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Abstract

We provide an analysis of current evalua-
tion methodologies applied to summariza-
tion metrics and identify the following ar-
eas of concern: (1) movement away from
evaluation by correlation with human as-
sessment; (2) omission of important com-
ponents of human assessment from eval-
uations, in addition to large numbers of
metric variants; (3) absence of methods
of significance testing improvements over
a baseline. We outline an evaluation
methodology that overcomes all such chal-
lenges, providing the first method of sig-
nificance testing suitable for evaluation of
summarization metrics. Our evaluation re-
veals for the first time which metric vari-
ants significantly outperform others, op-
timal metric variants distinct from cur-
rent recommended best variants, as well
as machine translation metric BLEU to
have performance on-par with ROUGE for
the purpose of evaluation of summariza-
tion systems. We subsequently replicate
a recent large-scale evaluation that relied
on, what we now know to be, suboptimal
ROUGE variants revealing distinct conclu-
sions about the relative performance of
state-of-the-art summarization systems.

1 Introduction

Automatic metrics of summarization evaluation
have their origins in machine translation (MT),
with ROUGE (Lin and Hovy, 2003), the first and
still most widely used automatic summarization
metric, comprising an adaption of the BLEU score
(Papineni et al., 2002). Automatic evaluation in

MT and summarization have much in common, as
both involve the automatic comparison of system-
generated texts with one or more human-generated
reference texts, contrasting either system-output
translations or peer summaries with human ref-
erence translations or model summaries, depend-
ing on the task. In both MT and summarization
evaluation, any newly proposed automatic metric
must be assessed by the degree to which it pro-
vides a good substitute of human assessment, and
although there are obvious parallels between eval-
uation of systems in the two areas, when it comes
to evaluation of metrics, summarization has di-
verged considerably from methodologies applied
to evaluation of metrics in MT.

Since the inception of BLEU, evaluation of au-
tomatic metrics in MT has been by correlation
with human assessment. In contrast in summa-
rization, over the years since the introduction of
ROUGE, summarization evaluation has seen a va-
riety of different methodologies applied to evalu-
ation of its metrics. Evaluation of summarization
metrics has included, for example, the ability of a
metric/significance test combination to distinguish
between sets of human and system-generated sum-
maries (Rankel et al., 2011), or by accuracy of
conclusions drawn from metrics when combined
with a particular significance test, Wilcoxon rank-
sum (Owczarzak et al., 2012).

Besides moving away from well-established
methods such as correlation with human judg-
ment, previous summarization metric evaluations
have been additionally limited by inclusion of only
a small proportion of possible metrics and vari-
ants. For example, although the most commonly
used metric ROUGE has a very large number of
possible variants, it is common to include only a
small range of those in evaluations. This has the
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obvious disadvantage that superior variants may
exist but remain unidentified due to their omission.

Despite such limitations, however, subsequent
evaluations of state-of-the-art summarization sys-
tems operate under the assumption that recom-
mended ROUGE variants are optimal and rely on
this assumption to draw conclusions about the rel-
ative performance of systems (Hong et al., 2014).
This forces us to raise some important questions.
Firstly, to what degree was the divergence away
from evaluation methodologies still applied to MT
metrics today well-founded? For example, were
the original methodology, by correlation with hu-
man assessment, to be applied, would a distinct
variant of ROUGE emerge as superior and subse-
quently lead to distinct system rankings? Sec-
ondly, were all variants of ROUGE to be included
in evaluations, would a variant originally omitted
from the evaluation emerge as superior and lead to
further differences in summarization system rank-
ings? Furthermore, although methods of statistical
significance testing are commonly applied to eval-
uation of summarization systems, attempts to iden-
tify significant differences in performance of met-
rics are extremely rare, and when they have been
applied unfortunately have not used an appropriate
test.

This motivates our review of past and current
methodologies applied to the evaluation of sum-
marization metrics. Since MT evaluation in gen-
eral has its own imperfections, we do not at-
tempt to indiscriminately impose all MT evalua-
tion methodologies on summarization, but specif-
ically revisit evaluation methodologies applied to
one particular area of summarization, evaluation
of metrics. Correlations with human assessment
reveal an extremely wide range in performance
among variants, highlighting the importance of an
optimal choice of ROUGE variant in system eval-
uations. Since distinct variants of ROUGE achieve
significantly stronger correlation with human as-
sessment than previous recommended best vari-
ants, we subsequently replicate a recent evaluation
of state-of-the-art summarization systems reveal-
ing distinct conclusions about the relative perfor-
mance of systems. In addition, we include in the
evaluation of metrics, an evaluation of BLEU for
the purpose of summarization evaluation, and con-
trary to common belief, precision-based BLEU is
on-par with recall-based ROUGE for evaluation of
summarization systems.

2 Related Work

When ROUGE (Lin and Hovy, 2003) was first pro-
posed, the methodology applied to its evaluation,
in one respect, was similar to that applied to met-
rics in MT, as ROUGE variants were evaluated
by correlation with a form of human assessment.
Where the evaluation methodology diverged from
MT, however, was with respect to the precise rep-
resentation of human assessment that was em-
ployed. In MT evaluation of metrics, although
experimentation has taken place with regards to
methods of elicitation of assessments from human
judges (Callison-Burch et al., 2008), human as-
sessment is always aimed to encapsulate the over-
all quality of translations. In contrast in summa-
rization, metrics are evaluated by the degree to
which metric scores correlate with human cover-
age scores for summaries, a recall-based formu-
lation of the number of peer summary units that
a human assessor believed had the same meaning
as model summaries. Substitution of overall qual-
ity assessments with a recall-based manual metric,
unfortunately has the potential to introduce bias
into the evaluation of metrics in favor of recall-
based formulations.

One dimension of summary quality omitted
from human coverage scores is, for example, the
order in which the units of a summary are ar-
ranged within the summary. Despite unit order
quite likely being something of importance to a
human assessor, assessment of metrics by correla-
tion with human coverage scores does not in any
respect take into account the order in which the
units of a summary appear, and evaluation by hu-
man coverage scores alone means that a summary
with its units scrambled or even reversed in the-
ory receives precisely the same metric score as the
original. Given current evaluation methodologies
for assessment of metrics, a metric that scores two
such summaries differently would be unfairly pe-
nalized for it. Furthermore, when the linguistic
quality of summaries has been assessed in parallel
with annotations used to compute human cover-
age scores, it has been shown that the two dimen-
sions of quality do not correlate with one another
(no significant correlation) (Pitler et al., 2010),
providing evidence that coverage scores alone do
not fully represent human judgment of the overall
quality of summaries.

Subsequent summarization metric evaluations
depart from correlation with human judgment fur-
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ther by evaluating metrics according to the abil-
ity of a metric/significance test combination to
identify a significant difference between the qual-
ity of human and system-generated summaries
(Rankel et al., 2011). Unfortunately, the evalua-
tion of metrics with respect to how well they dis-
tinguish between high-quality human summaries
and all system-generated summaries, does not pro-
vide insight into the task of metrics, to score better
quality system-generated summaries higher than
worse quality system-generated summaries, how-
ever. This is in contrast to evaluation of MT met-
rics by correlation with human judgment, where
metrics only receive credit for their ability to ap-
propriately score system-output documents rela-
tive to other system-output documents. Since dif-
ferences in quality levels between pairs of system-
generated summaries are likely to be far smaller
than differences in system and human-generated
summaries, the methodology unfortunately sets
too low a bar for summarization metrics to meet.

Furthermore, the approach to metric evaluation
unfortunately does not work in the long-term, as
the performance of summarization systems im-
proves and approaches or achieves the quality of
a human, a metric that accurately identifies this
achievement would be unfairly penalized for it.
Separate from the evaluation of metrics, Rankel et
al. (2011) make the highly important recommen-
dation of paired tests for identification of signifi-
cant differences in performance of summarization
systems. Since data used in the evaluation of sum-
marization systems is not independent, paired tests
are more appropriate and more powerful.

Owczarzak et al. (2012) diverge further from
correlation with human judgment for evaluation
of metrics by assessing the accuracy of metrics
to identify significant differences between pairs of
systems when combined with a significance test.
Although the approach to evaluation of metrics
provides insight into the accuracy of conclusions
drawn from metric/test combinations, the evalua-
tion is limited by inclusion of only six variants of
ROUGE, fewer than 4% of possible ROUGE vari-
ants. Despite such limitations, however, subse-
quent evaluations relied on recommended ROUGE

variants to rank state-of-the-art systems (Hong et
al., 2014).

Although methods of identifying significant dif-
ferences in performance are commonly applied to
the evaluation of systems in summarization, the

application of significance tests to the evaluation
of summarization metrics is extremely rare, and
when attempts have been made, unfortunately ap-
propriate tests have not been applied. Computa-
tion of confidence intervals for individual correla-
tion with human coverage scores, for example, un-
fortunately does not provide insight into whether
or not a difference in correlation with human cov-
erage scores is significant.

3 Summarization Metric Evaluation

When large-scale human evaluation of summa-
rization systems takes place, human evaluation
commonly takes the form of annotation of whether
or not system-generated summary units express
the meaning of model summary units, annotations
subsequently used to compute human coverage
scores. In addition, an evaluation of the linguis-
tic quality of summaries is commonly carried out.
As described in Section 2, when used for the eval-
uation of metrics, linguistic quality is commonly
omitted, however, with metrics only assessed by
the degree to which they correlate with human
coverage scores. In contrast, we include all avail-
able human assessment data for evaluating met-
rics.

3.1 Combining Quality and Coverage

In DUC-2004 (Over et al., 2007), human annota-
tions used to compute summary coverage are car-
ried out by identification of matching peer units
(PUs), the units in a peer summary that express
content of the corresponding model summary. In
addition, an overall coverage estimate (E) is pro-
vided by the human annotator, the proportion of
the corresponding model summary or collective
model units (MUs) expressed overall by a given
peer summary. Human coverage scores (CS) are
computed by combining Matching PUs with cov-
erage estimates as follows:

CS =
|Matching PUs| · E

|MUs| (1)

In addition to annotations used to compute human
coverage scores, human assessors were asked to
rate the linguistic quality of summaries under 7
different criteria, providing ratings from A to E,
with A denoting highest and E least quality rat-
ing.

Figure 1 is a scatter-plot of human coverage
scores and corresponding linguistic quality scores
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Figure 1: Scatter-plot of mean linguistic qual-
ity and coverage scores for human assessments of
summaries in DUC-2004

for all human-assessed summaries from DUC-
2004, where, for the purpose of comparison, each
of the 7 linguistic quality ratings are converted to
a corresponding percentage quality (A= 100%;
B= 75%; C= 50%; D= 25%; E= 0%). The lo-
cation of all points almost exclusively within the
upper left corner of the plot in Figure 1 indicates
that the linguistic quality of almost all summaries
reaches at least as high a level as its corresponding
coverage score. This follows the intuition that a
summary is unlikely to obtain high coverage with-
out sufficient linguistic quality, while the same
cannot be said for the converse, that a high level
of linguistic quality necessarily leads to high cov-
erage. More importantly, however, linguistic qual-
ity scores provide an additional dimension of hu-
man assessment, allowing greater discriminatory
power between the quality of summaries than was
possible with coverage scores alone.

Figure 2 includes linguistic quality and cover-
age score distributions from DUC-2004 human
evaluation, where each distribution is skewed in
opposing directions, in addition to the distribution
of the average of the two scores for summaries.

For the purpose of metric evaluation, we com-
bine human coverage and linguistic quality scores
using the average of the two scores, and use this
as a gold standard human score for evaluation of
metrics:

Human Assessment Score = CS+MLQ
2
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Figure 2: Combining linguistic quality and cover-
age scores provided by human assessors in DUC-
2004

3.2 ROUGE

ROUGE includes a large number of distinct vari-
ants, including eight choices of n-gram counting
method (ROUGE-1; 2; 3; 4; S4; SU4; W; L), binary
settings such as word-stemming of summaries and
an option to remove or retain stop-words. Addi-
tional configurations include the use of precision,
recall or f-score to compute individual summary
scores. Finally, options for computation of the
overall score for a system is by computation of the
mean or median of that system’s summary score
distribution. In total, therefore, when employing
ROUGE for the evaluation of summarization sys-
tems, there are 192 (8 x 2 x 2 x 3 x 2) possible
system-level variants to choose from.

The fact that final overall ROUGE scores for
systems are comprised of the mean or median
of ROUGE scores of individual summaries, is,
again, a divergence from MT evaluation, as n-
gram counts used to compute BLEU scores are
computed at the document as opposed to sentence-
level. However, in this respect, ROUGE has a dis-
tinct advantage over BLEU, as the fact that ROUGE

comprises the mean or median score of individ-
ual summary scores makes possible the applica-
tion of standard methods of significance testing
differences in system-level ROUGE scores, while
BLEU is restricted to the application of random-
ized methods (Koehn, 2004; Graham et al., 2014).
For this purpose, differences in median ROUGE
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scores can be tested for statistical significance us-
ing, for example, Wilcoxon signed-rank test, while
paired t-test can be applied to difference of mean
ROUGE scores for systems.

3.3 Metric Evaluation by Pearson’s r

Moses (Koehn et al., 2007) multi-bleu1 was used
to compute BLEU (Papineni et al., 2002) scores
for summaries and prepare4rouge2 applied to sum-
maries before running ROUGE (Lin and Hovy,
2003). Table 1 shows the Pearson correlation of
each variant of ROUGE with human assessment, in
addition to BLEU’s correlation with the same hu-
man assessment of summaries from DUC-2004.
Somewhat surprisingly, BLEU MT evaluation met-
ric achieves strongest correlation with human as-
sessment overall, r = 0.797, with performance
of ROUGE variants ranging from r = 0.786, just
below that of BLEU, to as low as r = 0.293.
For many pairs of metrics, differences in correla-
tion with human judgment are small, however, and
prior to concluding superiority in performance of
one metric over another, significance tests should
be applied.

4 Metric Significance Testing

In MT, recent work has identified the suitabil-
ity of Williams significance test (Williams, 1959)
for evaluation of automatic MT metrics (Graham
and Baldwin, 2014; Graham et al., 2015; Gra-
ham, 2015), and, for similar reasons, Williams
test is suited to significance testing differences
in performance of competing summarization met-
rics which we detail further below. Williams test
has additionally been used in evaluation of sys-
tems that automatically assess spoken and writ-
ten language quality (Yannakoudakis et al., 2011;
Yannakoudakis and Briscoe, 2012; Evanini et al.,
2013).

Evaluation of a given summarization metric,
Mnew, by Pearson correlation takes the form of
quantifying the correlation, r(Mnew, H), that ex-
ists between metric scores for systems and corre-
sponding human assessment scores, and contrast-
ing this correlation with the correlation for some
baseline metric, r(Mbase, H).

One approach to testing for significance that
may seem reasonable is to apply a significance test

1
https://github.com/moses-smt/mosesdecoder/

commits/master/scripts/generic/multi-bleu.perl
2
http://kavita-ganesan.com/content/

prepare4rouge-script-prepare-rouge-evaluation

separately to the correlation of each metric with
human assessment, with the hope that the new
metric will achieve a significant correlation where
the baseline metric does not. The reasoning here
is flawed however: the fact that one correlation is
significantly higher than zero (r(Mnew, H)) and
that of another is not, does not necessarily mean
that the difference between the two correlations is
significant. Instead, a specific test should be ap-
plied to the difference in correlations. For this
same reason, confidence intervals for individual
correlations with human assessment are also not
useful.

If samples that data are drawn from are inde-
pendent, and differences in correlations are com-
puted on independent data sets, the Fisher r to z
transformation is applied to test for significant dif-
ferences in correlations. Data used for the eval-
uation of summarization metrics are not indepen-
dent, as evaluations comprise three sets of scores
for precisely the same set of summaries (corre-
sponding to variables X1, X2 and X3 below),
and subsequently three correlations: r(Mbase, H),
r(Mnew, H) and r(Mnew, Mbase). If r(Mbase, H)
and r(Mnew, H) are both > 0, then the third
correlation, between metric scores themselves,
r(Mbase, Mnew), must also be > 0. The strength
of this correlation, directly between scores of
pairs of summarization metrics, should be taken
into account using a significance test of the dif-
ference in correlation between r(Mbase, H) and
r(Mnew, H).

Williams test 3 (Williams, 1959) evaluates the
significance of a difference in dependent correla-
tions (Steiger, 1980). It is formulated as follows
as a test of whether the population correlation be-
tween X1 and X3 equals the population correla-
tion between X2 and X3:

t(n− 3) =
(r13 − r23)

√
(n− 1)(1 + r12)√

2K (n−1)
(n−3) + (r23+r13)2

4 (1− r12)3
,

where rij is the correlation between Xi and Xj , n
is the size of the population, and:

K = 1− r12
2 − r13

2 − r23
2 + 2r12r13r23

Since the power of Williams test increases when
the third correlation, r(Mbase, Mnew), between
metric scores is stronger, metrics should not be
ranked by the number of competing metrics they

3Also known as Hotelling-Williams.
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BLEU 0.797 •
R-2 Y Y A P 0.786 •
R-3 N N A F 0.785 •
R-2 N Y A P 0.783 •
R-3 N Y A P 0.781 •
R-3 Y N A F 0.779 •
R-3 N N A R 0.777 •
R-4 N N A F 0.771 •
R-3 N N A P 0.771 •
R-3 Y N A R 0.770 •
R-2 N Y A F 0.769 •
R-4 N N A R 0.768 •
R-2 Y Y A F 0.768 •
R-3 Y N A P 0.767 •
R-3 N N M F 0.766 •
R-3 N Y A F 0.764 •
R-3 Y Y A P 0.764 •
R-4 Y N A F 0.763 •
R-4 N N A P 0.762 •
R-4 Y N A R 0.761 •
R-3 N N M P 0.760 •
R-4 Y Y A P 0.759 •
R-2 Y N A P 0.759 •
R-4 N Y A P 0.758 •
R-2 N N A P 0.757 •
R-3 N N M R 0.753 •
R-4 Y N A P 0.752 •
R-3 Y Y A F 0.748 •
R-2 N N A F 0.747 •
R-2 Y N A F 0.747 •
R-3 N Y A R 0.746 •
R-3 Y N M P 0.744 •
R-2 N Y M P 0.743 •
R-3 Y N M F 0.743 •
R-2 N Y A R 0.742 •
R-2 Y Y M P 0.741 •
R-2 N Y M F 0.740 •
R-3 Y N M R 0.739 •
R-2 Y Y A R 0.737 •
R-2 Y Y M F 0.735 •
R-2 N N M P 0.734 •
R-3 Y Y M P 0.733 •
R-3 Y Y A R 0.730
R-4 Y Y A F 0.729 •
R-3 Y Y M F 0.726 •
R-S4 Y N A P 0.725 •
R-SU4 N N A P 0.724 •
R-2 Y N M P 0.724
R-S4 N Y A P 0.724
R-SU4 Y N A P 0.723 •
R-S4 N N A P 0.723 •
R-2 N Y M R 0.722 •
R-4 N Y A F 0.721 •
R-1 N N A P 0.720 •
R-2 N N M F 0.719 •
R-SU4 N Y A P 0.719
R-1 Y N A P 0.714 •
R-2 Y Y M R 0.714 •
R-3 Y Y M R 0.713 •
R-4 Y Y A R 0.712 •
R-S4 Y Y A P 0.711
R-SU4 Y Y A P 0.710
R-2 N N A R 0.710 •
R-W N Y A P 0.709 •
R-2 Y N A R 0.707 •
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R-2 Y N M F 0.706
R-3 N Y M P 0.704 •
R-1 N Y A P 0.704 •
R-4 N N M R 0.703 •
R-L N Y A P 0.700 •
R-W Y Y A P 0.700 •
R-4 N Y A R 0.700 •
R-1 Y N M P 0.699 •
R-S4 N Y M P 0.698
R-1 Y Y A P 0.698 •
R-3 N Y M F 0.697 •
R-W N N A P 0.696 •
R-W Y N A P 0.695 •
R-4 N N M F 0.695 •
R-S4 N Y M F 0.693
R-S4 N Y A F 0.691
R-SU4 N Y M P 0.690
R-1 N N M P 0.690 •
R-2 N N M R 0.689
R-L Y Y A P 0.688 •
R-3 N Y M R 0.687 •
R-S4 N N M P 0.687
R-S4 Y N A F 0.687
R-S4 N N A F 0.687
R-4 N N M P 0.687 •
R-L N N A P 0.686 •
R-SU4 N N M P 0.686
R-L Y N A P 0.683 •
R-W N N M P 0.682 •
R-W Y N M P 0.680 •
R-SU4 Y N M P 0.678
R-SU4 N Y A F 0.678
R-S4 Y Y A F 0.676
R-SU4 N Y M F 0.676
R-SU4 N N A F 0.673
R-1 N Y M P 0.673
R-2 Y N M R 0.672
R-SU4 Y N A F 0.671
R-S4 N Y M R 0.670
R-S4 Y N M P 0.670
R-SU4 Y Y A F 0.668
R-S4 N N M F 0.666
R-W N Y M P 0.664
R-S4 Y Y M P 0.664
R-SU4 Y Y M P 0.663
R-L N N M P 0.661 •
R-SU4 N N M F 0.658
R-1 N Y A F 0.656
R-W Y Y M P 0.656
R-S4 N Y A R 0.656
R-L Y N M P 0.656 •
R-W N Y A F 0.655
R-1 N Y M F 0.653
R-L N Y A F 0.652
R-1 Y Y M P 0.651
R-S4 Y Y M F 0.649
R-1 Y Y A F 0.649
R-SU4 Y Y M F 0.649
R-SU4 N Y M R 0.646
R-L N Y M P 0.645
R-W N Y M F 0.642
R-W Y Y A F 0.642
R-4 Y N M R 0.641
R-S4 Y Y A R 0.641
R-4 Y N M F 0.639
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R-L Y Y A F 0.638
R-1 N N A F 0.637
R-S4 Y N M F 0.634
R-4 Y N M P 0.634
R-1 N N M F 0.634
R-SU4 N Y A R 0.633
R-L Y Y M P 0.633
R-SU4 Y Y M R 0.631
R-1 Y N A F 0.630
R-1 Y Y M F 0.629
R-S4 Y Y M R 0.626
R-S4 N N A R 0.626
R-SU4 Y N M F 0.625
R-S4 Y N A R 0.624
R-L N Y M F 0.623
R-SU4 Y Y A R 0.622
R-1 Y N M F 0.617
R-1 N Y M R 0.615
R-W N Y A R 0.613
R-S4 N N M R 0.611
R-L N Y M R 0.609
R-1 N Y A R 0.604
R-L N Y A R 0.601
R-W N N M F 0.600
R-L N N M F 0.599
R-W Y Y A R 0.598
R-W N Y M R 0.597
R-1 Y Y A R 0.595
R-1 Y Y M R 0.591
R-L N N A F 0.586
R-W Y Y M F 0.586
R-W Y N M F 0.585
R-L Y Y A R 0.583
R-L Y Y M F 0.582
R-L Y Y M R 0.579
R-L Y N A F 0.579
R-W N N A F 0.579
R-SU4 N N M R 0.576
R-W Y N A F 0.576
R-SU4 N N A R 0.574
R-SU4 Y N A R 0.571
R-L Y N M F 0.569
R-W Y Y M R 0.567
R-S4 Y N M R 0.566
R-SU4 Y N M R 0.525
R-1 N N M R 0.488
R-1 Y N M R 0.477
R-W Y N M R 0.477
R-1 N N A R 0.470
R-W N N M R 0.470
R-L N N M R 0.470
R-1 Y N A R 0.459
R-W N N A R 0.456
R-W Y N A R 0.452
R-L Y N M R 0.423
R-L N N A R 0.416
R-L Y N A R 0.406
R-4 Y Y M P 0.307
R-4 Y Y M F 0.302
R-4 N Y M P 0.301
R-4 Y Y M R 0.297
R-4 N Y M F 0.296
R-4 N Y M R 0.293

Table 1: Pearson correlation (r) of BLEU and 192 variants of ROUGE (R-*) with human assessment in
DUC-2004, with (Y) and without (N) stemming, with (Y) and without (N) removal of stop words (RSW),
aggregated at the summary level using precision (P), recall (R) or f-score (F), aggregated at the system
level by average (A) or median (M) summary score, correlations marked with • signify a metric/variant
whose correlation with human assessment is not significantly weaker than that of any other metric/variant
(an optimal variant) according to pairwise Williams significance tests, variants employed in Hong et al.
(2014) are in bold.
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outperform, as a metric that happens to correlate
strongly with a higher number of competing met-
rics in a given competition would be at an un-
fair advantage. This increased power also means,
somewhat counter-intuitively, it can happen for a
pair of competing metrics for which the correla-
tion between metric scores is strong, that a small
difference in competing correlations with human
assessment is significant, while, for a different
pair of metrics with a larger difference in corre-
lation, the difference is not significant, because
r(Mbase, Mnew) is weak. For example, in Ta-
ble 1 the difference in correlation with human as-
sessment of BLEU and that of median ROUGE-L
precision with stemming and stop-words retained,
0.141 (0.797 − 0.656), is not significant, while
the smaller difference in correlation with human
assessment between correlations of BLEU and av-
erage ROUGE-3 recall with stemming and stop-
words removed, 0.067 (0.797 − 0.73) is signifi-
cant, since scores of the latter pair of metrics cor-
relate with one another with more strength.

As part of this research, we have made avail-
able an open-source implementation of statistical
tests for evaluation of summarization metrics, at
https://github.com/ygraham/nlp-williams.

4.1 Significance Test Results

In Table 1, • identifies variants of ROUGE not sig-
nificantly outperformed by any other variant. Fig-
ure 3 shows pairwise Williams significance test
outcomes for BLEU, the top ten ROUGE variants,
as well as current recommended ROUGE variants
(Owczarzak et al. (2012)) used to compare sys-
tems in Hong et al. (2014). Current recommended
best variants of ROUGE are shown to be signifi-
cantly outperformed by several other ROUGE vari-
ants.

Although BLEU achieves strongest correlation
with human assessment overall, Figure 3 reveals
the difference between BLEU’s correlation with
human assessment and that of the best-performing
ROUGE variant as not statistically significant, and
since ROUGE holds the distinct advantage over
BLEU of facilitating standard methods of signif-
icance testing differences in scores for systems,
for this reason alone we recommend the use of the
best-performing ROUGE variant over BLEU, aver-
age ROUGE-2 precision with stemming and stop-
words removed.

Table 2 shows proportions of optimal ROUGE
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Figure 3: Pairwise significance test outcomes for
BLEU, best-performing ROUGE (rows 2-9), and
ROUGE applied in Hong et al. (2014) (bottom 3
rows), with (ST1) and without (ST0) stemming,
with (RS1) and without (RS0) removal of stop
words, for average (A) or median (M) ROUGE pre-
cision (P), recall (R) or f-score (F), colored cells
denote significant win for row i metric over col-
umn j metric with Williams test.

variants that can be attributed to each of ROUGE’s
configuration options. Contrary to prior belief,
the vast majority of optimal ROUGE variants are
precision-based, showing that the assumption that
recall-based metrics are superior for evaluation
of summarization systems to be inaccurate, and
a likely presence of bias in favor of recall-based
metrics in evaluations by correlation with human
coverage scores alone. Furthermore, since there
exists a vast number of possible formulations that
could potentially be applied to evaluation of sum-
maries that are neither purely precision nor recall-
based, evaluation methodologies should avoid re-
liance on assumptions that either precision or re-
call is superior and instead base conclusions on
empirical evidence where possible.

5 Summarization System Evaluation

Since we have established that the variants of
ROUGE used to rank state-of-the-art and baseline
summarization systems in Hong et al. (2014) have
significantly weaker correlations with human as-
sessment than several other ROUGE variants, this
motivates our replication of the evaluation. We
evaluate systems using the variant of ROUGE that
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N-gram Count

R-3 28.7
R-2 25.0
R-4 18.8
R-1 7.5
R-L 7.5
R-W 7.5
R-S4 2.5
R-SU4 2.5

Stemming

Not Stemmed 53.8
Stemmed 46.2

Stop-words

Not Rem. 56.2
Removed 43.8

Summary-level Agg.

Prec. 52.5
F-score 25.0
Recall 22.5

System-level Agg.

Average 63.7
Median 36.3

Table 2: Proportions of optimal ROUGE variants
attributed to each ROUGE configuration option
(%).

ROUGE ROUGE
System Best Original

DPP 8.498 9.62
ICSISumm 8.317 9.78
RegSum 8.187 9.75
Submodular 8.047 9.35
CLASSY11 7.717 9.20
CLASSY04 7.690 8.96
OCCAMS V 7.643 9.76
GreedyKL 6.918 8.53
FreqSum 6.838 8.11
TsSum 6.671 8.15
Centroid 6.660 7.97
LexRank 6.655 7.47

Table 3: Summarization systems originally in-
cluded in Hong et al. (2014) evaluated with the
best-performing ROUGE variant (Best): average
ROUGE-2 precision with stemming and stop words
removed; and evaluated with original suboptimal
variant (median ROUGE-2 recall with stemming
and without removal of stop-words)

achieves strongest correlation with human assess-
ment, average ROUGE-2 precision with stemming
and stop-words removed.

Table 3 shows ROUGE scores for summarization
systems originally presented in Hong et al. (2014).
System rankings diverge considerably from those
of the original evaluation. Notably, the system
now taking first place had originally ranked in
fourth position.

Since the best variant of ROUGE is based on av-
erage ROUGE scores as opposed to median ROUGE

scores, a difference of means significance test is
appropriate provided the normality assumption of
score distributions for systems is not violated. In

D
P

P
IC

S
IS

um
m

R
eg

S
um

S
ub

m
od

ul
ar

C
LA

S
S

Y
11

C
LA

S
S

Y
04

O
C

C
A

M
S

_V
G

re
ed

yK
L

F
re

qS
um

T
sS

um
C

en
tr

oi
d

Le
xR

an
k

LexRank
Centroid
TsSum
FreqSum
GreedyKL
OCCAMS_V
CLASSY04
CLASSY11
Submodular
RegSum
ICSISumm
DPP

Figure 4: Summarization system pairwise signif-
icance test outcomes (paired t-test) for state-of-
the-art (top 7 rows) and baseline systems (bot-
tom 5 rows) of Hong et al. (2014) evaluated with
best-performing ROUGE variant: average ROUGE-
2 precision with stemming and stop words re-
moved, colored cells denote a significant greater
mean score for row i system over column j sys-
tem according to paired t-test.

addition, since data used to evaluate systems are
not independent, paired tests are also appropri-
ate (Rankel et al., 2011). ROUGE score distri-
butions for systems were tested for normality us-
ing the Shapiro-Wilk test (Royston, 1982) where
score distributions for none of the included sys-
tems were shown to be significantly non-normal.

Figure 4 shows outcomes of paired t-tests for
summary score distributions of each pair of sys-
tems, revealing three summarization systems not
significantly outperformed by any other as DPP,
ICSISUMM and REGSUM. In addition, as ex-
pected, all state-of-the-art systems significantly
outperform all baseline systems.

6 Human Assessment Combinations

In order to evaluate metrics by correlation with hu-
man assessment, it is necessary to obtain a single
human evaluation score per system. For example,
in the evaluation of metrics in Section 3, we com-
bined linguistic quality and coverage into a sin-
gle score using the mean of the two scores. Other
combinations are of course possible, but without
any additional human evaluation data, it is chal-
lenging to identify the combination that best rep-
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Metric Stem. RSW Ave/Med P/R/F Mean Geometric
Mean

Harmonic
Mean

Coverage
Only

Ling. Qual.
Only

BLEU 0.797• 0.901• 0.936• 0.944• 0.642•
ROUGE-2 Y Y A P 0.786• 0.870• 0.887• 0.878 0.660•
ROUGE-3 N N A F 0.785• 0.869• 0.893 0.894 0.650•
ROUGE-2 N Y A P 0.783• 0.868• 0.885• 0.876 0.658•
ROUGE-3 N Y A P 0.781• 0.836• 0.840 0.826 0.682•
ROUGE-3 Y N A F 0.779• 0.866• 0.891 0.893 0.643•
ROUGE-3 N N A R 0.777• 0.871• 0.901 0.907 0.632•
ROUGE-4 N N A F 0.771• 0.843• 0.863 0.866 0.645•
ROUGE-3 N N A P 0.771• 0.837• 0.849 0.843 0.658•
ROUGE-3 Y N A R 0.770• 0.867• 0.899 0.905 0.624•
ROUGE-2 N Y A F 0.769• 0.877• 0.909• 0.910• 0.619•
ROUGE-2 Y Y A F 0.768• 0.875• 0.908• 0.908• 0.618•
ROUGE-3 Y N A P 0.767• 0.835• 0.849 0.843 0.652•
ROUGE-3 Y Y A P 0.764• 0.825• 0.832 0.821 0.660•
ROUGE-4 N N A P 0.762• 0.815• 0.824 0.819 0.657•
ROUGE-4 Y Y A P 0.759• 0.794 0.790 0.774 0.678•
ROUGE-4 N Y A P 0.758• 0.793 0.789 0.772 0.678•
ROUGE-4 Y N A P 0.752• 0.809 0.819 0.815 0.646•
ROUGE-2 N N A F 0.747• 0.867• 0.907• 0.910• 0.587•
ROUGE-2 Y N A F 0.747• 0.868• 0.908• 0.912• 0.586•
ROUGE-2 N Y A R 0.742• 0.862• 0.904• 0.912• 0.578•
ROUGE-2 N Y M F 0.740• 0.855• 0.894• 0.898• 0.584•
ROUGE-2 Y Y A R 0.737• 0.858• 0.900• 0.908• 0.575•
ROUGE-2 N Y M R 0.722• 0.848• 0.895• 0.905• 0.553•
ROUGE-2 N N M R 0.689 0.828 0.884• 0.901• 0.508

Table 4: Correlation of top-ten metric variants for each alternate combination of linguistic quality and
coverage, • denotes a metric not significantly outperformed by any other under that particular human
evaluation combination, highest correlations highlighted in bold font.

resents an overall human assessment for a given
summary. One possibility would be to search for
optimal weights for combining quality and cover-
age, but there is a risk with this approach that we
will not find the most representative combination
but simply the combination that best describes the
metrics.

An additional variation of human assessment
scores is by combining coverage and quality with
a variant of the arithmetic mean, such as the har-
monic or geometric mean. Table 4 shows correla-
tions of BLEU and the top ten performing variants
of ROUGE when evaluated against the arithmetic
(mean), harmonic and geometric mean of quality
and coverage scores for summaries. In addition,
Table 4 includes correlations of metric scores with
coverage alone, as well as linguistic quality scores
alone to provide additional insight, although lin-
guistic quality scores alone do not provide a suffi-
cient evaluation of metrics – since it is possible to
generate summaries with perfect linguistic quality
without inclusion of any relevant content whatso-
ever.

BLEU MT metric achieves highest correlation
across all human evaluation combinations and
highest again when evaluated against human cov-
erage scores alone, and BLEU’s brevity penalty,
that like recall penalizes a system for too short out-
put, is a probable cause of the metric overcom-

ing the recall-based bias of an evaluation based
on coverage scores alone. In addition, our rec-
ommended variant, ave. ROUGE-2 prec. with
stemming and stop words removed is not signif-
icantly outperformed by BLEU or any other vari-
ant of ROUGE for any of the three combined mean
human assessment scores.

7 Conclusions

An analysis of evaluation of summarization met-
rics was provided with an evaluation of BLEU and
192 variants of ROUGE. Detail of the first suitable
summarization metric significance test, Williams
test, was provided. Results reveal superior vari-
ants of metrics distinct from previously best rec-
ommendations. Replication of a recent evalua-
tion of state-of-the-art summarization systems also
revealed contrasting conclusions about the rela-
tive performance of systems. In addition, BLEU

achieves strongest correlation with human assess-
ment overall, but does not significantly outperform
the best-performing ROUGE variant.
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