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Abstract

Several state-of-the-art event extraction sys-
tems employ models based on Support Vec-
tor Machines (SVMs) in a pipeline architec-
ture, which fails to exploit the joint depen-
dencies that typically exist among events
and arguments. While there have been at-
tempts to overcome this limitation using
Markov Logic Networks (MLNs), it re-
mains challenging to perform joint infer-
ence in MLNs when the model encodes
many high-dimensional sophisticated fea-
tures such as those essential for event ex-
traction. In this paper, we propose a new
model for event extraction that combines
the power of MLNs and SVMs, dwarfing
their limitations. The key idea is to reli-
ably learn and process high-dimensional
features using SVMs; encode the output
of SVMs as low-dimensional, soft formu-
las in MLNs; and use the superior joint in-
ferencing power of MLNs to enforce joint
consistency constraints over the soft for-
mulas. We evaluate our approach for the
task of extracting biomedical events on
the BioNLP 2013, 2011 and 2009 Genia
shared task datasets. Our approach yields
the best F1 score to date on the BioNLP’13
(53.61) and BioNLP’11 (58.07) datasets
and the second-best F1 score to date on the
BioNLP’09 dataset (58.16).

1 Introduction

Event extraction is the task of extracting and la-
beling all instances in a text document that corre-
spond to a pre-defined event type. This task is quite
challenging for a multitude of reasons: events are
often nested, recursive and have several arguments;
there is no clear distinction between arguments and
events; etc. For instance, consider the BioNLP Ge-
nia event extraction shared task (Nédellec et al.,

2013). In this task, participants are asked to extract
instances of a pre-defined set of biomedical events
from text. An event is identified by a keyword
called the trigger and can have an arbitrary number
of arguments that correspond to pre-defined argu-
ment types. The task is complicated by the fact
that an event may serve as an argument of another
event (nested events). An example of the task is
shown in Figure 1. As we can see, event E13 takes
as arguments two events, E14 and E12, which in
turn has E11 as one of its arguments.

A standard method that has been frequently em-
ployed to perform this shared task uses a pipeline
architecture with three steps: (1) detect if a token
is a trigger and assign a trigger type label to it; (2)
for every detected trigger, determine all its argu-
ments and assign types to each detected argument;
and (3) combine the extracted triggers and argu-
ments to obtain events. Though adopted by the
top-performing systems such as the highest scoring
system on the BioNLP’13 Genia shared task (Kim
et al., 2013), this approach is problematic for at
least two reasons. First, as is typical in pipeline
architectures, errors may propagate from one stage
to the next. Second, since each event/argument is
identified and assigned a type independently of the
others, it fails to capture the relationship between
a trigger and its neighboring triggers, an argument
and its neighboring arguments, etc.

More recently, researchers have investigated
joint inference techniques for event extraction us-
ing Markov Logic Networks (MLNs) (e.g., Poon
and Domingos (2007), Poon and Vanderwende
(2010), Riedel and McCallum (2011a)), a statis-
tical relational model that enables us to model the
dependencies between different instances of a data
sample. However, it is extremely challenging to
make joint inference using MLNs work well in
practice (Poon and Domingos, 2007). One reason
is that it is generally difficult to model sophisti-
cated linguistic features using MLNs. The diffi-
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. . . demonstrated that HOIL-1L interacting protein (HOIP), a ubiquitin ligase that can catalyze the assembly of linear
polyubiquitin chains, is recruited to DC40 in a TRAF2-dependent manner following engagement of CD40 . . .

(a) Sentence fragment

ID Event Type Trigger Arguments
E11 Binding recruited Theme={HOIL-1L interacting protein,CD40}
E12 Regulation dependent Theme=E11, Cause=TRAF2
E13 +ve Regulation following Theme=E12, Cause=E14
E14 Binding engagement Theme=CD40

(b) Events

Figure 1: Example of event extraction in the BioNLP Genia task. The table in (b) shows all the events
extracted from sentence (a). Note that successful extraction of E13 depends on E12 and E14.

culty stems from the fact that some of these fea-
tures are extremely high dimensional (e.g., Chen
and Ng (2012), Huang and Riloff (2012b), Li et al.
(2012), Li et al. (2013b), Li et al. (2013c)), and to
reliably learn weights of formulas that encode such
features, one would require an enormous number
of data samples. Moreover, even the complexity of
approximate inference on such models is quite high,
often prohibitively so. For example, a trigram can
be encoded as an MLN formula, Word(w1, p−1)∧
Word(w2, p) ∧ Word(w3, p + 1)⇒ Type(p, T ).
For any given position (p), this formula has W 3

groundings, where W is the number of possible
words, making it too large for learning/inference.
Therefore, current MLN-based systems tend to in-
clude a highly simplified model ignoring powerful
linguistic features. This is problematic because
such features are essential for event extraction.

Our contributions in this paper are two-fold.
First, we propose a novel model for biomedical
event extraction based on MLNs that addresses the
aforementioned limitations by leveraging the power
of Support Vector Machines (SVMs) (Vapnik,
1995; Joachims, 1999) to handle high-dimensional
features. Specifically, we (1) learn SVM models us-
ing rich linguistic features for trigger and argument
detection and type labeling; (2) design an MLN
composed of soft formulas (each of which encodes
a soft constraint whose associated weight indicates
how important it is to satisfy the constraint) and
hard formulas (constraints that always need to be
satisfied, thus having a weight of ∞) to capture
the relational dependencies between triggers and
arguments; and (3) encode the SVM output as prior
knowledge in the MLN in the form of soft formulas,
whose weights are computed using the confidence
values generated by the SVMs. This formulation
naturally allows SVMs and MLNs to complement
each other’s strengths and weaknesses: learning

in a large and sparse feature space is much easier
with SVMs than with MLNs, whereas modeling
relational dependencies is much easier with MLNs
than with SVMs.

Our second contribution concerns making infer-
ence with this MLN feasible. Recall that inference
involves detecting and assigning the type label to
all the triggers and arguments. We show that exist-
ing Maximum-a-posteriori (MAP) inference meth-
ods, even the most advanced approximate ones
(e.g., Selman et al. (1996), Marinescu and Dechter
(2009), Sontag and Globerson (2011) ), are infea-
sible on our proposed MLN because of their high
memory cost. Consequently, we identify decompo-
sitions of the MLN into disconnected components
and solve each independently, thereby drastically
reducing the memory requirements.

We evaluate our approach on the BioNLP 2009,
2011 and 2013 Genia shared task datasets. On
the BioNLP’13 dataset, our model significantly
outperforms state-of-the-art pipeline approaches
and achieves the best F1 score to date. On the
BioNLP’11 and BioNLP’09 datasets, our scores
are slightly better and slightly worse respectively
than the best reported results. However, they
are significantly better than state-of-the-art MLN-
based systems.

2 Background

2.1 Related Work

As a core task in information extraction, event ex-
traction has received significant attention in the nat-
ural language processing (NLP) community. The
development and evaluation of large-scale learning-
based event extraction systems was propelled in
part by the availability of annotated corpora pro-
duced as part of the Message Understanding Con-
ferences (MUCs), the Automatic Content Extrac-
tion (ACE) evaluations, and the BioNLP shared
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tasks on event extraction. Previous work on event
extraction can be broadly divided into two cate-
gories, one focusing on the development of fea-
tures (henceforth feature-based approaches) and
the other focusing on the development of models
(henceforth model-based approaches).

Feature-based approaches. Early work on
feature-based approaches has primarily focused
on designing local sentence-level features such as
token and syntactic features (Grishman et al., 2005;
Ahn, 2006). Later, it was realized that local features
were insufficient to reliably and accurately perform
event extraction in complex domains and therefore
several researchers proposed using high-level fea-
tures. For instance, Ji and Grishman (2008) used
global information from related documents; Gupta
and Ji (2009) extracted implicit time information;
Patwardhan and Riloff (2009) used broader sen-
tential context; Liao and Grishman (2010; 2011)
leveraged document-level cross-event information
and topic-based features; and Huang and Riloff
(2012b) explored discourse properties.

Model-based approaches. The model-based ap-
proaches developed to date have focused on mod-
eling global properties and seldom use rich, high-
dimensional features. To capture global event struc-
ture properties, McClosky et al. (2011a) proposed
a dependency parsing model. To extract event ar-
guments, Li et al. (2013b) proposed an Integer
Linear Programming (ILP) model to encode the
relationship between event mentions. To overcome
the error propagation problem associated with the
pipeline architecture, several joint models have
been proposed, including those that are based on
MLNs (e.g., Poon and Domingos (2007), Riedel et
al. (2009), Poon and Vanderwende (2010)), struc-
tured perceptrons (e.g., Li et al. (2013c)), and dual
decomposition with minimal domain adaptation
(e.g., Riedel and McCallum (2011a; 2011b)).

In light of the high annotation cost required by
supervised learning-based event extraction systems,
several semi-supervised, unsupervised, and rule-
based systems have been proposed. For instance,
Huang and Riloff (2012a) proposed a bootstrap-
ping method to extract event arguments using only
a small amount of annotated data; Lu and Roth
(2012) developed a novel unsupervised sequence
labeling model; Bui et al. (2013) implemented a
rule-based approach to extract biomedical events;
and Ritter et al. (2012) used unsupervised learning
to extract events from Twitter data.

Our work extends prior work by developing a
rich framework that leverages sophisticated feature-
based approaches as well as joint inference using
MLNs. This combination gives us the best of both
worlds because on one hand, it is challenging to
model sophisticated linguistic features using MLNs
while on the other hand, feature-based approaches
employing sophisticated high-dimensional features
suffer from error propagation as the model is gen-
erally not rich enough for joint inference.

2.2 The Genia Event Extraction Task

The BioNLP Shared Task (BioNLP-ST) series
(Kim et al. (2009), Kim et al. (2011a) and Nédellec
et al. (2013)) is designed to tackle the problem of
extracting structured information from the biomedi-
cal literature. The Genia Event Extraction task is ar-
guably the most important of all the tasks proposed
in BioNLP-ST and is also the only task organized
in all three events in the series.

The 2009 edition of the Genia task (Kim et
al., 2009) was conducted on the Genia event
corpus (Kim et al., 2008), which only contains
abstracts of the articles that represent domain
knowledge around NFκB proteins. The 2011 edi-
tion (Kim et al., 2011b) augmented the dataset to
include full text articles, resulting in two collec-
tions, the abstract collection and the full text col-
lection. The 2013 edition (Kim et al., 2013) further
augmented the dataset with recent full text articles
but removed the abstract collection entirely.

The targeted event types have also changed
slightly over the years. Both the 2009 and 2011
editions are concerned with nine fine-grained event
sub-types that can be categorized into three main
types, namely simple, binding and regulation
events. These three main event types can be dis-
tinguished by the kinds of arguments they take. A
simple event can take exactly one protein as its
Theme argument. A binding event can take one
or more proteins as its Theme arguments, and is
therefore slightly more difficult to extract than a
simple event. A regulation event takes exactly one
protein or event as its Theme argument and option-
ally one protein or event as its Cause argument. If
a regulation event takes another event as its Theme
or Cause argument, it will lead to a nested event.
Regulation events are considered the most difficult-
to-extract among the three event types owing in part
to the presence of an optional Cause argument and
their recursive structure. The 2013 edition intro-
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duced a new event type, protein-mod, and its three
sub-types. Theoretically, a protein-mod event takes
exactly one protein as its Theme argument and
optionally one protein or event as its Cause argu-
ment. In practice, however, it rarely occurs: there
are only six protein-mod events having Cause ar-
guments in the training data for the 2013 edition.
Consequently, our model makes the simplifying
assumption that a protein-mod event can only take
one Theme argument, meaning that we are effec-
tively processing protein-mod events in the same
way as simple events.

2.3 Markov Logic Networks
Statistical relational learning (SRL) (Getoor and
Taskar, 2007) is an emerging field that seeks to
unify logic and probability, and since most NLP
techniques are grounded either in logic or proba-
bility or both, NLP serves as an ideal application
domain for SRL. In this paper, we will employ a
popular SRL approach called Markov logic net-
works (MLNs) (Domingos and Lowd, 2009). At a
high level, an MLN is a set of weighted first-order
logic formulas (fi, wi), where wi is the weight
associated with formula fi. Given a set of con-
stants that model objects in the domain, it defines a
Markov network or a log-linear model (Koller and
Friedman, 2009) in which we have one node per
ground first-order atom and a propositional feature
corresponding to each grounding of each first-order
formula. The weight of the feature is the weight of
the corresponding first-order formula.

Formally, the probability of a world ω, which
represents an assignment of values to all ground
atoms in the Markov network, is given by:

Pr(ω) =
1
Z

exp

(∑
i

wiN(fi, ω)

)
where N(fi, ω) is the number of groundings of fi
that evaluate to True in ω and Z is a normalization
constant called the partition function.

The key inference tasks over MLNs are com-
puting the partition function (Z) and the most-
probable explanation given evidence (the MAP
task). Most queries, including those required by
event extraction, can be reduced to these inference
tasks. Formally, the partition function and the MAP
tasks are given by:

Z =
∑
ω

exp

(∑
i

wiN(fi, ω)

)
(1)

arg max
ω

P (ω) = arg max
ω

∑
i

wiN(fi, ω) (2)

3 Pipeline Model

We implement a pipeline event extraction system
using SVMs. This pipeline model serves two im-
portant functions: (1) providing a baseline for eval-
uation and (2) producing prior knowledge for the
joint model.

Our pipeline model consists of two steps: trig-
ger labeling and argument labeling. In the trigger
labeling step, we determine whether a candidate
trigger is a true trigger and label each true trigger
with its trigger type. Then, in the argument label-
ing step, we identify the arguments for each true
trigger discovered in the trigger labeling step and
assign a role to each argument.

We recast each of the two steps as a classification
task and employ SVMmulticlass (Tsochantaridis
et al., 2004) to train the two classifiers. We describe
each step in detail below.

3.1 Trigger Labeling

A preliminary study of the BioNLP’13 training
data suggests that 98.7% of the true triggers’ head
words1 are either verbs, nouns or adjectives. There-
fore, we consider only those words whose part-of-
speech tags belong to the above three categories
as candidate triggers. To train the trigger classifier,
we create one training instance for each candidate
trigger in the training data. If the candidate trigger
is not a trigger, the class label of the corresponding
instance is None; otherwise, the label is the type
of the trigger. Thus, the number of class labels
equals the number of trigger types plus one. Each
training instance is represented by the features de-
scribed in Table 1(a). These features closely mirror
those used in state-of-the-art trigger labeling sys-
tems such as Miwa et al. (2010b) and Björne and
Salakoski (2013).

After training, we apply the resulting trigger clas-
sifier to classify the test instances, which are cre-
ated in the same way as the training instances. If a
test instance is predicted as None by the classifier,
the corresponding candidate trigger is labeled as
a non-trigger; otherwise, the corresponding candi-
date trigger is posited as a true trigger whose type
is the class value assigned by the classifier.

1Head words are found using Collins’ (1999) rules.
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(a) Features for trigger labeling
Token features The basic token features (see Table 1(c)) computed from (1) the candidate trigger word and (2) the

surrounding tokens in a window of two; character bigrams and trigrams of the candidate trigger word;
word n-grams (n=1,2,3) of the candidate trigger word and its context words in a window of three; whether
the candidate trigger word contains a digit; whether the candidate trigger word contains an upper case
letter; whether the candidate trigger word contains a symbol.

Dependency
features

The basic dependency path features (see Table 1(c)) computed using the shortest paths from the candidate
trigger to (1) the nearest protein word, (2) the nearest protein word to its left, and (3) the nearest protein
word to its right.

Other
features

The distances from the candidate trigger word to (1) the nearest protein word, (2) the nearest protein
word to its left, and (3) the nearest protein word to its right; the number of protein words in the sentence.

(b) Features for argument labeling
Token features Word n-grams (n=1,2,3) of (1) the candidate trigger word and its context in a window of three and (2) the

candidate argument word and its context in a window of three; the basic token features (see Table 1(c))
computed from (1) the candidate trigger word and (2) the candidate argument word; the trigger type of
the candidate trigger word.

Dependency
features

The basic dependency features (see Table 1(c)) computed using the shortest path from the candidate
trigger word to the candidate argument word.

Other
features

The distance between the candidate trigger word and the candidate argument word; the number of
proteins between the candidate trigger word and the candidate argument word; the concatenation of the
candidate trigger word and the candidate argument word; the concatenation of the candidate trigger type
and the candidate argument word.

(c) Basic token and dependency features
Basic token fea-
tures

Six features are computed given a token t, including: (a) the lexical string of t, (b) the lemma of t, (c) the
stem of t obtained using the Porter stemmer (Porter, 1980), (d) the part-of-speech tag of t, (e) whether t
appears as a true trigger in the training data, and (f) whether t is a protein name.

Basic
dependency
features

Six features are computed given a dependency path p, including: (a) the vertex walk in p, (b) the edge
walk in p, (c) the n-grams (n=2,3,4) of the (stemmed) words associated with the vertices in p, (d) the
n-grams (n=2,3,4) of the part-of-speech tags of the words associated with the vertices in p, (e) the
n-grams (n=2,3,4) of the dependency types associated with the edges in p, and (f) the length of p.

Table 1: Features for trigger labeling and argument labeling.

3.2 Argument Labeling

The argument classifier is trained as follows. Each
training instance corresponds to a candidate trigger
and one of its candidate arguments.2 A candidate
argument for a candidate trigger ct is either a pro-
tein or a candidate trigger that appears in the same
sentence as ct. If ct is not a true trigger, the label of
the associated instance is set toNone. On the other
hand, if ct is a true trigger, we check whether the
candidate argument in the associated instance is in-
deed one of ct’s arguments. If so, the class label of
the instance is the argument’s role; otherwise, the
class label is None. The features used for repre-
senting each training instance, which are modeled
after those used in Miwa et al. (2010b) and Björne
and Salakoski (2013), are shown in Table 1(b).

After training, we can apply the resulting clas-
sifier to classify the test instances, which are cre-
ated in the same way as the training instances. If
a test instance is assigned the class None by the
classifier, the corresponding candidate argument is
classified as not an argument of the trigger. Other-

2Following the definition of the GENIA event extraction
task, the protein names are provided as part of the input.

wise, the candidate argument is a true argument of
the trigger whose role is the class value assigned
by the classifier.

4 Joint Model

In this section, we describe our Markov logic model
that encodes the relational dependencies in the
shared task and uses the output of the pipeline
model as prior knowledge (soft evidence). We be-
gin by describing the structure of our Markov logic
model, and then describe the parameter learning
and inference algorithms for it.

4.1 MLN Structure

Figure 2 shows our proposed MLN for BioNLP
event extraction, which we refer to as BioMLN.
The MLN contains six predicates.

The query predicates in Figure 2(a) are those
whose assignments are not given during infer-
ence and thus need to be predicted. Predicate
TriggerType(sid,tid,ttype!) is true when the
token located in sentence sid at position tid has
type ttype. ∆ttype, which denotes the set of con-
stants (or objects) that the logical variable ttype
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TriggerType(sid,tid,ttype!)
ArgumentRole(sid,aid,tid,arole!)

(a) Query

Simple(sid,tid)
Regulation(sid,tid)

(b) Hidden

Word(sid,tid,word)
DepType(sid,aid,tid,dtype)

(c) Evidence

1. ∃t TriggerType(i,j,t).

2. ∃a ArgumentRole(i,k,j,a).

3. ¬TriggerType(i,j,None) ⇒ ∃k ArgumentRole(i,k,j,Theme).

4. Simple(i,j) ⇒¬ ∃k ArgumentRole(i,k,j,Cause).

5. TriggerType(i,j,None) ⇔ ArgumentRole(i,k,j,None).

6. ¬ArgumentRole(i,k,j,None) ∧¬TriggerType(i,k,None)⇒ Regulation(i,j).

7. Simple(i,j)⇔ TriggerType(i,j,Simple1) ∨ . . .∨ TriggerType(i,j,Binding).

8. Regulation(i,j)⇔ TriggerType(i,j,Reg) ∨ TriggerType(i,j,PosReg)
∨ TriggerType(i,j,NegReg).

9. Word(i,j,+w) ∧ TriggerType(i,j,+t) ∧ DepType(i,k,j,+d) ∧ ArgumentRole(i,k,j,+a)

(d) Joint Formulas

Figure 2: The BioMLN structure.

can be instantiated to, includes all possible trigger
types in the dataset plus None (which indicates
that the token is not a trigger). The “!” symbol mod-
els commonsense knowledge that only one of the
types in the domain ∆ttype of ttype is true for every
unique combination of sid and tid. Similarly, pred-
icate ArgumentRole(sid,aid,tid,arole!) as-
serts that a token in sentence sid at position aid
plays exactly one argument role, denoted by arole,
with respect to the token at position tid. ∆arole

includes the two argument types, namely, Theme
and Cause plus the additional None that indicates
that the token is not an argument.

The hidden predicates in Figure 2(b) are “clus-
ters” of trigger types. Predicate Simple(sid,tid)
is true when the token in sentence sid at posi-
tion tid corresponds to one of the Simple event
trigger types (BioNLP’13 has 9 simple events,
BioNLP’09/’11 have 5) or a binding event trig-
ger type. Similarly, Regulation(sid,tid) asserts
that the token in sentence sid at position tid corre-
sponds to any of the three regulation event trigger
types.

The evidence predicates in Figure 2(c) are those
that are always assumed to be known during in-
ference. We define two evidence predicates based
on dependency structures. Word(sid,tid,word) is
true when the word in sentence sid at position tid
is equal to word. DepType(sid,aid,tid,dtype)
asserts that dtype is the dependency type in the de-

pendency parse tree that connects the token at posi-
tion tid to the token at position aid in sentence sid.
If the word at tid and the word at aid are directly
connected in the dependency tree, then dtype is the
label of dependency edge with direction; otherwise
dtype is None.

The MLN formulas, expressing commonsense,
prior knowledge in the domain (Poon and Van-
derwende, 2010; Riedel and McCallum, 2011a),
are shown in Fig. 2(d). All formulas, except For-
mula (9), are hard formulas, meaning that they have
infinite weights. Note that during weight learning,
we only learn the weights of soft formulas.

Formulas (1) and (2) along with the “!” con-
straint in the predicate definition ensure that the
token types are mutually exclusive and exhaustive.
Formula (3) asserts that every trigger should have
an argument of type Theme, since a Theme argu-
ment is mandatory for any event. Formula (4) mod-
els the constraint that a Simple orBinding trigger
has no arguments of type Cause since only regu-
lation events have a Cause. Formula (5) asserts
that non-triggers have no arguments and vice-versa.
Formula (6) models the constraint that if a token
is both an argument of t and a trigger by itself,
then t must belong to one of the three regulation
trigger types. This formula captures the recursive
relationship between triggers. Formulas (7) and
(8) connect the hidden predicates with the query
predicates. Formula (9) is a soft formula encoding
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the relationship between triggers and arguments in
a dependency parse tree. It joins a word and the
dependency type label that connects the word token
to the argument token in the dependency parse tree
with the trigger types and argument types of the
two tokens. The “+” symbol indicates that each
grounding of Formula (9) may have a different
weight.

4.2 Weight Learning
We can learn BioMLN from data either discrimina-
tively or generatively. Since discriminative learning
is much faster than generative learning, we use the
former. In discriminative training, we maximize
the conditional log-likelihood (CLL) of the query
and the hidden variables given an assignment to
the evidence variables. In principle, we can use the
standard gradient descent algorithm for maximiz-
ing the CLL. In each iteration of gradient descent,
we update the weights using the following equation
(cf. Singla and Domingos (2005) and Domingos
and Lowd (2009)):

wt+1
j = wtj − α(Ew(nj)− nj) (3)

where wtj represents the weight of the jth formula
in the tth iteration, nj is the number of groundings
in which the jth formula is satisfied in the training
data, Ew(nj) is the expected number of ground-
ings in which the jth formula is satisfied given the
current weight vector w, and α is the learning rate.

As such, the update rule given in Equation (3)
is likely to yield poor accuracy because the num-
ber of training examples of some types (e.g.,
None) far outnumber other types. To rectify this
ill-conditioning problem (Singla and Domingos,
2005; Lowd and Domingos, 2007), we divide the
gradient with the number of true groundings in
the data, namely, we compute the gradient using
(Ew(nj)−nj)

nj
.

Another key issue with using Equation (3) is that
computing Ew(nj) requires performing inference
over the MLN. This step is intractable, #P-complete
in the worst case. To circumvent this problem and
for fast, scalable training, we instead propose to
use the voted perceptron algorithm (Collins, 2002;
Singla and Domingos, 2005). This algorithm ap-
proximates Ew(nj) by counting the number of
satisfied groundings of each formula in the MAP
assignment. Computing the MAP assignment is
much easier (although still NP-hard in the worst
case) than computing Ew(nj), and as a result the

voted perceptron algorithm is more scalable than
the standard gradient descent algorithm. In addi-
tion, it converges much faster.

4.3 Testing

In the testing phase, we combine BioMLN with the
output of the pipeline model (see Section 3) to ob-
tain a new MLN, which we refer to as BioMLN+.
For every candidate trigger, the SVM trigger clas-
sifier outputs a vector of signed confidence val-
ues (which is proportional to the distance from
the separating hyperplane) of dimension ∆ttype

with one entry for each trigger type. Similarly,
for every candidate argument, the SVM argu-
ment classifier outputs a vector of signed confi-
dence values of dimension ∆arole with one en-
try for each argument role. In BioMLN+, we
model the SVM output as soft evidence, using
two soft unit clauses, TriggerType(i,+j,+t) and
ArgumentRole(i,+k,+j,+a). We use the con-
fidence values to determine the weights of these
clauses. Intuitively, higher (smaller) the confidence,
higher (smaller) the weight.

Specifically, the weights of the soft unit clauses
are set as follows. If the SVM trigger classifier
determines that the trigger in sentence i at po-
sition j belongs to type t with confidence Ci,j ,
then we attach a weight of Ci,j

αni
to the clause

TriggerType(i,j,t). Here, ni denotes the num-
ber of trigger candidates in sentence i. Similarly,
if the SVM argument classifier determines that the
token at position k in sentence i belongs to the ar-
gument role a with respect to the token at position
j, with confidence C ′i,k,j , then we attach a weight

of
C′

i,k,j

β
∑ni

j=1mij
to the clause ArgumentRole(i, k,

j,a). Here, mij denotes the number of argument
candidates for the jth trigger candidate in sentence
i. α and β act as scale parameters for the confi-
dence values ensuring that the weights don’t get
too large (or too small).

4.4 Inference

As we need to perform MAP inference, both at
training time and at test time, in this subsection we
will describe how to do it efficiently by exploiting
unique properties of our proposed BioMLN.

Naively, we can perform MAP inference by
grounding BioMLN to a Markov network and
then reducing the Markov network by removing
from it all (grounded propositional) formulas that
are inconsistent with the evidence. On the re-
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duced Markov network, we can then compute the
MAP solution using standard MAP solvers such as
MaxWalkSAT (a state-of-the-art local search based
MAP solver) (Selman et al., 1996) and Gurobi3 (a
state-of-the-art, parallelized ILP solver).

The problem with the above approach is that
grounding the MLN is infeasible in practice; even
the reduced Markov network is just too large. For
example, assuming a total of |∆sid| sentences and
a maximum of N tokens in a sentence, Formula (3)
alone has O(|∆sid|N3) groundings. Concretely, at
training time, assuming 1000 sentences with 10
tokens per sentence, Formula (3) itself yields one
million groundings. Clearly, this approach is not
scalable. It turns out, however, that the (ground)
Markov network can be decomposed into several
disconnected components, each of which can be
solved independently. This greatly reduces the
memory requirement of the inference step. Specif-
ically, for every grounding of sid, we get a set of
nodes in the Markov network that are disconnected
from the rest of the Markov network and therefore
independent of the rest of the network. Formally,

Proposition 1. For any world ω of the BioMLN,

PM(ω) = PMi(ωi)PM\Mi
(ω \ ωi) (4)

where ωi is the world ω projected on the ground-
ings of sentence i andMi is BioMLN grounded
only using sentence i.

Using Equation (4), it is easy to see that the MLN
M can be decomposed into |∆sid| disjoint MLNs,
{Mk}|∆sid|

k=1 . The MAP assignment toM can be

computed using,
|∆sid|⋃
i=1

(
arg max

ωi

PMi(ωi)
)

. This

result ensures that to approximate the expected
counts Ew(nj), it is sufficient to keep exactly one
sentence’s groundings in memory. Specifically,
Ew(nj) can be written as

∑|∆sid|
k=1 Ew(nkj ), where

Ew(nkj ) indicates the expected number of satisfied
groundings of the jth formula in the kth sentence.
Since the MAP computation is decomposable, we
can estimate Ew(nkj ) using MAP inference on just
the kth sentence.

5 Evaluation

5.1 Experimental Setup
We evaluate our system on the BioNLP’13 (Kim
et al., 2013), ’11 (Kim et al., 2011a) and ’09 (Kim

3http://www.gurobi.com/

Dataset #Papers #Abstracts #TT #Events
BioNLP’13 (10,10,14) (0,0,0) 13 (2817,3199,3348)
BioNLP’11 (5,5,4) (800,150,260) 9 (10310,4690,5301)
BioNLP’09 (0,0,0) (800,150,260) 9 (8597,1809,3182)

Table 2: Statistics on the BioNLP datasets, which
consist of annotated papers/abstracts from PubMed.
(x, y, z): x in training, y in development and z
in test. #TT indicates the total number of trigger
types. The total number of argument types is 2.

et al., 2009) Genia datasets for the main event ex-
traction shared task. Note that this task is the most
important one for Genia and therefore has the most
active participation. Statistics on the datasets are
shown in Table 2. All our evaluations use the on-
line tool provided by the shared task organizers.
We report scores obtained using the approximate
span, recursive evaluation.

To generate features, we employ the support-
ing resources provided by the organizers. Specif-
ically, sentence split and tokenization are done
using the GENIA tools, while part-of-speech in-
formation is provided by the BLLIP parser that
uses the self-trained biomedical model (McClosky,
2010). Also, we create dependency features from
the parse trees provided by two dependency parsers,
the Enju parser (Miyao and Tsujii, 2008) and the
aforementioned BLLIP parser that uses the self-
trained biomedical model, which results in two sets
of dependency features.

For MAP inference, we use Gurobi, a par-
allelized ILP solver. After inference, a post-
processing step is required to generate biomedi-
cal events from the extracted triggers and argu-
ments. Specifically, for binding events, we em-
ploy a learning-based method similar to Björne and
Salakoski (2011), while for the other events, we
employ a rule-based approach similar to Björne et
al. (2009). Both the SVM baseline system and the
combined MLN+SVM system employ the same
post-processing strategy.

During weight learning, in order to combat the
problem of different initializations yielding radi-
cally different parameter estimates, we start at sev-
eral different initialization points and average the
weights obtained after 100 iterations of gradient
descent. However, we noticed that if we simply
choose random initialization points, the variance of
the weights was quite high and some initialization
points were much worse than others. To counter
this, we use the following method to systematically
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System Rec. Prec. F1
Our System 48.95 59.24 53.61
EVEX (Hakala et al., 2013) 45.44 58.03 50.97
TEES-2.1 (Björne and Salakoski, 2013) 46.17 56.32 50.74
BIOSEM (Bui et al., 2013) 42.47 62.83 50.68
NCBI (Liu et al., 2013) 40.53 61.72 48.93
DLUTNLP (Li et al., 2013a) 40.81 57.00 47.56

Table 3: Recall (Rec.), Precision (Prec.) and F1
score on the BioNLP’13 test data.

initialize the weights. Let ni be the number of sat-
isfied groundings of formula fi in the training data
and mi be the total number of possible groundings
of fi. We use a threshold γ to determine whether
we wish to make the initial weight positive or neg-
ative. If ni

mi
≤ γ, then we choose the initial weight

uniformly at random from the range [−0.1, 0]. Oth-
erwise, we chose it from the range [0, 0.1]. These
steps ensure that the weights generated from dif-
ferent initialization points have smaller variance.
Also, in the testing phase, we set the scale parame-
ters for the soft evidence as α = β = max

c∈C
|c|, where

C is the set of SVM confidence values.

5.2 Results on the BioNLP’13 Dataset
Among the three datasets, the BioNLP’13 dataset
is most “realistic” one because it is the only one
that contains full papers and no abstracts. As a re-
sult, it is also the most challenging dataset among
the three. Table 3 shows the results of our system
along with the results of other top systems pub-
lished in the official evaluation of BioNLP’13. Our
system achieves the best F1-score (an improvement
of 2.64 points over the top-performing system) and
has a much higher recall (mainly because our sys-
tem detects more regulation events which outnum-
ber other event types in the dataset) and a slightly
higher precision than the winning system. Of the
top five teams, NCBI is the only other joint infer-
ence system, which adopts joint pattern matching
to predict triggers and arguments at the same time.
These results illustrate the challenge in using joint
inference effectively. NCBI performed much worse
than the SVM-based pipeline systems, EVEX and
TEES2.1. It was also worse than BIOSEM, a rule-
based system that uses considerable domain exper-
tise. Nevertheless, it was better than DLUTNLP,
another SVM-based system.

Figure 3 compares our baseline pipeline model
with our combined model. We can clearly see that
the combined model has a significantly better F1
score than the pipeline model on most event types.

System Rec. Prec. F1
Our System 53.42 63.61 58.07
Miwa12 (Miwa et al., 2012) 53.35 63.48 57.98
Riedel11 (Riedel et al., 2011) − − 56
UTurku (Björne and Salakoski, 2011) 49.56 57.65 53.30
MSR-NLP (Quirk et al., 2011) 48.64 54.71 51.50

Table 4: Results on the BioNLP’11 test data.

The regulation events are considered the most com-
plex events to detect because they have a recursive
structure. At the same time, this structure yields a
large number of joint dependencies. The advantage
of using a rich model such as MLNs can be clearly
seen in this case; the combined model yields a 10
point and 6 point increase in F1-score on the test
data and development data respectively compared
to the pipeline model.

5.3 Results on the BioNLP’11 Dataset

Table 4 shows the results on the BioNLP’11 dataset.
We can see that our system is marginally better than
Miwa12, which is a pipeline-based system. It is
also more than two points better than Riedel11,
a state-of-the-art structured prediction-based joint
inference system. Reidel11 incorporates the Stan-
ford predictions (McClosky et al., 2011b) as fea-
tures in the model. On the two hardest, most
complex tasks, detecting regulation events (which
have recursive structures and more joint dependen-
cies than other event types) and detecting bind-
ing events (which may have multiple arguments),
our system performs better than both Miwa12 and
Riedel11.4 Specifically, our system’s F1 score for
regulation events is 46.84, while those of Miwa12
and Riedel11 are 45.46 and 44.94 respectively. Our
system’s F1 score for the binding event is 58.79,
while those of Miwa12 and Riedel11 are 56.64 and
48.49 respectively. These results clearly demon-
strate the effectiveness of enforcing joint dependen-
cies along with high-dimensional features.

5.4 Results on the BioNLP’09 Dataset

Table 5 shows the results on the BioNLP’09 dataset.
Our system has a marginally lower score (by 0.11
points) than Miwa12, which is the best performing
system on this dataset. Specifically, our system
achieves a higher recall but a lower precision than
Miwa12. However, note that Miwa12 used co-
reference features while we are able to achieve

4Detailed results are not shown for any of these three
datasets due to space limitations.
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SVM MLN+SVM
Type Rec. Prec. F1 Rec. Prec. F1
Simple 64.47 87.89 74.38 73.11 78.99 75.94
Protein-Mod 66.49 79.87 72.57 72.25 69.70 70.95
Binding 39.04 50.00 43.84 48.05 43.84 45.85
Regulation 23.51 56.21 33.15 36.47 50.86 42.48
Overall 37.90 67.88 48.64 48.95 59.24 53.61

(a) Test

SVM MLN+SVM
Type Rec. Prec. F1 Rec. Prec. F1
Simple 55.79 81.63 66.28 63.21 75.10 68.64
Protein-Mod 64.47 87.89 74.38 71.14 85.63 77.72
Binding 31.90 48.77 38.57 47.99 50.00 48.97
Regulation 20.13 52.46 29.10 28.57 43.41 34.46
Overall 34.42 66.14 45.28 43.50 57.45 49.51

(b) Development

Figure 3: Comparison of the combined model (MLN+SVM) with the pipeline model on the BioNLP’13
test and development data.

System Rec. Prec. F1
Miwa12 (Miwa et al., 2012) 52.67 65.19 58.27
Our System 53.96 63.08 58.16
Riedel11 (Riedel et al., 2011) − − 57.4
Miwa10 (Miwa et al., 2010a) 50.13 64.16 56.28
Bjorne (Björne et al., 2009) 46.73 58.48 51.95
PoonMLN (Poon&Vanderwende,2010) 43.7 58.6 50.0
RiedelMLN (Riedel et al., 2009) 36.9 55.6 44.4

Table 5: Results on the BioNLP’09 test data. “−”
indicates that the corresponding values are not
known.

similar accuracy without the use of co-reference
data. The F1 score of Miwa10, which does not
use co-reference features, is nearly 2 points lower
than that of our system. Our system also has a
higher F1 score than Reidel11, which is the best
joint inference-based system for this task.

On the regulation events, our system (47.55) out-
performs both Miwa12 (45.99) and Riedel11 (46.9),
while on the binding event, our system (59.88) is
marginally worse than Miwa12 (59.91) and signifi-
cantly better than Riedel11 (52.6). As mentioned
earlier, these are the hardest events to extract. Also,
existing MLN-based joint inference systems such
as RiedelMLN and PoonMLN do not achieve state-
of-the-art results because they do not leverage com-
plex, high-dimensional features.

6 Summary and Future Work

Markov logic networks (MLNs) are a powerful
representation that can compactly encode rich rela-
tional structures and ambiguities (uncertainty). As
a result, they are an ideal representation for com-
plex NLP tasks that require joint inference, such
as event extraction. Unfortunately, the superior
representational power greatly complicates infer-
ence and learning over MLN models. Even the
most advanced methods for inference and learning
in MLNs (Gogate and Domingos, 2011) are un-

able to handle complex, high-dimensional features,
and therefore existing MLN systems primarily use
low-dimensional features. This limitation severely
affects the accuracy of MLN-based NLP systems,
and as a result, in some cases their performance
is inferior to pipeline methods that do not employ
joint inference.

In this paper, we presented a general approach
for exploiting the power of high-dimensional lin-
guistic features in MLNs. Our approach involves
reliably processing and learning high-dimensional
features using SVMs and encoding their output as
low-dimensional features in MLNs. We showed
that we could achieve scalable learning and in-
ference in our proposed MLN model by exploit-
ing decomposition. Our results on the BioNLP
shared tasks from ’13, ’11, and ’09 clearly show
that our proposed combination is extremely effec-
tive, achieving the best or second best score on all
three datasets.

In future work, we plan to (1) improve our joint
model by incorporating co-reference information
and developing model ensembles; (2) transfer the
results of this investigation to other complex NLP
tasks that can potentially benefit from joint infer-
ence; and (3) develop scalable inference and learn-
ing algorithms (Ahmadi et al., 2013).
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