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Abstract

We present a general framework for com-
paring multiple groups of documents. A
bipartite graph model is proposed where
document groups are represented as one
node set and the comparison criteria are
represented as the other node set. Using
this model, we present basic algorithms to
extract insights into similarities and differ-
ences among the document groups. Fi-
nally, we demonstrate the versatility of
our framework through an analysis of NSF
funding programs for basic research.

1 Introduction and Motivation

Given multiple sets (or groups) of documents, it is
often necessary tocompare the groups to identify
similarities and differences along different dimen-
sions. In this work, we present a general frame-
work to perform such comparisons for extraction
of important insights. Indeed, many real-world
tasks can be framed as a problem of comparing
two or moregroups of documents. Here, we pro-
vide two motivating examples.

1. Program Reviews. To better direct research
efforts, funding organizations such as the National
Science Foundation (NSF), the National Institutes
of Health (NIH), and the Department of Defense
(DoD), are often in the position of reviewing re-
search programs via their artifacts (e.g., grant ab-
stracts, published papers, and other research de-
scriptions). Such reviews might involve identify-
ing overlaps across different programs, which may
indicate a duplication of effort. It may also involve
the identification of unique, emerging, or dimin-
ishing topics. A “document group” here could be
defined either as a particular research program that
funds many organizations, the totality of funded
research conducted by a specific organization, or

all research associated with a particular time pe-
riod (e.g., fiscal year). In all cases, the objective is
to draw comparisonsbetween groups by compar-
ing the document sets associated with them.

2. Intelligence. In the areas of defense and in-
telligence, document sets are sometimes obtained
from different sources or entities. For instance, the
U.S. Armed Forces sometimes seize documents
during raids of terrorist strongholds.1 Similarities
between two document sets (each captured from a
different source) can potentially be used to infer a
non-obvious association between the sources.

Of course, there are numerous additional examples
across many domains (e.g., comparing different
news sources, comparing the reviews for several
products, etc.). Given the abundance of real-world
applications as illustrated above, it is surprising,
then, that there are no existing general-purpose ap-
proaches for drawing such comparisons. While
there is some previous work on the comparison
of document sets (referred to ascomparative text
mining), these existing approaches lack the gener-
ality to be widely applicable across different use
case scenarios with different comparison criteria.
Moreover, much of the work in the area focuses
largely on the summarization of shared or un-
shared topics among document groups (e.g., Wan
et al. (2011), Huang et al. (2011), Campr and
Ježek (2013), Wang et al. (2012), Zhai et al.
(2004)). That is, the problem of drawingmulti-
faceted comparisons among the groups themselves
is not typically addressed. This, then, motivates
our development of ageneral-purpose model for
comparisons of document sets along arbitrary di-
mensions. We use this model for the identification
of similarities, differences, trends, and anomalies
among largegroups of documents. We begin by

1http://en.wikipedia.org/wiki/
Document_Exploitation_(DOCEX)
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formally describing our model.

2 Our Formal Model for
Comparing Document Groups

As input, we are given several groups of doc-
uments, and our task is to compare them. We
now formally define these document groups and
the criteria used to compare them. LetD =
{d1, d2, . . . , dN} be a document collection com-
prising the totality of documents under considera-
tion, whereN is the size. LetDP be a partition of
D representing the document groups.

Definition 1 A document group is a subset DP
i ∈

DP (where index i ∈ {1 . . . |DP |}).

Each document group inDP , for instance,
might represent articles associated with either
a particular organization (e.g., university), a re-
search funding source (e.g., NSF or DARPA pro-
gram), or a time period (e.g., a fiscal year). Docu-
ment groups are compared usingcomparison cri-
teria, DC , a family of subsets ofD.

Definition 2 A comparison criterion is a subset
DC

i ∈ DC (where index i ∈ {1 . . . |DC |}).

Intuitively, each subset ofDC represents a set
of documents sharing some attribute. Our model
allows great flexibility in howDC is defined. For
instance,DC might be defined by the named en-
tities mentioned within documents (e.g., each sub-
set contains documents that mention a particular
person or organization of interest). For the present
work, we defineDC by topics discovered using la-
tent Dirichlet allocation or LDA (Blei et al., 2003).

LDA Topics as Comparison Criteria. Proba-
bilistic topic modeling algorithms like LDA dis-
cover latent themes (i.e., topics) in document col-
lections. By using these discovered topics as
the comparison criteria, we can compare arbitrary
groups of documents by the themes and subject
areas comprising them. LetK be the number
of topics or themes inD. Each document in
D is composed of a sequence of words:di =
〈si1, si2, . . . , siNi〉, where Ni is the number of
words indi andi ∈ {1 . . . N}. V =

⋃N
i=1 f(di) is

the vocabulary ofD, wheref(·) takes a sequence
of elements and returns a set. LDA takesK and
D (including its components such asV ) as input
and produces two matrices as output, one of which
is θ. The matrixθ ∈ RN×K is the document-
topic distribution matrix and shows the distribu-
tion of topics within each document. Each row

of the matrix represents a probability distribution.
DC is constructed usingK subsets of documents,
each of which represent a set of documents per-
taining largely to the same topic. That is, for
t ∈ {1 . . . K} and i ∈ {1 . . . N}, each subset
DC

t ∈ DC is comprised of all documentsdi where
t = argmaxx θix.2 Having defined the document
groupsDP and the comparison criteriaDC , we
now construct a bipartite graph model used to per-
form comparisons.

A Bipartite Graph Model. Our objective is to
compare thedocument groups in DP based on
DC . We do so by representingDP and DC as
a weighted bipartite graph,G = (P,C,E,w),
whereP andC are disjoint sets of nodes,E is the
edge set, andw : E → Z+ are the edge weights.
Each subset ofDP is represented as a node inP ,
and each subset ofDC is represented as a node
in C. Let α : P → DP and β : C → DC

be functions that map nodes to the document sub-
sets that they represent. Then, the edge setE is
{(u, v) | u ∈ P, v ∈ C,α(u)∩β(v) 6= ∅}, and the
edge weight for any two nodesu ∈ P andv ∈ C
is w((u, v)) = |α(u) ∩ β(v)|. Concisely, each
weighted edge in G between a document group
(in P ) and a topic (inC) represents the number
of documents shared among the two sets. Fig-
ure 1 shows a toy illustration of the model. Each
node inP is shown in black and represents a sub-
set ofDP (i.e., a document group). Each node in
C is shown in gray and represents a subset ofDC

(i.e., a document cluster pertaining primarily to the
same topic). Each edge represents the intersection
of the two subsets it connects. In the next section,
we will describe basic algorithms on such bipartite
graphs capable of yielding important insights into
the similarities and differences among document
groups.

3 Basic Algorithms Using the Model

We focus on three basic operations in this work.

Node Entropy. Let ~w be a vector of weights for
all edges incident to some nodev ∈ E. Theen-
tropy H of v is: H(v) = −∑

i pi log|~w|(pi), where
pi = wi∑

j wj
andi, j ∈ {1 . . . |~w|}. A similar for-

mulation was employed in Eagle et al. (2010). In-
tuitively, if v ∈ P , H(v) measures the extent to
which the document group is concentrated around

2 DC is also a partition ofD, when defined in this way.
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Figure 1: [Toy Illustration of Bipartite Graph Model.]

Each black node (i.e., node∈ P ) represents a document

group. Each gray node (i.e., node∈ C) represents a clus-

ter of documents pertaining primarily to the same topic.

a small number of topics (lower values ofH(v)
mean more concentrated). Similarly, ifv ∈ C, it is
the extent to which a topic is concentrated around
a small number of document groups.

Node Similarity. Given a graphG, there are many
ways to measure the similarity of two nodes based
on their connections. Such measures can be used
to infer similarity (and dissimilarity) among doc-
ument groups. However, existing methods are not
well-suited for the task of document group com-
parison. The well-known SimRank algorithm (Jeh
and Widom, 2002) ignores edge weights, and nei-
ther SimRank nor its extension, SimRank++ (An-
tonellis et al., 2008), scale to larger graphs. Sim-
Rank++ and ASCOS (Chen and Giles, 2013) do
incorporate edge weights but in ways that are
not appropriate for document group comparisons.
For instance, both SimRank++ and ASCOS in-
corporate magnitude in the similarity computa-
tion. Consider the case where document groups
are defined as research labs. ASCOS and Sim-
Rank++ will measure large research labs and small
research labs as less similar when in fact they may
publish nearly identical lines of research. Finally,
under these existing methods, document groups
sharing zero topics in common could still be con-
sidered similar, which is undesirable here. For
these reasons, we formulate similarity as follows.
Let NG(·) be a function that returns the neighbors
of a given node inG. Given two nodesu, v ∈ P ,
let Lu,v = NG(u) ∪ NG(v) and letx : I → Lu,v

be the indexing function forLu,v.3 We construct
two vectors,~a and~b, whereak = w(u, x(k)),
bk = w(v, x(k)), andk ∈ I. Each vector is es-

3I is the index set ofLu,v.

sentially a sequence of weights for edges between
u, v ∈ P and each node inLu,v. Similarity of two
nodes is measured using the cosine similarity of

their corresponding sequences,~a·~b‖~a‖‖~b‖ , which we

compute using a functionsim(·, ·). Thus, doc-
ument groups are considered more similar when
they have similar sets of topics in similar propor-
tions. As we will show later, this simple solution,
based on item-based collaborative filtering (Sar-
war et al., 2001), is surprisingly effective at infer-
ring similarity among document groups inG.

Node Clusters. Identifying clusters of related
nodes in the bipartite graphG can show how doc-
ument groups form larger classes. However, we
find that G is typically fairly dense. For these
reasons, partitioning of the one-mode projection
of G and other standard bipartite graph cluster-
ing techniques (e.g., Dhillion (2001) and Sun et
al. (2009)) are rendered less effective. We instead
employ a different tack and exploit the node sim-
ilarities computed earlier. We transformG into a
new weighted graphGP = (P,EP , wsim) where
EP = {(u, v) | u, v ∈ P, sim(u, v) > ξ}, ξ
is a pre-defined threshold, andwsim is the edge
weight function (i.e., wsim = sim). Thus,GP is
the similarity graph of document groups.ξ = 0.5
was used as the threshold for our analyses. To
find clusters inGP , we employ the Louvain al-
gorithm, a heuristic method based on modularity
optimization (Blondel et al., 2008). Modularity
measures the fraction of edges falling within clus-
ters as compared to the expected fraction if edges
were distributed evenly in the graph (Newman,
2006). The algorithm initially assigns each node
to its own cluster. At each iteration, in a local and
greedy fashion, nodes are re-assigned to clusters
with which they achieve the highest modularity.

4 Example Analysis: NSF Grants

As a realistic and informative case study, we uti-
lize our model to characterize funding programs
of the National Science Foundation (NSF). This
corpus consists of 132,372 grant abstracts describ-
ing awards for basic research and other support
funded by the NSF between the years 1990 and
2002 (Bache and Lichman, 2013).4 Each award is
associated with both a program element (i.e., fund-
ing source) and a date. We definedocument

4Data for years 1989 and 2003 in this publicly available
corpus were partially missing and omitted in some analyses.
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groups in two ways: by program element and by
calendar year. For comparison criteria, we used
topics discovered with the MALLET implementa-
tion of LDA (McCallum, 2002) usingK = 400 as
the number of topics and200 as the number of iter-
ations. All other parameters were left as defaults.
The NSF corpus possesses unique properties that
lend themselves to experimental evaluation. For
instance, program elements are not only associ-
ated with specific sets of research topics but are
named based on the content of the program. This
provides a measure of ground truth against which
we can validate our model. We structure our anal-
yses around specific questions, which now follow.

Which NSF programs are focused on specific
areas and which are not? When definingdoc-
ument groups as program elements (i.e., each NSF
program is a node inP ), node entropy can be
used to answer this question. Table 1 shows ex-
amples of program elements most and least as-
sociated with specific topics, as measured by en-
tropy. For example, the program1311 Linguistics
(low entropy) is largely focused on a singlelin-
guistics topic (labeled by LDA with words such
as “language,” “languages,” and “linguistic”). By
contrast, theAustralia program (high entropy) was
designed to support US-Australia cooperative re-
search across many fields, as correctly inferred by
our model.

Low Entropy Program Elements
Program Primary LDA Topic

1311 Linguistics language languages linguistic
4091 Network Infrastructure network connection internet

High Entropy Program Elements
Program Primary LDA Topic

5912 Australia (many topics & disciplines)
9130 Research in Minority Instit. (many topics & disciplines)

Table 1:[Examples of High/Low Entropy Programs.]

Which research areas are growing/emerging?
When definingdocument groups as calendar years
(instead of program elements), low entropy nodes
in C are topics concentrated around certain years.
Concentrations in later years indicate growth. The
LDA-discovered topicnanotechnology is among
the lowest entropy topics (i.e., an outlier topic with
respect to entropy). As shown in Figure 2, the
number ofnanotechnology grants drastically in-
creased in proportion through 2002. This result is
consistent with history, as the National Nanotech-
nology Initiative was proposed in the late 1990s to
promote nanotechnology R&D.5 One could also

5http://en.wikipedia.org/wiki/

measure such trends using budget allocations by
incorporating the award amounts into the edge
weights ofG.
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Figure 2: [Uptrend in Nanotechnology.] Our model cor-

rectly identifies the surge in nanotechnology R&D beginning

in the late 1990s.

Given an NSF program, to which other pro-
grams is it most similar? As described in Section
3, when each node inP represents an NSF pro-
gram, our model can easily identify the programs
most similar to a given program. For instance, Ta-
ble 2 shows the top three most similar programs
to both theTheoretical Physics andEcology pro-
grams. Results agree with intuition. For each
NSF program, we identified the topn most sim-
ilar programs ranked by oursim(·, ·) function,
wheren ∈ {3, 6, 9}. These programs were man-
ually judged for relatedness, and the Mean Av-
erage Precision (MAP), a standard performance
metric for ranking tasks in information retrieval,
was computed. We were unsuccessful in evaluat-
ing alternative weighted similarity measures men-
tioned in Section 3 due to their aforementioned
issues with scalability and the size of the NSF
dataset. (For instance, the implementations of AS-
COS (Antonellis et al., 2008) and SimRank (Jeh
and Widom, 2002) that we considered are avail-
able here.6) Recall that oursim(·, ·) function is
based on measuring the cosine similarity between
two weight vectors,~a and~b, generated from our
bipartite graph model. As a baseline for compar-
ison, we evaluated two additional similarity im-
plementations using these weight vectors. The
first measures the similarity between weight vec-
tors using weighted Jaccard similarity, which is∑

k min(ak ,bk)∑
k max(ak ,bk) (denoted asWtd. Jaccard). The sec-

ond measure is implemented by taking the Spear-
man’s rank correlation coefficient of~a and~b (de-

National_Nanotechnology_Initiative
6https://github.com/hhchen1105/

networkx_addon
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noted asRank). Figure 3 shows the Mean Average
Precision (MAP) for each method and each value
of n. With the exception of the difference between
Cosine and Wtd. Jaccard for MAP@3, all other
performance differentials were statistically signif-
icant, based on a one-way ANOVA and post-hoc
Tukey HSD at a 5% significance level. This, then,
provides some validation for our choice.

1245 Theoretical Physics 1182 Ecology

1286 Elementary Particle Theory 1128 Ecological Studies
1287 Mathematical Physics 1196 Environmental Biology
1284 Atomic Theory 1195 Ecological Research

Table 2: [Similarity Queries.] Three most similar pro-

grams to theTheoretical Physics andEcology programs.
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Figure 3:[Mean Average Precision (MAP).]Cosine sim-

ilarity outperforms alternative approaches.

How do NSF programs join together to form
larger program categories? As mentioned, by
using the similarity graphGP constructed fromG,
clusters of related NSF programs can be discov-
ered. Figure 4, for instance, shows a discovered
cluster of NSF programs all related to the field of
neuroscience. Each NSF program (i.e., node) is
composed of many documents.

Figure 4:[Neuroscience Programs.]A discovered cluster

of program elements all related toneuroscience.

Which pairs of grants are the most similar in
the research they describe?Although the focus
of this paper is on drawing comparisons among
groups of documents, it is often necessary to
draw comparisons amongindividual documents,
as well. For instance, one may wish to identify
pairs of grants fromdifferent programs describing

highly similar lines of research. One common ap-
proach to this is to measure the similarity among
low-dimensional representations of documents re-
turned by LDA (Blei et al., 2003). We employ
the Hellinger distance metric for this. Unfortu-
nately, identifying the set ofmost similar docu-
ment pairs in this way can be computationally ex-
pensive, as the number of pairwise comparisons
scales quadratically with the size of the corpus. To
address this, our bipartite graph model can be ex-
ploited as ablocking heuristic using either the doc-
ument groups or the comparison criteria. In the
latter case, one can limit the pairwise comparisons
to only those documents that reside in the same
subset ofDC . For the former case,node similar-
ity can be used. Instead of comparing each docu-
ment with every other document, we can limit the
comparisons to only those document groups of in-
terest that are deemed similar by our model. As
an illustrative example, the program1271 Compu-
tational Mathematics and the program2865 Nu-
meric, Symbolic, and Geometric Computation are
inferred as being highly similar. Between these
groups, the following two grants are easily iden-
tified as being the most similar with a Hellinger
similarity score of0.73 (only titles are shown due
to space constraints):

• Grant #1: Analyses of Structured Computational

Problems and Parallel Iterative Algorithms

(Discusses parallel iterative methods for solutions to

large sparse/dense systems of linear equations.)

• Grant #2: Sparse Matrix Algorithms on Distributed

Memory Multiprocessors

As can be seen, despite some differences in ter-
minology, the two lines of research are related, as
matrices (studied in Grant #2) are used to com-
pactly represent and work with systems of linear
equations (studied in Grant #1).

5 Conclusion

We have presented a bipartite graph model for
drawing comparisons among largegroups of docu-
ments. We showed how basic algorithms using the
model can identify trends and anomalies among
the document groups. As an example analysis, we
demonstrated how our model can be used to better
characterize and evaluate NSF research programs.
For future work, we plan on employing alterna-
tive comparison criteria in our model such as those
derived from named entity recognition and para-
phrase detection.
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