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Abstract

Dependency parsing is a core task in NLP,
and it is widely used by many applica-
tions such as information extraction, ques-
tion answering, and machine translation.
In the era of social media, a big chal-
lenge is that parsers trained on traditional
newswire corpora typically suffer from the
domain mismatch issue, and thus perform
poorly on social media data. We present a
new GFL/FUDG-annotated Chinese tree-
bank with more than 18K tokens from Sina
Weibo (the Chinese equivalent of Twit-
ter). We formulate the dependency pars-
ing problem as many small and paralleliz-
able arc prediction tasks: for each task,
we use a programmable probabilistic first-
order logic to infer the dependency arc of a
token in the sentence. In experiments, we
show that the proposed model outperforms
an off-the-shelf Stanford Chinese parser,
as well as a strong MaltParser baseline that
is trained on the same in-domain data.

1 Introduction

Weibo, in particular Sina Weibo!, has attracted
more than 30% of Internet users (Yang et al.,
2012), making it one of the most popular social
media services in the world. While Weibo posts
are abundantly available, NLP techniques for ana-
lyzing Weibo posts have not been well-studied in
the past.

Syntactic analysis of Weibo is made difficult
for three reasons: first, in the last few decades,
Computational Linguistics researchers have pri-
marily focused on building resources and tools us-
ing standard English newswire corpora®, and thus,

"http://en.wikipedia.org/wiki/Sina_Weibo
For example, Wall Street Journal articles are used for
building the Penn Treebank (Marcus et al., 1993).

there are fewer resources in other languages in
general. Second, microblog posts are typically
short, noisy (Gimpel et al., 2011), and can be
considered as a “dialect”, which is very differ-
ent from news data. Due to the differences in
genre, part-of-speech taggers and parsers trained
on newswire corpora typically fail on social media
texts. Third, most existing parsers use language-
independent standard features (McDonald et al.,
2005), and these features may not be optimal for
Chinese (Martins, 2012). To most of the applica-
tion developers, the parser is more like a blackbox,
which is not directly programmable. Therefore,
it is non-trivial to adapt these generic parsers to
language-specific social media text.

In this paper, we present a new probabilistic de-
pendency parsing approach for Weibo, with the
following contributions:

e We present a freely available Chinese Weibo
dependency treebank?, manually annotated
with more than 18,000 tokens;

e We introduce a novel probabilistic logic
programming approach for dependency arc
prediction, making the parser directly pro-
grammable for theory engineering;

e We show that the proposed approach outper-
forms an off-the-shelf dependency parser, as
well as a strong baseline trained on the same
in-domain data.

In the next section, we describe existing work
on dependency parsing for Chinese. In Section 3,
we present the new Chinese Weibo Treebank to
the research community. In Section 4, we intro-
duce the proposed efficient probabilistic program-
ming approach for parsing Weibo. We show the
experimental results in Section 5, and conclude in
Section 6.

3http://www.cs.cmu.edu/"yww/data/WeiboTreebank.zip
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2 Related Work

Chinese dependency parsing has attracted many
interests in the last fifteen years. Bikel and Chi-
ang (2000; 2002) are among the first to use Penn
Chinese Tree Bank for dependency parsing, where
they adapted Xia’s head rules (Xia, 1999). An im-
portant milestone for Chinese dependency pars-
ing is that, a few years later, the CoNLL shared
task launched a track for multilingual dependency
parsing, which also included Chinese (Buchholz
and Marsi, 2006; Nilsson et al., 2007). These
shared tasks soon popularized Chinese depen-
dency parsing by making datasets available, and
there has been growing amount of literature since
then (Zhang and Clark, 2008; Nivre et al., 2007;
Sagae and Tsujii, 2007; Che et al., 2010; Carreras,
2007; Duan et al., 2007).

Besides the CoNLL shared tasks, there are also
many interesting studies on Chinese dependency
parsing. For example, researchers have studied
case (Yu et al., 2008) and morphological (Li and
Zhou, 2012) structures for learning a Chinese de-
pendency parser. Another direction is to perform
joint learning and inference for POS tagging and
dependency parsing (Li et al., 2011; Hatori et al.,
2011; Li et al., 2011; Ma et al., 2012). In recent
years, there has been growing interests in depen-
dency arc prediction in Chinese (Che et al., 2014),
and researchers have also investigated character-
level Chinese dependency parsing (Zhang et al.,
2014). However, even though the above methods
all have merits, the results are reported only on
standard newswire based Chinese Treebank (e.g.
from People’s Daily (Liu et al., 2006)), and it is
unclear how they would perform on Weibo data.

To the best of our knowledge, together with the
recent study on parsing tweets (Kong et al., 2014),
we are among the first to study the problem of de-
pendency parsing for social media text.

3 The Chinese Weibo Treebank

We use the publicly available ptopia dataset (Ling
et al., 2013) for dependency annotation. An in-
teresting aspect of this Weibo dataset is that, be-
sides the Chinese posts, it also includes a copy of
the English translations. This allows us to observe
some interesting phenomena that mark the differ-
ences of the two languages. For example:

e Function words are more frequently used in
English than in Chinese. When examin-

B2 BER T EBZ ¥

(If you) Want to eat chicken eggs,
{you) have to bear the chicken sound

Figure 1: An example of pro-drop phenomenon
from the Weibo data.

ing this English version of the Weibo cor-
pus for the total counts of the word “the”,
there are 2,084 occurrences in 2,003 sen-
tences. Whereas in Chinese, there are only
52 occurrences of the word “the” out of the
2,003 sentences.

o The other interesting thing is the position of
the head. In English, the head of the tree
occurs more frequent on the left-to-middle
of the sentence, while the distribution of the
head is more complicated in Chinese. This is
also verified from the parallel Weibo data.

o Another well-known issue in Chinese is that
Chinese is a pro-drop topical language. This
is extremely prominent in the short text,
which clearly creates a problem for parsing.
For example, in the Chinese Weibo data, we
have observed the sentence in Figure 1.

To facilitate the annotation process, we first
preprocess the Weibo posts using the Stanford
NLP pipeline, including a Chinese Word Seg-
menter (Tseng et al., 2005) and a Chinese Part-
of-Speech tagger (Toutanova and Manning, 2000).
Two native speakers of Chinese with strong lin-
guistic backgrounds have annotated the depen-
dency relations from 1,000 posts of the utopia
dataset, using the FUDG (Schneider et al., 2013)
and GFL annotation tool (Mordowanec et al.,
2014). The annotators communicate regularly dur-
ing the annotation process, and a coding man-
ual that relies majorly on the Stanford Dependen-
cies (Chang et al., 2009) is designed. The anno-
tation process has two stages: in the first stage,
we rely on the word segmentation produced by
the segmenter, and produce a draft version of the
treebank; in the second stage, the annotators ac-
tively discuss the difficult cases to reach agree-
ments, manually correct the mis-segmented word
tokens, and revise the annotations of the tricky
cases. The final inter-annotator agreement rate on
a randomly-selected subset of 373 tokens in this

1153



treebank is 82.31%.

Fragmentary Unlabeled Dependency Grammar
(FUDG) is a newly proposed flexible framework
that offers a relative easy way to annotate the syn-
tactic structure of text. Beyond the traditional tree
view of dependency syntax in which the tokens
of a sentence form nodes in a tree, FUDG also
allows the annotation of additional lexical items
such as multiword expressions. It provides special
devices for coordination and coreference; and fa-
cilitates underspecified (partial) annotations where
producing a complete parse would be difficult.
Graph Fragment Language (GFL) is an implemen-
tation of unlabeled dependency annotations in the
FUDG framework, which fully supports Chinese,
English and other languages. The training set of
our Chinese Weibo Treebank? includes 14,774 to-
kens, while the development and test sets include
1,846 and 1,857 tokens respectively.

4 A Programmable Parser with
Personalized PageRank Inference

A key problem in multilingual dependency parsing
is that generic feature templates may not work well
for every language. For example, Martins (2012)
shows that for Chinese dependency parsing, when
adding the generic grandparents and siblings fea-
tures, the performance was worse than using the
standard bilexical, unilexical, and part-of-speech
features. Unfortunately, for many parsers such
as Stanford Chinese Parser (Levy and Manning,
2003) and MaltParser (Nivre et al., 2007), it is
very difficult for programmers to specify the fea-
ture templates and inference rules for dependency
arc prediction.

In this work, we present a Chinese dependency
parsing method for Weibo, based on efficient prob-
abilistic first-order logic programming (Wang et
al.,, 2013). The advantage of probabilistic pro-
gramming for parsing is that, software engineers
can simply conduct theory engineering, and op-
timize the performance of the parser for a spe-
cific genre of the target language. Recently, proba-
bilistic programming approaches (Goodman et al.,
2012; Wang et al., 2013; Lloyd et al., 2014) have
demonstrated its efficiency and effectiveness in
many areas such as information extraction (Wang
et al.,, 2014), entity linking, and text classifica-
tion (Wang et al., 2013).

“The corpus is freely available for download at the URL
specified in Section 1.

Algorithm 1 A Dependency Arc Inference Algo-
rithm for Parsing Weibo
Given:
(1) a sentence with tokens T}, where 7 is the in-
dex, and L is the length;
(2) a database D of token relations from the cor-
pus;
(3) first-order logic inference rule set R.

for i = 1 — L tokens do

S « ConstructSearchSpace(T;, R, D);

P, — InferParentUsingProPPR(T;,S);
end for

Greedy Global Inference

for i = 1 — L tokens do
Y, = arg max ]5;;

end for

4.1 Problem Formulation

We formulate the dependency parsing prob-
lem as many small dependency arc prediction
problems. For each token, we form the par-
ent inference problem of a token 7; as solving a
query edge(T;,?) using stochastic theorem prov-
ing on a search graph. Our approach relies on a
database D of inter-token relations. To construct
the database, we automatically extract the token
relations from the text data. For example, to de-
note the adjacency of two tokens 77 and 75, we
store the entry adjacent(T1,T>) in D. One can
also store the part-of-speech tag of a token in the
form haspos(Ty, DT'). There is no limitations
on the arity and the types of the predicates in the
database.

Given the database of token relations, one then
needs to construct the first-order logic inference
theory R for predicting dependency arcs. For ex-
ample, to construct simple bilexical and bi-POS
inference rules to model the dependency of an ad-
jacent head and a modifier, one can write first-
order clauses such as:

edge (V1,V2) :-
adjacent (V1,V2),hasword(V1l,wl),

hasword (V2,W2) , keyword (Wl,W2) #adjWord.
edge (V1,V2) :-

adjacent (V1,V2),haspos (V1,Wl),

haspos (V2,W2) ,keypos (Wl,W2) #adjPos.
keyword (W1l,W2) :— # kw(W1l,W2).
keypos (W1,W2) :— # kp(Wl,W2).
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edge(S51T5, X)
#adjPos

#prop

similar($1T5,V3),

haspos(51T5,W1), adjacent(S1T5,X),
haspos (X, W2) keypos(W1,W2)

edge(V3,V4), #skiponeWord #db
similar(V4 X)
haspos(S1T5,NN),
j#simPos adjacent(S1T5,X)
hasword(S1T5,WH1), haspos(X,W2),
""" skipone(S1T5,X), keypos(NN,W2)
> hasword(X,W2),
#db #db l
similar(5175,51T1), keyword(W1,W2)
edge(S1T1,V4), #db l
similar(v4x) ¥ e
#skiponeWord/ X=81T4 = === #kp l
similar(S175,81T1), _ #kp l X=81T4
edge(S1T1, S1T3), #simPos
X=81T3

similar(S1T3,X)

Figure 2: After mapping the database D to theory R, here is an example of search space for dependency
arc inference. The query is edge(S1T5, X ), and there exists one correct and multiple incorrect solutions

(highlighted in bold).

Here, we associate a feature vector ¢, with each
clause, which is annotated using the # symbol af-
ter each clause in the theory set. Note that the last
two (keyword and keypos) clauses are feature tem-
plates that allow us to learn the specific bi-POS
tags and bilexical words from the data. In order
for one to solve the query edge(T;,?), we first
need to map the entities from D to R to construct
the search space. The details for constructing and
searching in the graph can be found in previous
studies on probabilistic first-order logic (Wang et
al., 2013) and stochastic logic programs (Cussens,
2001). An example search space is illustrated in
Figure 2. Note that now the edges in the search
graph correspond to the feature vector ¢. in R.

The overall dependency arc inference algorithm
can be found in Algorithm 1. For each of the par-
ent inference subtask, we use ProPPR (Wang et al.,
2013) to perform efficient personalized PageRank
inference. Note that to ensure the validity of the
dependency tree, we break the loops in the final
parse graph into a parse tree using the maximum
personalized PageRank score criteria. When mul-
tiple roots are predicted, we also select the most
likely root by comparing the personalized PageR-
ank solution scores.

To learn the more plausible theories, one needs

to upweight weights for relevant features, so
that they have higher transition probabilities on
the corresponding edges. To do this, we use
stochastic gradient descent to learn from training
queries, where the correct and incorrect solutions
are known. The details of the learning algorithm
are described in the last part of this section.

4.2 Personalized PageRank Inference

For the inference of the parent of each token, we
utilize ProPPR (Wang et al., 2013). ProPPR al-
lows a fast approximate proof procedure, in which
only a small subset of the full proof graph is
generated. In particular, if o upper-bounds the
reset probability, and d upperbounds the degree
of nodes in the graph, then one can efficiently
find a subgraph with O(é) nodes which approx-
imates the weight for every node within an er-
ror of de (Wang et al., 2013), using a variant of
the PageRank-Nibble algorithm of Andersen et al
(2008).

4.3 Parameter Estimation

Our parameter learning algorithm is implemented
using a parallel stochastic gradient descent vari-
ant to optimize the log loss using the supervised
personalized PageRank algorithm (Backstrom and
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Method Dev. Test
Stanford Parser (Xinhua) 0.507 0.489
Stanford Parser (Chinese)  0.597 0.581
MaltParser (Full) 0.669 0.654
Our methods — ProPPR

ReLU (Bi-POS) 0.506 0.517
ReLU (Bilexical) 0.635 0.616
ReLU (Full) 0.668 0.666
Truncated tanh (Bi-POS)  0.601  0.594
Truncated tanh (Bilexical) 0.650 0.634
Truncated tanh (Full) 0.667 0.675*

Table 1: Comparing our Weibo parser to other
baselines (UAS). The off-the-shelf Stanford parser
uses its attached Xinhua and Chinese factored
models, which are trained on external Chinese
treebank of newswire data. MaltParser was trained
on the same in-domain data as our proposed ap-
proach. * indicates p < .001 comparing to the
MaltParser.

Leskovec, 2011). The idea is that, given the
training queries, we perform a random walk with
restart process, and upweight the edges that are
more likely to end up with a known correct parent.
We learn the transition probability from two nodes
(u,v) in the search graph using: Pry(viu) =
2 f(W, @ are), Where we use two popular non-

linear parameter learning functions from the deep
learning community:

e Rectified Linear Unit (ReLU) (Nair and Hin-
ton, 2010): maz(0, z);

e The Hyperbolic Function (Glorot and Ben-
gio, 2010): tanh(x).

as the f in this study. ReLU is a desirable
non-linear function, because it does not have the
vanishing gradient problem, and produces sparse
weights. For the weights learned from tanh(z),
we truncate the negative weights on the edges,
since the default weight on the feature edges is
w = 1.0 (existence), and w = 0.0 means that the
edge does not exist in the inference stage.

S Experiments

In this experiment, we compare the proposed
parser with two well-known baselines.  First,
we compare with an off-the-shelf Stanford Chi-
nese Parser (Levy and Manning, 2003). Second,

we compare with the MaltParser (Nivre et al.,
2007) that is trained on the same in-domain Weibo
dataset. The train, development, and test splits are
described in Section 3. We tune the regulariza-
tion hyperparameters of the models on the dev. set,
and report Unlabeled Attachment Score (UAS) re-
sults for both the dev. set and the hold-out test set.
We experiment with the bilexical and bi-POS first-
order logic theory separately, as well as a com-
bined full model with directional and distance fea-
tures.

The results are shown in Table 1. We see that
both of the two attached pre-trained models from
the Stanford parser do not perform very well on
this Weibo dataset, probably because of the mis-
matched training and test data. MaltParser is
widely considered as one of the most popular de-
pendency parsers, not only because of its speed,
but also the acclaimed accuracy. We see that when
using the full model, the UAS results between our
methods and MaltParser are very similar on the de-
velopment set, but both of our approaches outper-
form the Maltparser in the holdout test set. The
truncated tanh variant of ProPPR obtains the best
UAS score of 0.675.

6 Conclusion

In this paper, we present a novel Chinese de-
pendency treebank, annotated using Weibo data.
We introduce a probabilistic programming depen-
dency arc prediction approach, where theory en-
gineering is made easy. In experiments, we show
that our methods outperform an off-the-shelf Stan-
ford Chinese Parser, as well a strong MaltParser
that is trained on the same in-domain data. The
Chinese Weibo Treebank is made freely available
to the research community. In the future, we plan
to apply the proposed approaches to dependency
and semantic parsing of other languages.
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