit DirecTL+ here because of its long run times)
and compute overall G2P accuracy on a disjoint
test set of size 28 000 approximately. This time,
we only use the unsupervised aligners and the
gold-standard alignments directly, omitting results
for our various supervised aligners. Note, how-
ever, that these aligners could, in principle, imi-
tate the gold-standard alignments with a very high
degree of precision, as previously seen. Table 9

M2M3,3 Mpalign Phon3,3 Gold
100 5.38 6.43 0.19 9.60
500 16.80 22.43 5.08 23.93
1K 25.79 31.46 18.70 33.37
2K 35.31 42.01 37.74 43.64

10K 58.44 64.05 63.06 64.60
20K 67.70 71.70 71.51 72.21
40K 74.69 78.45 78.13 78.65
60K 78.00 81.07 80.92 81.17

Table 9: Overall G2P accuracy in % as a function
training size of aligned data and alignment system.

shows that training G2P systems from the human
gold standard alignments in each case yields bet-
ter overall G2P transcriptions than training them
from either of the three unsupervised alignments
considered here. However, we note that the sur-
plus over the unsupervised alignments decreases
as training set size increases. This may be due
to the fact that the unsupervised aligners them-
selves create better alignments once they are boot-
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strapped from larger data sets (cf. Table 4). Ad-
ditionally, the effect of alignment quality on over-
all G2P system performance may simply vanish as
training set sizes become large enough because the
translation modules can better accomodate ‘noisy’
data as long as its size is sufficiently large. Figure
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Figure 3: Ratio of transcription accuracy when us-
ing gold standard alignments (GOLD) and when
using alignments generated by T = M2M3,3,
Mpalign, and Phon3,3, respectively, as a function
of size of aligned training set.

3 sketches the decreasing influence of alignment
system on overall G2P system performance as size
of the aligned data increases.

6 Conclusion

We have investigated the need for bigram align-
ment models and the benefit of supervised align-
ment techniques in G2P. We have also quantita-
tively estimated the relationship between align-
ment quality and overall G2P system performance.
We have found that, in English, bigram alignment
models do perform better than unigram alignment
models on the G2P task (we find almost no dif-
ferences between unigram and bigram models for
the German sample of G2P data we considered).
Moreover, we have found that supervised align-
ment techniques may perform considerably better
than their unsupervised brethren and that few man-
ually aligned training pairs suffice for them to do
so. Finally, we have estimated a highly significant
impact of alignment quality on overall G2P tran-
scription performance and that this relationship is
linear in nature. At a particular training size, a
linear regression model has estimated that improv-
ing alignment quality by 1 edit distance toward the

gold standard alignments leads to an 3.80-4.70%
increase in G2P transcription accuracy. However,
we have also found that the importance of good
alignments on G2P accuracy appears to dimish as
data set size increases, possibly because the trans-
lation modules can accomodate more ‘noisy’ data
in this scenario.

As a ‘policy’ implication, we recommend the
use of supervised alignment techniques particu-
larly when the size of the G2P corpus is small or
when high quality alignments, as an end in them-
selves, are required. In this case, constructing a
few dozen or few hundred alignments in an unsu-
pervised manner and correcting them by hand (to
serve as an input for a supervised technique) may
be highly beneficial.

In future work, it may be worthwhile to study
the impact of alignment techniques on overall sys-
tem performance in other string transduction prob-
lems such as transliteration, lemmatization, and
spelling error correction.

Our supervised uni- and bigram aligners
are available via https://github.com/
SteffenEger/.
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