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Abstract

We present an unsupervised hard EM ap-
proach to automatically mapping instruc-
tional recipes to action graphs, which de-
fine what actions should be performed on
which objects and in what order. Recov-
ering such structures can be challenging,
due to unique properties of procedural lan-
guage where, for example, verbal argu-
ments are commonly elided when they can
be inferred from context and disambigua-
tion often requires world knowledge. Our
probabilistic model incorporates aspects
of procedural semantics and world knowl-
edge, such as likely locations and selec-
tional preferences for different actions.
Experiments with cooking recipes demon-
strate the ability to recover high quality
action graphs, outperforming a strong se-
quential baseline by 8 points in F1, while
also discovering general-purpose knowl-
edge about cooking.

1 Introduction

Instructional language describes how to achieve a
wide variety of goals, from traveling successfully
to a desired location to cooking a particular dish
for dinner. Despite the fact that such language is
important to our everyday lives, there has been rel-
atively little effort to design algorithms that can
automatically convert it into an actionable form.
Existing methods typically assume labeled train-
ing data (Lau et al., 2009; Maeta et al., 2015) or
access to a physical simulator that can be used to
test understanding of the instructions (Branavan et
al., 2009; Chen and Mooney, 2011; Bollini et al.,
2013). In this paper, we present the first approach
for unsupervised learning to interpret instructional
recipes using text alone, with application to cook-
ing recipes.
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Given a recipe, our task is to segment it into
text spans that describe individual actions and con-
struct an action graph whose nodes represent ac-
tions and edges represent the flow of arguments
across actions, for example as seen in Fig. 1. This
task poses unique challenges for semantic anal-
ysis. First, null arguments and ellipses are ex-
tremely common (Zwicky, 1988). For example,
sentences such as “Bake for 50 minutes” do not
explicitly mention what to bake or where. Second,
we must reason about how properties of the phys-
ical objects are changed by the described actions,
for example to correctly resolve what the phrase
“the wet mixture” refers to in a baking recipe. Al-
though linguistic context is important to resolving
both of these challenges, more crucial is common
sense knowledge about how the world works, in-
cluding what types of things are typically baked or
what ingredients could be referred to as “wet.”!

These challenges seemingly present a chicken
and egg problem — if we had a high quality se-
mantic analyzer for instructions we could learn
common sense knowledge simply by reading large
bodies of text. However, correctly understand-
ing instructions requires reasoning with exactly
this desired knowledge. We show that this con-
flict can be resolved with an unsupervised learn-
ing approach, where we design models to learn
various aspects of procedural knowledge and then
fit them to unannotated instructional text. Cook-
ing recipes are an ideal domain to study these
two challenges simultaneously, as vast amounts of
recipes are available online today, with significant
redundancy in their coverage that can help boot-
strap the overall learning process. For example,
there are over 400 variations on “macaroni and
cheese” recipes on allrecipes.com, from “chipotle

"The goal of representing common sense world knowl-
edge about actions and objects also drives theories of frame
semantics (Fillmore, 1982) and script knowledge (Schank
and Abelson, 1977). However, our focus is on inducing this
style of knowledge automatically from procedural texts.
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Amish Meatloaf (http://allrecipes.com/recipe/amish-meatloaf/)

Ingredients

)

2 pounds ground beef

2 1/2 cups crushed butter-flavored crackers
1 small onion, chopped
2 eggs

3/4 cup ketchup
1/4 cup brown sugar
2 slices bacon

Preheat the oven to 350 degrees F (175 degrees C).
In a medium bowl, mix together ground beef, crushed
crackers, onion, eggs, ketchup, and brown sugar until

1
Sy, Over the top

well blended.

Press into a 9x5 inch loaf pan.
Lay the two slices of bacon over the top.
Bake for 1 hour, or until cooked through.

vvvvv implicit
object

(recipe condensed)

Figure 1: An input recipe (left) and a partial corresponding output action graph (right). Each rectangle
(e;) represents an action. The leftmost oval (v;) in each action is the action’s verb and the following
ovals (a;;) represents the verb’s arguments. The yellow ovals represent foods; the grey ovals represent
locations. Argument ovals with dotted boundaries are implicit, i.e., not present in text. The inner white

ovals (sfj) are string spans. The red dashed lines repr
nating verb or raw ingredient. The string spans also co
to model the flow of ingredients. For example, there
implicit object of bake, representing that the object bei

macaroni and cheese,” to “cheesy salsa mac.”

We present two models that are learned with
hard EM algorithms: (1) a segmentation model to
extract the actions from the recipe text, and (2) a
graph model that defines a distribution over the
connections between the extracted actions. The
common sense knowledge is encoded in the sec-
ond model which can, for example, prefer graphs
that model implicit verb arguments when they
better match the learned selectional preferences.
The final action graph is constructed with a local
search algorithm, that allows for global reasoning
about ingredients as they flow through the recipe.

Experiments demonstrate the ability to recover
high quality action graphs, gaining up to 8 points
in F1 over a strong baseline where the ingredients
flow sequentially through the verbs. The learned
models are also highly interpretable, specifying
for example that “dough” likely contains “flour”
and that “add” generally requires two food argu-
ments, even if only one is mentioned in the sen-
tence.

2 Task Definition

Procedural text such as a recipe defines a set of
actions, i.e. predicates, applied to a set of objects,
i.e. arguments. A unique challenge in procedu-
ral text understanding is to recover how different
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esent connections to string spans from their origi-
nnect to their associated verb in the action diagram
is a directed path from each raw ingredient to the
ng baked is composed of all of the raw ingredients.

arguments flow through a chain of actions; the re-
sults of intermediate actions (e.g., “Boil the pasta
until al dente.”) provide the inputs for future ac-
tions (e.g., “Drain.”’). We represent these corre-
spondences with an action graph. In this section,
we first describe our structured representation of
recipe text, then we define how components of the
recipe connect. Finally, we will show how given
a recipe and a set of connections we can construct
an action graph that models the flow of ingredi-
ents through the recipe. Fig. 1 provides a detailed
running example for the section.

2.1 Recipe R

A recipe R is a piece of text that describes a list
of instructions and a (possibly-empty) set of raw
ingredients that are required to perform the in-
structions. The first step is to segment the text
into a list of verb-argument tuples, called actions,
Er ={e1 = (v1,a1),...,e, = (vn,a,)}. Sec. 6
will describe an unsupervised approach for learn-
ing to segment recipes. Each action e; pairs a verb
v; with a list of arguments a;, where a;; is the jth
argument of verb v;. In Fig. 1, each row contains
an action with a verb in the white oval and its ar-
guments in the yellow and gray ovals.

Each argument is a tuple a;; = (t37", 55", Sij)
with a syntactic type t*¥"(a) € TV =
{DOBJ, PP}, a semantic type t*“"(a) €



T5¢™m = {food,location,other}, and a list of

1 |Sij

text string spans S;; = {s s ‘}, where

i S
sfj is the k' span in the j'* argument of verb v;.
In Fig. 1, the spans of each argument are repre-
sented by the white ovals inside of the argument
ovals. For example, ao; contains a span for each
raw ingredient being mixed in the second action
(e.g., s3; =*“ground beef,” s§; =“brown sugar”).
The syntactic type determines whether the argu-
ment is the direct object or a prepositional phrase
argument of the verb in the recipe text. All other
syntactic constructs are ignored and left for future
work. The semantic types include food, location,
and other. In Fig. 1, yellow ovals represent foods
and gray ovals represent locations. Arguments of
other semantic types are marked as other (e.g.,
“Mash using a fork”).

We also augment the set of arguments for each
verb to include implicit arguments with empty
string spans. This allows making connections to
arguments that the author does not mention explic-
itly (e.g., the elided direct object of “bake” in es).
Every verb is assigned one implicit PP argument,
and, if a verb has no argument with syntactic type
DOBJ, an implicit direct object. These argu-
ments have indeterminate semantic types, which
are to be determined based on how they connect
to other actions. For example, in Fig. 1, when the
implicit object of “bake” is connected to the out-
put of the “lay” action, it is inferred to be of type
food since that is what is created by the “lay” ac-
tion. However, when the implicit PP argument
of “bake” is connected to the output of the “pre-
heat” action, it is inferred to be a location since
“preheat” does not generate a food.

2.2 Connections C'

Given a segmented recipe, we can build graph con-
nections. A connection identifies the origin of a
given string span as either the output of a previ-
ous action or as a new ingredient or entity being
introduced into the recipe. A connection is a six-
tuple (o, 1, j, k, t¥", ¢5¢™) indicating that there is
a connection from the output of v, to the argu-
ment span si-“j with syntactic type t%¥" € T9Y"
and semantic type ¢t*¢™ € T, We call o the
origin index and ¢ the destination index. For ex-
ample, in Fig. 1, the connection from the output of
the “press” verb (e3) to “over the top” (5}12) would
be (3,4,2,1, PP, food). If a span introduces raw
ingredient or new location into the recipe, then

o = 0; in Fig. 1, this occurs for each of the spans
that represent raw ingredients as well as “oven”
and “into loaf pan.”

Given arecipe R, a set of connections C'is valid
for R if there is a one-to-one correspondence be-
tween spans in R and connections in C, and if
the origin indexes of connections in C' are O or
valid verb indexes in R, ¥(o,1, j, k, t5Y" t5¢™) €
C,o0e{Z|0<o0<|ER|}.

2.3 Action graph G

A recipe R and a set of connections C define
an action graph, which is a directed graph G =
(V,E). Each raw ingredient, verb, and argu-
ment span is represented by a vertex in V. Each
argument span vertex is connected to its asso-
ciated verb vertex, and each connection ¢ =
(0,1, 7, k, t5Y™ t5¢™) adds a corresponding edge
to E. [Edges from connections with seman-
tic type food propagate ingredients through the
recipe; edges from connections with semantic type
location propagate a location. Fig. 1 shows an ac-
tion graph. By following the edges, we can tell
that the implicit food entity that is being baked
in the final action has been formed from the set
of ingredients in the mixing action and the bacon
from e4 and that the baking action occurs inside
the oven preheated in e;.

3 Probabilistic connection model

Our goal is, given a segmented recipe R, to deter-
mine the most likely set of connections, and thus
the most likely action graph. We model (1) a prior
probability over C, P(C) (Sec. 3.1), and (2) the
probability of seeing a segmented recipe R given
a set of connections C, P(R|C) (Sec. 3.2). The
most likely set of connections will maximize the
joint probability: P(R|C)P(C). A summary of
this model is presented in Fig. 2, and the details
are described in the this section.

3.1 Connections prior model

The probability of a set of connections C' depends
on features of the incoming set of connections for
each action. Let a destination subset d; C C be
the subset of C' that contains all connections that
have 7 as the destination index. In Fig. 1, d3 con-
tains the connection from v9 to the implicit object
as well as a connection to “into loaf pan” with an
origin index of 0. Using the chain rule, the proba-
bility of C' is equal to the product of the probability
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Input: A set of connections C' and a recipe R segmented (Sec. 6) into its actions {e1 = (v1,a1),...,en = (Un,an)}
The joint probability of C' and R is P(C, R) = P(C)P(R|C), each defined below:

. Connections Prior (Sec. 3.1): P(C) =[], P(ds|dy,...,di—1)

Define d; as the list of connections with destination index 3. Let ¢, = (0,1, 7, k, t°¥",t°*™) € d;. Then,

o P(di[dy,...

ydi1) = P(vs(di)) [, eq, P(L(0 — si)|vs(di), du, . ..

ad’iflacla .. '7CP*1)

(a) P(vs(d;)): multinomial verb signature model (Sec. 3.1.1)

(b) P(I[(O — sfj)|vs(di),d1,...,difl,cl,.

For brevity, define h; = (e1,...,e;—1).

Recipe Model (Sec. 3.2): P(R|C) =[], P(ei|C, e, ..

.., Cp—1): multinomial connection origin model, conditioned on
the verb signature of d; and all previous connections (Sec. 3.1.2)

.,61'_1)

[ P(ei|C, hl) = P(UHC, hl) Hj P(aij|C, hl) (Sec. 3.2)

Define argument a;; by its types and spans, a;;

(

syn
AN

sem
) Sij)-

(@) P(v;|C,h;) = P(v;]g;): multinomial verb distribution conditioned on verb signature (Sec. 3.2)

syn
£

(b) P(ai|C,hi) = P(£57", 157 [C, hi)

.SUES”

P(skt

syn
ij

7tf;m,c, hz)

i. P(t;7",t57™|C, h;): deterministic argument types model given connections (Sec. 3.2.1)

ii. P(sg|t;]

Y7 t57™, C, hy): string span model computed by case (Sec. 3.2.2):

A. t;7™ = food and om’gin(sfj) #0: IBM Model 1 generating composites (Part-composite model)

B. tji™ = food and om’gin(sfj) =0: naive Bayes model generating raw food references (Raw food model)
C. tj;™ =location: model for generating location referring expressions (Location model)

Figure 2: Summary of the joint probabilistic model P(C, R) over connection set C' and recipe R.

of each of the destination subsets:

P(C) = HP(di|d1, dis).

The probability of each destination subset de-
composes into two distributions, a verb signature
model and a connection origin model:

P(dz|d1, ceey difl) = P(vs(dl))
x [ Pi(o— s§)lvs(dy), a7 7).

cpEd;
We define each of these distributions below.

3.1.1 Verb signature model

A destination subset d; deterministically defines a
verb signature g; for verb v; based on the syntac-
tic and semantic types of the connections in d; as
well as whether or not each connection has a non-
zero origin index. If the origin index is O for all
connections in d;, we call v; a leaf. (In Fig, 1,
v1 (preheat) and vo (mix) are leafs.) The formal
definition of a verb signature is as follows:

Definition 1 The verb signature g; for a verb v;
given a destination set d; consists of two parts:

1. type: {t*V" | 3(o,1, J, k, tV", food) € d;}

2. leaf: true iff (0,4, j, k, t5V", t5°™) € d; =

0o=20

For
(13 :
mix

example, in Fig. 1, the signature for the
” action is go ({DOBJ},true) and
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the signature for the “lay” action is gy
({DOBJ, PP}, false). Given that there are two
syntactic types (i.e., DOBJ and PP) and each
verb signature can either be labeled as a leaf or
not, there are eight possible verb signatures.

We define a deterministic function that re-
turns the verb signature of a destination subset:
vs(d;) = gi- P(vs(d;)) is a multinomial distri-
bution over the possible verb signatures.

3.1.2 Connection origin model

We define 1 (o — sf’]) as an indicator function that
is 1 if there is a connection from the action with in-
dex o to the span sf] The probability that a string
span has a particular origin depends on (1) the verb
signature of the span’s corresponding verb, and (2)
the previous connections. If, for example, g; has
leaf= true, then the origin of sfj must be 0. If an
origin has been used in a previous connection, it is
much less likely to be used again.?

We assume that a destination subset is a list of
connections: if ¢, € d;, we define c’f_l as the con-
nections that are prior to ¢, in the list. Similarly,
dil_1 is the set of destination sets (dy,...,d;—1).
The connection origin model is a multinomial dis-
tribution that defines the probability of an origin
for a span conditioned on the verb signature and
all previous connections:

P(1(0 — sf)lvs(ds), i, ™),

2A counterexample in the cooking domain is separating
egg yolks from egg whites to be used in separate components,
only to be incorporated again in a later action.



where ¢, = (0,1, j, k, t5Y", t5™).

3.2 Recipe model

Given a set of connections C' for a recipe R, we
can determine how the actions of the recipe inter-
act and we can calculate the probability of gen-
erating a set of recipe actions Fr = {e;
(vi,a1),...,en, = (vn,a,)}. Intuitively, R is
more likely given C if the destinations of the con-
nections are good text representations of the ori-
gins. For example, a string span “oven” is much
more likely to refer to the output of the action
“Preheat the oven” than “Mix flour and sugar.”

We define the history h; of an action to be the
set of all previous actions: h; = (ey,...,e;_1).
The probability of a recipe R given a set of con-
nections C' can be factored by the chain rule:

P(R|C) = HP (ei|C, hy)

Given C' and a history h;, we assume the verb and
arguments of an action are independent:
P(e;|C, hy) = P(v;|C, hy) H P(a;;|C, hy).

J

Since the set of connections deterministically de-
fines a verb signature g; for a verb v;, we can sim-
plify P(v;|C,h;) to the multinomial distribution
P(v;|g;). For example, if g; defines the verb to
have an ingredient direct object, then the probabil-
ity of “preheat” given that signature will be lower
than the probability of “mix.”

The probability of an argument a;; =
(77", t55™, Si;) given the connections and history
decomposes as follows:

syn tsem

P, 85

( i ‘tsyn

,tfjm C.h,

X

i)

3.2.1 Argument types model
syn tsem

The first distribution, P(¢,/", t77|C, h;), ensures
that the syntactic and semantlc types of the argu-
ment match the syntactic and semantic type of the
incoming connections to spans of that argument.
The probability is 1 if all the types match, O oth-
erwise. For example, in Fig. 1, this distribution
would prevent a connection from the “preheat” ac-
tion to the food argument a4, i.e., “over the top,”
since the semantic types would not match.
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3.2.2 String span models
syn tsem C h;

The second distribution, P(S;;[t;;", ¢ i)
models how likely it is to generate a particular
string span given the types of its encompassing ar-
gument, the connections, and history. We assume
the probability of each span is independent:

H P(sk |t

s GS”

syn sem
ij zg 7

syn sem
i 713 7

P(Si;lt;

We break this distribution into three cases. To
help describe the separate cases we define the
function origin(s, C') to determine the origin in-
dex of the connection in C' to the span s. That is,

origin(s Z,C)—O@ Ao, 4, j, k, 59", t5em) € C.

Part-composite model When the encompassing
argument is a food and the origin is a previous verb
(i.e., P(sfj\t§y”, s food, origin(sfj) #
0, C, h;)), then the probability of the span depends
on the ingredients that the span represents given
the connections in C. For example, “dressing” is
more likely given ingredients “oil” and “vinegar”
than given “chicken” and “noodles”. We use IBM
Model 1 (Brown et al., 1993) to model the prob-
ability of a composite destination phrase given a
set of origin food tokens. Let f ood(sfj, C) be the
set of spans in food arguments such that there is
a directed path from those arguments to sk IBM
Model 1 defines the probability of a span glven the

propagated food spans, P (sf] | food(sk i C ).}

Raw food model When the encompassing ar-
gument is a food but the origin index is O
(.., P(st \tsyn, tf]em food, origin(sfj)
0,C, h;)), then there is no flow of ingredients into
the span. A span that represents a newly intro-
duced raw ingredient (e.g., “bacon” in e4 of Fig. 1)
should have a high probability. However, spans
that denote the output of actions (e.g, ‘batter,” “ba-
nana mixture”) should have low probability. We
use a naive Bayes model over the tokens in the
span P(slis raw) = [[, P(wy|is raw) where wy is
the ¢*" token in s (e.g., “mixture” would have a
very low probability but “flour” would be likely).

Location model When the encompassing ar-
gument is a location (i.e., t3¢™ location),

3IBM Model 1 cannot handle implicit arguments. In this
case, we model the probability of having an implicit food ar-
gument given the length of the connection (i.e., implicit food
arguments nearly deterministically connect to the previous
action). The probability of non-empty string spans is scaled
accordingly to ensure a valid probability distribution.
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P(Si;|t;]", t55™, C,h) models the appropriate-
ness of the origin action’s location for the destina-
tion. If the string span is not implicit, the model
deterministically relies on string match between
the span and the location argument of the verb
at the origin index. For example, the probability
of “the preheated oven” conditioned on an origin
with location “oven” is 1, but O for an origin with

location “bowl.” If the span s¥. is empty, we use
5 O))lvi)

ij

a multinomial model P(loc(origin(s;;,
that determines how likely it is that an action v;
occurs in the location of the origin verb. For ex-
ample, baking generally happens in an oven and
grilling on a grill, but not vice versa. For example,
in Fig. 1, the probability of the location span of

“bake” is determined by P(“oven” | “bake”).

4 Local Search

Connections among actions and arguments iden-
tify which ingredients are being used by which
action. For example, in Fig. 1, we know that we
are baking something that contains all the ingre-
dients introduced in e; and e4 because there is a
path of connections from the introduction of the
raw ingredients to the implicit object of “bake”” We
cannot make decisions about the origins of argu-
ments independently; the likelihood of each edge
depends on the other edges. Identifying the most
likely set of connections is, therefore, intractable.

We adopt a local search approach to infer the
best set of connections.* We initialize the set of

*Similar local search methods have been shown to work
well for other NLP tasks, including recent work on depen-
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Algorithm 1 Pseudocode for learning P(C, R)
Input: Initialized P(C, R), recipe dataset R
Repeat until convergence:

E-step: Update C «— arg max¢c P(C, R)

for each R € R using local search (Sec. 4)

M-step: Update parameters of P(C, R)

using action graphs generated in E-step
Return P(C, R)

connections using a sequential algorithm that con-
nects the output of each event to an argument of
the following event, which is a strong baseline as
shown in Sec. 8. We score potential local search
operators that can be applied to the current set of
connections C' and make a greedy selection that
improves P(C, R) the most until no search opera-
tor can improve the probability. We constrain the
search so all verbs have a direct object (i.e., im-
plicit direct objects connect to a previous action).

We employ three types of search operators (see
Fig. 3 for details). OP_ADD changes the origin in-
dex of a connection in C from 0 to the index of
an event. OP_2SWAP swaps the origin indexes of
two connections. This works even if one of the
origin indexes is 0. OP_3SWAP rotates the origin
indexes of three connections. This works even if
one of the origin indexes is 0. For efficiency rea-
sons, we only allow 3-way swaps with destination
indexes within 4 events of each other.

5 Learning

We use hard EM to learn the probabilistic mod-
els. Pseudocode is given in Alg. 1. At each itera-
tion, we use our local search algorithm and the cur-
rent probabilistic models to annotate each recipe
in the data set with its most likely set of connec-
tions C' (Sec. 4). Then, we re-estimate the param-
eters of the probabilistic models using the recipe-
connections pairs as training data. A small (33
recipes) development set was used to determine
when to stop the iterations. Experimental details
and model initialization are described in Sec. 7.

6 Segmentation

Our inference and learning algorithms assume as
input a recipe segmented into a set of events Er =
{(v1,a1),..., (vn,a,)}. We designed a segmen-
tation system that could be trained on our un-
annotated data set of mostly imperative sentences.

dency parsing (Zhang et al., 2014).



Our system achieves an F1 score of 95.6% on the
task of identifying the correct verbs in the test set.?

Segmentation model
model for recipes as:

P(R) = P(n) [[ P(v)P(m | vi) [ | Plas;).
i j=1

We define a generative

We first select a number of verbs n in the recipe
from a geometric distribution. Given the number
of verbs, we select a set of verbs V. = {v1,...,v,}
using a multinomial distribution. For each verb v;,
we select a number of arguments m from a sep-
arate multinomial distribution that has the prob-
ability of 0, 1, 2, or 3+ arguments given the
verb, P(m | v;). For each argument, we gen-
erate a string using a bigram model, P(a;;) =
[1, P(welwe—1), where wy is the " word of aij.

Inference Given tokenized sentence T
(w1, ..., wy), we enumerate all possible segmen-
tations and choose the one with the highest prob-
ability. To keep this efficient, we use a closed set
of possible verbs and assume a closed set of words
(e.g., prepositions, adverbs) can only follow the
start token in the argument bigram model. Thus,
annotating the verbs in a sentence determines a
unique set of argument strings. Despite scoring
the segmentations for all possible sets of verbs, we
found the process to be very efficient in practice.

Learning For unsupervised learning, we again
employ a hard EM approach. We initialize our
models, segment all of the training data, re-
estimate the parameters, and iterate these steps un-
til performance on a development set converges.

We estimate the initial verb multinomial model
using counts from the first word of each sentence
in the dataset, which are normally verbs in imper-
ative sentences, and filter out any words that have
no verb synsets in WordNet (Miller, 1995). All
other models are initialized to be uniform.

7 Experimental Setup

Data Set We collected 2456 recipes (with over
23,000 sentences) from allrecipes.com by search-
ing for 20 dish names (e.g., including “banana
muffins”, and “deviled eggs”). We randomly sam-
pled, removed, and hand labeled 33 recipes for a

SEarly efforts using a state-of-the-art parser could only
achieve an F1 score of 73.6% for identifying verbs, likely due
to a lack of imperative sentences in the training data. This
result motivated us to develop our segmentation system.
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development set and 100 recipes for test. All mod-
els were trained on the unannotated recipes; the
dev set was used to determine the stopping point
for training. Each recipe in the test set has 13 ac-
tions on average.

Recipe pre-processing To pre-process each
recipe, we first use the segmentation system de-
scribed in Sec. 6. Then, we use a string classifi-
cation model to determine the semantic type (e.g.,
food, location, or other) of an argument based
on its spans. We identify spans as raw ingredients
based on string match heuristics (e.g., in Fig. 1, the
span “crushed crackers” represents the ingredients
“crushed butter-flavored crackers”). We stem all
words and ignore function words.

Sequential Baseline Because most connections
are sequential — i.e., argument spans are most of-
ten connected to the output of the previous verb
— sequential connections make a strong baseline;
we connect the output of each predicate to the first
available argument span of the following predi-
cate. If no argument exists, an implicit argument is
created. We run this baseline with and without first
identifying raw ingredients in the recipe; if raw in-
gredient spans are identified, the baseline will not
connect the previous event to those spans. Perfor-
mance suffers significantly if the raw ingredients
are not identified beforehand.

Evaluation metrics We report F-measure by
comparing the predicted connections from actions
to spans (i.e., where the origin index > 0) against
gold standard annotations. We don’t evaluate con-
nections to raw ingredients as we create those con-
nections during pre-processing (see Sec. 7).

Model initialization The verb signature model
(Sec. 3.2) is initialized by first identifying food
arguments using string overlap with the ingredi-
ent list. All other arguments’ types are considered
unknown, and partial counts were awarded to all
verb signatures consistent with the partial infor-
mation. The first verb in each recipe was assumed
to be the only leaf. The string classification model
for the pre-processing step was initialized by us-
ing the initialized verb signature model to identify
the types of DO BJ arguments. The string classi-
fication model was estimated using the argument
tokens given the types. We initialized the part-
composite model (Sec. 3.2.2) so that exact string
matches between ingredients and spans are given



[ Algorithm [ Prec Rec F1 |
Automatic segmentations
Sequential baseline 55.7 527 541
Sequential baseline w/ ingredients | 60.4 57.2  58.8
Our model before EM 65.8 627 642
Our model after EM 68.7 65.0 66.8
Oracle segmentations
Sequential baseline 67.8 65.2 66.5
Sequential baseline w/ ingredients | 73.5 70.7 72.0
Our model before EM 771 748 759
Our model after EM 81.6 78.5 80.0

Table 1: Performance of our algorithm against the
sequential baselines.

Verb Top location tokens

bake oven - 55.4% min - 0.7%

mix bowl - 32.6% hand - 0.9%
press pan - 24.7% dish - 6.5%

stir bowl - 5.5% skillet - 2.0%
fry heat - 11.9% skillet - 10.2%
cool rack - 10.5% pan - 3.8%

boil water - 15.5% saucepan - 5.2%

Table 2: The top scoring location token for exam-
ple verbs. The percentage is the percent of times
the verb has that as a visible location token.

high probabilities and those without are given low
probabilities. Given the initialized string classifi-
cation model, the raw food model (Sec. 3.2.2) is
initialized counting whether or not tokens in food
arguments occur in the ingredient list. The proba-
bility of an implicit location (Sec. 3.2.2) is initial-
ized to a hand-tuned value using the dev set.

8 Results

Quantitative Results We trained our model for
four iterations of hard EM until performance con-
verged on the development set. Table 1 presents
our results on the test set. We compare our model
to the sequential baselines using both the output
of our segmentation system and oracle segmen-
tations. We perform significantly better than the
sequential baselines, with an increase in F1 of
8 points over the more competitive baseline us-
ing our segmentation system and an increase of 8
points using the oracle segmentations.

Qualitative Results We find that the learned
models demonstrate interpretable cooking knowl-
edge. Table 3 shows the top composite tokens
for different ingredients as learned by the part-
composite model (Sec. 3.2.2). The composite
tokens show parts of the ingredient (e.g., after
“eggs” can be split into “whites” or “yolks”) or

Verb Top verb signature (%)
add {DOBJ, PP} 58%
{DOBJ} 27%
combine {DOBJ}:leaf 68%
{DOBJ} 17%
bake {DOBJ} 95%
grease {}:leaf 75%
pour {DOBJ, PP} 68%
{DOBJ} 27%
reduce {PP} 90%
{DOB.J} 8%

Table 4: The top verb signatures for example
verbs. The syntactic types identify which argu-
ments of the verb are foods and “leaf” means no
arguments of the verb connect to previous actions.

composites that are likely to contain an ingredi-
ent (e.g., “flour” is generally found in “batter”
and “dough”). Unsurprisingly, the word “mixture”
is one of the top words to describe a combina-
tion of ingredients, regardless of the ingredient.
The model also learns modifiers that describe key
properties of ingredients (e.g., flour is “dry” but
bananas are “wet”) which is important when eval-
uating connections for sentences such as “Fold the
wet mixture into the dry ingredients.”

Table 2 shows the location preferences of verbs
learned by the location model (Sec. 3.2.2). Some
verbs show strong preferences on locations (e.g.,
“bake” occurs in an oven, “mix” in a bowl). The
top location for a “boil” action is in “water,” but in
other recipes “water” is an ingredient.

Finally, Table 4 shows learned verb signatures.
For example, “add” tends to be a non-leaf action,
and can take one or two food arguments (e.g.,
one food argument: “Heat the pan. Add onions.”
vs. two food arguments: “Add the wet mixture
to the dry mixture.”) We learn that the most likely
verb signature for “add” has two food arguments;
since over 74% of the occurrences of “add” in the
dataset only have one visible argument, the seg-
mentation alone is not enough to determine the
signature.

Errors Finally, we performed an error analysis
on the development set. 24% of the errors were
due to missing or incorrect actions caused by seg-
mentation errors. Among the actions that were
segmented correctly, 82% of the outgoing connec-
tions were sequential. Of those, our system missed
17.6% of the sequential connections and 18.3% of
the non-sequential connections.
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Ingredient Top composite tokens

eggs
beef
flour
noodles
chicken
pumpkin
bananas

egg, yolk, mixture, noodles, whites, cook, top, potato, cold, fill

beef, mixture, grease, meat, excess, cook, top, loaf, sauce, ground

flour, mixture, dough, batter, top, crust, ingredients, sauce, dry, pie

noodles, cook, mixture, egg, sauce, top, meat, drain, pasta, layer

chicken, mixture, salad, cook, dressing, pasta, soup, breast, vegetables, noodles
pumpkin, mixture, pie, filling, temperature, seeds, mash, oven, crust, dough
banana, mixture, batter, muffin, bread, egg, wet, cup, ingredients, slice

Table 3: Examples of ingredients with their top inferred composite words.

9 Related work

Our work relates to a substantial body of research
that transforms natural language instructions into
actionable plans (Artzi and Zettlemoyer, 2013,
Chen and Mooney, 2011, Branavan et al., 2011,
Branavan et al., 2009, McMahon et al., 2006).
Most of these approaches do interactive learning
in virtual environments or simulations, while we
learn from the redundancy seen in the text of dif-
ferent instances of similar recipes.

There is also significant related work on su-
pervised learning for instructions. A recent se-
ries of studies have explored parsing of cook-
ing recipes (Mori et al., 2012; Mori et al., 2014;
Maeta et al., 2015). However, they assume anno-
tated data, study Japanese recipes, and make edge
connections independently without taking into ac-
count the flow of ingredients. Tasse and Smith
(2008) develops annotation for English recipes,
but do not mark connections from implicit roles,
and only studied segmentation models. Lau et
al. (2009) develop models to interpret how-to in-
structions, but also assume supervision, and do not
make connections between different actions.

Data-driven extraction of cooking knowledge
has been explored in the context of building a
cooking ontology (Gaillard et al., 2012; Nanba et
al., 2014). In contrast, our work induces prob-
abilistic cooking knowledge as part of unsuper-
vised learning process for understanding recipes.
Cooking knowledge is also closely related to
script knowledge, but most prior work focus on
newswire and children’s books rather than proce-
dural language (Fujiki et al., 2003; Chambers and
Jurafsky, 2009; Pichotta and Mooney, 2014; Bala-
subramanian et al., 2013) or rely on crowdsourced
descriptions to learn procedural knowledge (Reg-
neri et al., 2010; Regneri et al., 2011; Frermann
et al., 2014). There is work on related, but dis-
tinct, tasks that use recipes, including identifying
actionable refinements from online recipe reviews
(Druck and Pang, 2012) and extracting structured
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information from ingredient lists (Greene, 2015)

Cooking recipes have also been studied in the
context of grounded language learning, e.g., to
build robots that can cook (e.g., Bollini et al.,
2013, Beetz et al., 2011), or to align cooking
videos to natural language descriptions of actions
(Regneri et al., 2013) or recipe texts (Malmaud et
al., 2014; Malmaud et al., 2015). Our work com-
plements these efforts by recovering fine-grained
procedural semantics from text alone.

Finally, detection and resolution of implicit ar-
guments is an instance of zero anaphora detec-
tion and resolution (Silberer and Anette, 2012,
Tetreault 2002, Whittemore et al., 1991, Palmer et
al., 1986). We present an empirical approach for
understanding these phenomena in instructions.

10 Conclusion

We presented unsupervised methods for segment-
ing and identifying latent connections among ac-
tions in recipe text. Our model outperformed a
strong linear baseline, while learning a variety of
domain knowledge, such as verb signatures and
probable ingredient components for different com-
posites. Future work includes learning a more
comprehensive model of locations (e.g., identify-
ing nested locations such as an oven and a pan in
the oven), enriching action graphs with greater se-
mantic coverage (e.g., durations, tools, amounts),
and training and evaluating on larger datasets. We
also plan to use our techniques to support related
tasks, such as instructional recipe generation.
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