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Abstract

In this paper we explore a POS tagging ap-
plication of neural architectures that can
infer word representations from the raw
character stream. It relies on two mod-
elling stages that are jointly learnt: a
convolutional network that infers a word
representation directly from the character
stream, followed by a prediction stage.
Models are evaluated on a POS and mor-
phological tagging task for German. Ex-
perimental results show that the convolu-
tional network can infer meaningful word
representations, while for the prediction
stage, a well designed and structured strat-
egy allows the model to outperform state-
of-the-art results, without any feature en-
gineering.

1 Introduction

Most modern statistical models for natural lan-
guage processing (NLP) applications are strongly
or fully lexicalized, for instance part-of-speech
(POS) and named entity taggers, as well as lan-
guage models, and parsers. In these models, the
observed word form is considered as the elemen-
tary unit, while its morphological properties re-
main neglected. As a result, the vocabulary ob-
served on training data heavily restricts the gener-
alization power of lexicalized models.

Designing subword-level systems is appealing
for several reasons. First, words sharing morpho-
logical properties often share grammatical func-
tion and meaning, and leveraging that information
can yield improved word representations. Sec-
ond, a subword-level analysis can address the out-
of-vocabulary issue i.e the fact that word-level
models fail to meaningfully process unseen word
forms. This allows a better processing of morpho-
logically rich languages in which there is a com-
binatorial explosion of word forms, most of which
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are not observed during training. Finally, using
subword units could allow processing of noisy text
such as user-generated content on the Web, where
abbreviations, slang usage and spelling mistakes
cause the number of word types to explode.

This work investigates models that do not rely
on a fixed vocabulary to make a linguistic predic-
tion. Our main focus in this paper is POS tag-
ging, yet the proposed approach could be applied
to a wide variety of language processing tasks.
Our main contribution is to show that neural net-
works can successfully learn unlexicalized mod-
els that infer a useful word representation from
the character stream. This approach achieves state
of-the-art performance on a German POS tagging
task. This task is difficult because German is a
morphologically rich language', as reflected by
the large number of morphological tags (255) in
our study, yielding a grand total of more than
600 POS+MORPH tags. An aggravating factor
is that these morphological categories are overtly
marked by a handful of highly ambiguous inflec-
tion marks (suffixes). We therefore believe that
this case study is well suited to assess both the rep-
resentation and prediction power of our models.

The architecture we explore in section 2 differs
from previous work that only consider the charac-
ter level. Following (Santos and Zadrozny, 2014),
it consists in two stages that are jointly learnt. The
lower stage is a convolutional network that infers
a word embedding from a character string of ar-
bitrary size, while the higher network infers the
POS tags based on this word embedding sequence.
For the latter, we investigate different architec-
tures of increasing complexities: from a feedfor-
ward and context-free inference to a bi-recurrent
network that predicts the global sequence. Exper-
imental results (section 4) show that the proposed
approach can achieve state of the art performance

"Besides inflected forms, German is characterized by a
possibly infinite and evolving set of compound nouns.
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and that the choice of architecture for the predic-
tion part of the model has a significant impact.

2 Network Architectures

The different architectures we propose act in two
stages to infer, for a sentence s = {wx, ..., w4},
a sequence of tags {1, ...,t, }. Each tag belongs
to the tagset 7. The first stage is designed to rep-
resent each word locally, and focuses on capturing
the meaningful morphological information. In the
second stage, we investigate different ways to pre-
dict the tag sequence that differ in how the global
information is used.

2.1 From character to word level

To obtain word embeddings, the usual approach
introduced by (Bengio et al., 2003) relies on a
fixed vocabulary W and each word w € W is
mapped to a vector of ny real valued features by
a look-up matrix W € R To avoid the use
of a fixed vocabulary, we propose to derive a word
representation from a sequence of character em-
bedding: if C denotes the finite set of characters,
each character is mapped on a vector of n. features
gathered in the look-up matrix C.

To infer a word embedding , we use a convo-
lution layer (Waibel et al., 1990; Collobert et al.,
2011), build as in (Santos and Zadrozny, 2014).
As illustrated in figure 1, a word w is a character
sequence {ci, .., || } represented by their embed-
dings {C¢,, .., Ce,,, }, where C., denotes the row
in C associated to the character ¢;. A convolu-
tion filter W € R™ x R%*"¢ is applied over
a sliding window of d, characters, producing local
features :

-’.Un — WCOTL’U(C

Cn—de+1 * **

. Ccn)T + bconv’

where z;, is a vector of size ns obtained for each
position n in the word?. The i-th element of the
embedding of w is the maximum over the i-th ele-
ments of the feature vectors :

[fli = tanh(lg}%ﬁfs‘[wn]i)

Using a maximum after a sliding convolution win-
dow ensures that the embedding combines local
features from the whole word, and selects the more

>Two padding character tokens are used to deal with bor-
der effects. The first is added at the beginning and the second
at the end of the word, as many times as it is necessary to ob-

tain the same number of windows than the length of the word.
Their embeddings are added to C.
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Figure 1: Architecture of the layer for character-
level encoding of words.

useful ones. The parameters of the layer are the
matrices C' and W™ and the bias b<°"".

2.2 From words to prediction

To predict the tag sequence associated to a sen-
tence s, we first use a feedforward architecture,
with a single hidden layer. To compute the proba-
bility of tagging the n-th word in the sentence with
tag t;, we use a window of d,, word embeddings’
centered around the word w,,:

In = fn,

dyw—1 1 ... f dyw—1,
2 nt+=5

followed by a hidden and output layers:

Sp = WO tanh(W"z,, 4+ b") + b°. (D

The parameters of the hidden an output layers
are respectively W", b and W, b°.

We also experiment with a a bidirectional re-
current layer, as described in (Graves et al.,
2013). The forward and backward passes allow
each prediction to be conditioned on the complete
past and future contexts, instead of merely a neigh-
boring window. As illustrated in figure 2, the for-
ward hidden state, at position n, will be computed
using the previous forward hidden state and the
word embedding in position n:

R = tanh(W/h £, + Whhpn=1 4 phy

3Similarly, we use special word tokens for padding.
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Figure 2: Bidirectional recurrent architecture for
tag prediction. The upper part is used in the case
of structured inference.

—_— —_—
W7k and Wh" are the transition matrices of
the forward part of the layer, and bj, is the bias.
The backward hidden states are computed simi-
larly, and the hidden states of each direction are
concatenated to pass through an output layer:

—
$n = WO(R" : h™) + 1°. )

2.3 Inference and Training

To infer the tag sequence from the sequence of
output layers defined by equations 1 or 2, we ex-
plore two strategies. The first simply applies a
softmax function to the output layer of the net-
work described in the previous section. In this
case, each tag prediction is made independently of
the surrounding predictions.

For sequence labeling, a more appropriate so-
lution relies on the approach of (Collobert, 2011),
also used in (Santos and Zadrozny, 2014). Let con-
sider each possible tag sequence {1, .. .,%|4} as a
possible path over a sequence of hidden states. We
can add a transition matrix W %"$ and then com-
pute the score of a sequence as follows:

s () = 30 (Wi, + [sali,)

1<n<|s|

The Viterbi algorithm (Viterbi, 1967) offers an ex-
act solution to infer the path that gives the max-
imum score. It is worth noticing that both these
strategies can be applied to the feedforward and
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bidirectional recurrent networks. For both strate-
gies, the whole network can estimate conditional
log-likelihood of a tag sequence given a sentence
s and the set of parameters §. This criterion can
then be optimized using a stochastic gradient as-
cent with the back-propagation algorithm.

3 Related Work

The choice to consider words from the charac-
ter level has recently been more and more ex-
plored. While its raw application to language
modeling did not achieve clear improvement over
the word-based models (Mikolov et al., 2012), this
approach shown impressive results for text gen-
eration (Sutskever et al., 2011; Graves, 2013).
However, for this line of work, the main issue is
to learn long range dependencies at the character
level since the word level is not considered by the
model.

More recently, the character level was con-
sidered as more interpretable and convenient
way to explore and understand recurrent net-
works (Karpathy et al., 2015). In (Zhang and Le-
Cun, 2015), the authors build a text understand-
ing model that does not require any knowledge
and uses hierarchical feature extraction. Here the
character level allows the model to ignore the def-
inition a priori of a vocabulary and let the model
build its own representation of a sentence or a doc-
ument, directly from the character level. To some
extent, our work can be considered as an extension
of their work, tailored for POS tagging.

(Santos and Zadrozny, 2014) applies a very sim-
ilar model to the POS tagging of Portuguese and
English. (Luong et al., 2013) also descends lower
than the word level, using a dictionary of mor-
phemes and recursive neural networks to model
the structure of the words. Similarly, this allows
a better representation of rare and complex words,
evaluated on a word similarity task.

4 Experiments and Results

Experiments are carried out on the Part-of-Speech
and Morphological tagging tasks using the Ger-
man corpus TIGER Treebank (Brants et al., 2002).
To the best of our knowledge, the best results on
this task were published in (Mueller et al., 2013),
who applied a high-order CRF that includes an in-
tensive feature engineering to five different lan-
guages. German was highlighted as having ’the
most ambiguous morphology’. The corpus, de-



POS POS+Morph

Architecture  Encoding Output Dev Test Dev Test
Lex Simple 4.22+0.05 5894007 13.97+0.14 17.46+0.14
ex. Struct.  3.90 +0.05 533+009 12224013 1534+ 0.13
Feedforward  Nomlex,  SIMPIE 3314007 422007 1350£0.16 16234 0.13
W T Struct. 2924002 3824004 11.65+0.11 1443 +0.19
Both Simple 2.59+0.05 334+009 11.89+0.14 14.63 +0.22
Struct. 2224 0.03* 2.86+0.03* 9.11+0.14 11.29 = 0.06
Lex Simple  6.03+0.06 8054005 17.83+0.11 21.33 +0.26
Struct.  3.89 4+ 0.06 526+005 11.8840.05 17.78+0.12
_ Simple 4.46+0.08 584+0.19 1661 +0.18 19.39 +0.12
biRNN Non-Lex et 2744007 3594007 10094009 12.88 -+ 0.28
Both Simple 3.63+0.06 4.63+004 14.83+0.11 17.54+0.13
N Struct. 221 4 0.04* 2.86 +0.05* 8.63 4+ 0.21* 10.97 + 0.19*

CRF 2.06 2.56 9.40 11.42

Table 1: Comparison of the feedforward and bidirectional recurrent architectures for predictions, with
different settings. The non-lexical encoding is convolutional. CRF refers to state-of-the-art system of
(Mueller et al., 2013). Simple and Struct. respectively denote the position-by-position and structured

prediction. * indicates our best configuration.

scribed in details in (Fraser et al., 2013), contains
a training set of 40472 sentences, a development
and a test set of both 5000 sentences. We consider
the two tagging tasks, with first a coarse tagset (54
tags), and then a morpho-syntactical rich tagset
(619 items observed on the the training set).

4.1 Experimental settings

All the models are implemented* with the Theano
library (Bergstra et al., 2010). For optimization,
we use Adagrad (Duchi et al., 2011), with a learn-
ing rate of 0.1. The other hyperparameters are:
the window sizes, d. and d,,, respectively set to
5 and 9, the dimension of character embeddings,
word embeddings and of the hidden layer, n., ny
and ny,, that are respectively of 100, 200 and 200°.
The models were trained on 7 epochs. Parame-
ter initialization and corpus ordering are random,
and the results presented are the average and stan-
dard deviation of the POS Tagging error rate over
5 runs.

“Implementation is available at https://github.
com/MatthieuLabeau/NonlexNN

SFor both the learning rate and the embedding sizes, re-
sults does not differ in a significant way in a large range of hy-
perparameters, and their impact resides more in convergence
speed and computation time

235

4.2 Results

The first experiment aims to evaluate the efficiency
of a convolutional encoding with the basic feed-
forward architecture for prediction. We compare
a completely non-lexicalized model which relies
only on a character-level encoding with a lexical-
ized model where we use conventional word em-
beddings stored with a fixed vocabulary®. Re-
sults are reported in Table 1 along with with the
state-of-the-art results published in (Mueller et al.,
2013). Results show that a character-level en-
coding yields better results than the conventional
word-level encoding. Moreover, the structured in-
ference allows the model to achieve accuracy rea-
sonably close to the performance of a high-order
CRF that uses handcrafted features. Finally, the
model that uses the concatenation of both the char-
acter and word-level embeddings outperforms the
state-of-the-art system on the more difficult task,
without any feature engineering.

To give an idea of how a simple model
would perform on such task, the reader can refer
to (Schmid and Laws, 2008) and (Mueller et al.,
2013). For instance in the former, by choosing the
most probable tag position-by-position, the error
rate on the development set of the TIGER dataset

Every word that appears in the training set.



is 32.7 for the simple POS Tagging task.

We further analyze the results by looking at
the error rates respectively on known and un-
known words’. From table 2, we observe that
the number of unknown words wrongly labeled
is divided by 3 for POS and almost divided by
2 for POS+Morph tagging, showing the ability
of character-level encoding to generalize to new
words. Moreover, a strictly non-lexical encoding
makes slightly more mistakes on words already
seen, whereas the model that concatenates both
embeddings will make less mistakes for both un-
known and known words.

This shows that information from the context
and from the morphology are complementary,
which is conjectured in (Mueller et al., 2013) by
using a morphological analyzer in complement of
higher-order CRF.

Lex. Non-lex. Both

POS Unknown 2970 1054 1010
Known 1974 2981 1620

POS+Morph Unknown 5827 3472 3384
Known 8652 10205 7232

Table 2: Error counts for known/unknown words
in the test set, with a structured feedforward pre-
diction model for the tagging task.

In the second set of experiments, we evaluate
the convolutional encoding with a bidirectional re-
current network for prediction. Results are pre-
sented in the second half of Table 1. Surprisingly,
this architecture performs poorly with simple in-
ference, but clearly improves when predicting a
structured output using the Viterbi algorithm, both
for training and testing. Moreover, a non-lexical
model trained to infer a tag sequence with the
Viterbi algorithm achieves results that are close to
the state-of-the-art, thus validating our approach.
We consider that this improvement comes from the
synergy between using a global training objective
with a global hidden representation, complexify-
ing the model but allowing a more efficient solu-
tion. Finally, the model that uses the combination
of both the character and word-level embeddings
yields the best results. It is interesting to notice
that the predictive architecture has no influence on
the results of the simple task when the prediction is

"Unknown words refer to words present in the develop-
ment or test sets, but not in the training set.
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structured, but improves them on the difficult task.
This also shows that the contribution of word em-
beddings to our model corresponds to a difference
of 1.5 to 2 points in performance.

5 Conclusion

In this paper, we explored new models that can in-
fer meaningful word representations from the raw
character stream, allowing the model to exploit the
morphological properties of words without using
any handcrafted features or external tools. These
models can therefore efficiently process words that
were unseen in the training data. The evaluation
was carried out on a POS and morphological tag-
ging task for German. We described different ar-
chitectures that act in two stages: the first stage is a
convolutional network that infers a word represen-
tation directly from the character stream, while the
second stage performs the prediction. For the pre-
diction stage, we investigated different solutions
showing that a bidirectional recurrent network can
outperform state-of-the-art results when using a
structured inference algorithm.

Our results showed that character-level encod-
ing can address the unknown words problem for
morphologically complex languages. In the fu-
ture, we plan to extend these models to other tasks
such as syntactic parsing and machine translation.
Moreover, we will also investigate other architec-
tures to infer word embeddings from the character
level. For instance, preliminary experiments show
that bidirectional recurrent network can achieve
very competitive and promising results.
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