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Abstract

State-of-the-art Chinese zero pronoun res-
olution systems are supervised, thus re-
lying on training data containing manu-
ally resolved zero pronouns. To elimi-
nate the reliance on annotated data, we
present a generative model for unsuper-
vised Chinese zero pronoun resolution.
At the core of our model is a novel hy-
pothesis: a probabilistic pronoun resolver
trained on overt pronouns in an unsuper-
vised manner can be used to resolve zero
pronouns. Experiments demonstrate that
our unsupervised model rivals its state-of-
the-art supervised counterparts in perfor-
mance when resolving the Chinese zero
pronouns in the OntoNotes corpus.

1 Introduction

A zero pronoun (ZP) is a gap in a sentence that
is found when a phonetically null form is used to
refer to a real-world entity. An anaphoric zero
pronoun (AZP) is a ZP that corefers with one or
more preceding noun phrases (NPs) in the asso-
ciated text. Below is an example taken from the
Chinese TreeBank (CTB), where the ZP (denoted
as *pro*) refers to & &' {1 (Russia).

[ 2 W) 1 oK% & R g7y — T 1 S R
*pro* {4 £ 4 HIIT X I BUA fEHL.

([Russia] is a consistent supporter of Milosevic,
*pro* has proposed to mediate the political crisis.)

As we can see, ZPs lack grammatical attributes
that are useful for overt pronoun resolution such as
NUMBER and GENDER. This makes ZP resolution
more challenging than overt pronoun resolution.

Automatic ZP resolution is typically composed
of two steps. The first step, AZP identification, in-
volves extracting ZPs that are anaphoric. The sec-
ond step, AZP resolution, aims to identify an an-
tecedent of an AZP. State-of-the-art ZP resolvers
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have tackled both of these steps in a supervised
manner, training a classifier for AZP identification
and another one for AZP resolution (e.g., Zhao and
Ng (2007), Chen and Ng (2013)).

In this paper, we focus on the second task, AZP
resolution, designing a model that assumes as in-
put the AZPs in a document and resolves each of
them. Note that the task of AZP resolution alone is
by no means easy: even when gold-standard AZPs
are given, state-of-the-art supervised resolvers can
only achieve an F-score of 47.7% for resolving
Chinese AZPs (Chen and Ng, 2013). For the sake
of completeness, we will evaluate our AZP resolu-
tion model using both gold-standard AZPs as well
as AZPs automatically identified by a rule-based
approach that we propose in this paper.

Our contribution lies in the proposal of the first
unsupervised probabilistic model for AZP resolu-
tion that rivals its supervised counterparts in per-
formance when evaluated on the Chinese portion
of the OntoNotes 5.0 corpus. Its main advan-
tage is that it does not require training data with
manually resolved AZPs. This, together with the
fact that its underlying generative process is not
language-dependent, enables it to be applied to
languages where such annotated data is not read-
ily available. At its core is a novel hypothesis:
we can apply a probabilistic pronoun resolution
model trained on overt pronouns in an unsuper-
vised manner to resolve zero pronouns. Moti-
vated by Cherry and Bergsma's (2005) and Char-
niak and Elsner's (2009) work on unsupervised
English pronoun resolution, we train our unsu-
pervised resolver on Chinese overt pronouns us-
ing the Expectation-Maximization (EM) algorithm
(Dempster et al., 1977).

2 Related Work

Chinese ZP resolution. Early approaches to
Chinese ZP resolution are rule-based. Con-
verse (2006) applied Hobbs' algorithm (Hobbs,
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1978) to resolve the ZPs in the CTB documents.
Yeh and Chen (2007) hand-engineered a set of
rules for ZP resolution based on Centering The-
ory (Grosz et al., 1995).

In contrast, virtually all recent approaches to
this task are based on supervised learning. Zhao
and Ng (2007) are the first to employ a supervised
learning approach to Chinese ZP resolution. They
trained an AZP resolver by employing syntactic
and positional features in combination with a de-
cision tree learner. Unlike Zhao and Ng, Kong
and Zhou (2010) employed context-sensitive con-
volution tree kernels (Zhou et al., 2008) in their
resolver to model syntactic information. More re-
cently, we extended Zhao and Ng's feature set with
novel features that encode the context surrounding
a ZP and its candidate antecedents, and exploited
the coreference links between ZPs as bridges to
find textually distant antecedents for ZPs (Chen
and Ng, 2013).

ZP resolution for other languages. There have
been rule-based and supervised machine learning
approaches for resolving ZPs in other languages.
For example, to resolve ZPs in Spanish texts,
Ferrandez and Peral (2000) proposed a set of hand-
crafted rules that encode preferences for candidate
antecedents. In addition, supervised approaches
have been extensively employed to resolve ZPs
in Korean (e.g., Han (2006)), Japanese (e.g., Seki
et al. (2002), Isozaki and Hirao (2003), lida et
al. (2006; 2007), Imamura et al. (2009), lida and
Poesio (2011), Sasano and Kurohashi (2011)), and
Italian (e.g., lida and Poesio (2011)).

3 Chinese Overt Pronouns

Since our approach relies heavily on Chinese
overt pronouns, in this section we introduce them
by describing their four grammatical attributes,
namely NUMBER, GENDER, PERSON and ANI-
MACY. NUMBER has two values, singular and
plural. GENDER has three values, neuter, mascu-
line and feminine. PERSON has three values, first,
second and third. Finally, ANIMACY has two val-
ues, animate and inanimate.

We exploit ten personal pronouns that have
well-defined grammatical attribute values, namely
K (singular you), ¥ (I), 1t (he), it (she), ‘& (it),
YRATT (plural you), F AT (we), AT (masculine
they), {47 (feminine they), and ‘&'] (impersonal
they). As can be seen in Table 1, each of them can
be uniquely identified using these four attributes.

Pronouns NUMBER | GENDER | PERSON | ANIMACY
F ) singular | neuter first animate
R (you) singular | neuter second | animate
b (he) singular | masculine| third animate
b (she) singular | feminine | third animate
T (it) singular | neuter third inanimate
RATT (you) || plural neuter second | animate
AT (we) plural neuter first animate
fBATT (they) || plural masculine| third animate
TBAT (they) || plural feminine | third animate
‘©AT (they) || plural neuter third inanimate

Table 1: Attribute values of Chinese overt pronouns.

4 The Generative Model

4.1 Notation

Let p be an overt pronoun in PR, the set of the
10 overt pronouns described in Section 3. C, the
set of candidate antecedents of p, contains all and
only those maximal or modifier NPs that precede
p in the associated text and are at most two sen-
tences away from it.! k is the context surround-
ing p as well as every candidate antecedent c in
C; k. is the context surrounding p and candidate
antecedent c¢; and [ is a binary variable indicat-
ing whether c is the correct antecedent of p. The
set A = {Num,Gen, Per, Ani} has four ele-
ments, which correspond to NUMBER, GENDER,
PERSON and ANIMACY respectively. a is an at-
tribute in A. Finally, p, and ¢, are the attribute
values of p and ¢ with respect to a respectively.

4.2 Training

Our model estimates P(p, k, ¢, ), the probability
of seeing (1) the overt pronoun p; (2) the context
k surrounding p and its candidate antecedents; (3)
a candidate antecedent c of p; and (4) whether c is
the correct antecedent of p. Since we estimate this
probability from a raw, unannotated corpus, we are
effectively treating p, k, and c as observed data and
[ as hidden data.

Owing to the presence of hidden data, we es-
timate the model parameters using the EM algo-
rithm. Specifically, we use EM to iteratively es-
timate the model parameters from data in which
each overt pronoun is labeled with the probability
it corefers with each of its candidate antecedents
and apply the resulting model to re-label each overt
pronoun with the probability it corefers with each
of its candidate antecedents. Below we describe

'Only 8% of the overt pronouns in our corpus, the Chi-

nese portion of the OntoNotes 5.0 corpus, do not have any
antecedent in the preceding two sentences.
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the details of the E-step and the M-step.

4.2.1 E-Step
The goal of the E-step is to compute
P(l=1|p, k,c), the probability that a candi-
date antecedent c is the correct antecedent of p
given context k. Assuming that exactly one of the
p's candidate antecedents is its correct antecedent,
we can rewrite P(I=1|p, k, c) as follows:
P(p,k,c,1=1)
ZC'EC P(p7 ka C/, l:]')
Applying Chain Rule,
P(p, k,c,l1=1) as follows:
P(p,k,c,l1=1) = P(plk,c,l=1) x P(I=1]k, c)
x P(c|k) x P(k)

P(l=1|p, k,c) = (M

we can rewrite

2

Next, given [ = 1 (i.e., c is the antecedent of p),
we assume that we can generate p from ¢ without
looking at the context.” Then we represent p using
its grammatical attributes A. We further assume
that p's value with respect to attribute a € A is
independent of the value of each of its remaining
attributes given the antecedent's value with respect
to a. So we can rewrite P(p|k, ¢,l=1) as follows:

P(plk,c,1=1) = P(p|c,I1=1)
~ P(pNum7pGenapPe7‘7pAni|Ca lzl)

~ H P(palca,l=1)

acA

(€))

Moreover, we assume that (1) given p and c's
context, the probability of ¢ being the antecedent
of p is not affected by the context of the other can-
didate antecedents; and (2) k. is sufficient for de-
termining whether c is the antecedent of p. So,

P(I=1]k,c) = P(I=1lke,c) = P(l=1lk.) (4)
Furthermore, we assume that given context k,
each candidate antecedent of p is generated with
equal probability. In other words,
P(clk) ~ P(dk) Ve,d e C Q)
Given Equations (2), (3), (4) and (5), we can
rewrite P(I=1|p, k, ¢) as:
P(p,k,c,1=1)
Zc’GC P(p7 ka 0/7 lzl)
HaeA P(pa|ca, l:1) * P(l:1|kc)
ZCIEC HaeA P(pa’C:p l:1> * P(l:HkC/)
Q)

This assumption is reasonable because it is fairly easy to
determine which pronoun can be used to refer to a given NP.

P(l=1|p,k,c) =

~

765

As we can see from Equation (6), our model has
two groups of parameters, namely P(py|cq,l=1)
and P(l=1lk.). Since we have four grammatical
attributes, P(pg|cq,=1) contains four sets of pa-
rameters, with one set per attribute. Using Equa-
tion (6) and the current parameter estimates, we
can compute P(I=1|p, k, c).

Two points deserve mention before we describe
the M-step. First, we estimate P(I=1|p, k, ¢) from
all and only those overt pronouns p € PR that
are surface or deep subjects in their correspond-
ing sentences. This condition is motivated by our
observation that 99.56% of the ZPs in our evalu-
ation corpus (i.e., OntoNotes 5.0) are surface or
deep subjects. In other words, we impose this con-
dition so that we can focus our efforts on learn-
ing a model for resolving overt pronouns that are
subjects. This is by no means a limitation of our
model: if we were given a corpus in which many
ZPs occur as grammatical objects, we could sim-
ilarly train another model on overt objects. Sec-
ond, since in the E-step we attempt to probabilisti-
cally label every overt pronoun p that satisfies the
condition above, our model is effectively making
the simplifying assumption that every overt pro-
noun is anaphoric. This is clearly an overly sim-
plistic assumption. One way to relax this assump-
tion, which we leave as future work, is to first iden-
tify those pronouns that are anaphoric and then use
EM to estimate the joint probability only from the
anaphoric pronouns.

4.2.2 M-Step

Given P(I=1|p, k, ¢), the goal of the M-step is to
(re)estimate the model parameters, P(pg|cq,=1)
and P(I=1|k.), using maximum likelihood esti-
mation. Specifically, P(py|cq,(=1) is estimated
as follows:

_ Count(pa, cq,1=1) + 0
~ Count(cq,l=1) + 0 x |a|

P(pa|Ca,l:1> (7)

where Count(c,,l=1) is the expected number of
times ¢ has attribute value ¢, when it is the an-
tecedent of p; |al is the number of possible values
of attribute a; 6 is the Laplace smoothing param-
eter, which we set to 1; and Count(pqg, cq,1=1)
is the expected number of times p has attribute
value p, when its antecedent ¢ has attribute value
cq. Given attribute values p/, and ¢, we compute



/
a’

[=1) as follows:

D

. —m/ —pl
PsC:Pa 7pa 70(170@

Count(pl,, ¢

Count(pémcivlzl) P(l:”p7 k,

®)
Similarly, P(l=1|k.) is estimated as follows:
Count(ke,l=1) +6
P(l=1|k.) =
(I=1]k) Count (k) + 0 * 2

)

where Count(k.) is the number of times k. ap-
pears in the training data, and Count(k.,1=1) is
the expected number of times k.. is the context sur-
rounding a pronoun and its antecedent c. Given
context k., we compute Count(k.,l=1) as fol-
lows:

Count(k.,1=1) = Z P(l=1|p,k,c) (10)
k:ko=k!,

To start the induction process, we initialize all
parameters with uniform values. Specifically,
P(palcq,l=1) is set to |71|’ and P(l=1|k.) is set
to 0.5. Then we iteratively run the E-step and the
M-step until convergence.

There are two important questions we have not
addressed. First, how can we compute the four at-
tribute values of a candidate antecedent (i.e., ¢,
for each attribute @), which we need to estimate
P(pa|cq,1=1)? Second, what features should we
use to represent context k., which we need to esti-
mate P(I=1|k.)? We defer the discussion of these
questions to Sections 5 and 6.

4.3 Inference

After training, we can apply the resulting model to
resolve AZPs. Given an AZP z, we determine its
antecedent as follows:

(¢,p) = argmax P(I=1|p, k,c)
ceC, pePR

)

where PR is our set of 10 Chinese overt pronouns
and C is the set of candidate antecedents of z. In
other words, we apply Formula (11) to each AZP z,
searching for the candidate antecedent c and overt
pronoun p that maximize P(I=1|p, k, c) when p is
used to fill the ZP gap left behind by z. The c that
results in the maximum probability value over all
overt pronouns in PR is chosen as the antecedent
of z. In essence, since the model is trained on
overt pronouns but is applied to ZPs, we have to
exhaustively fill the ZP's gap under consideration
with each of the 10 overt pronouns in PR during
inference.

c)
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Although we can now apply our generative
model to resolve AZPs, the resolution procedure
can be improved further. The improvement is
motivated by a problem we observed previously
(Chen and Ng, 2013): an AZP and its closest an-
tecedent can sometimes be far away from each
other, thus making it difficult to correctly resolve
the AZP. To address this problem, we employ the
following resolution procedure in our experiments.
Given a test document, we process its AZPs in a
left-to-right manner. As soon as we resolve an
AZP to a preceding NP ¢, we fill the correspond-
ing AZP's gap with c. Hence, when we process
an AZP z, all of its preceding AZPs in the associ-
ated text have been resolved, with their gaps filled
by the NPs they are resolved to. To resolve z, we
create test instances between z and its candidate
antecedents in the same way as described before.
The only difference is that the set of candidate an-
tecedents of z may now include those NPs that are
used to fill the gaps of the AZPs resolved so far. In
other words, this incremental resolution procedure
may increase the number of candidate antecedents
of each AZP z. Some of these additional candidate
antecedents are closer to z than the original candi-
date antecedents, thereby facilitating the resolution
of z. If the model resolves z to the additional can-
didate antecedent that fills the gap left behind by,
say, AZP z', we postprocess the output by resolv-
ing 2 to the NP that 2/ is resolved to.?

5 Attributes of Candidate Antecedents

In this section, we describe how we determine
the four grammatical attribute values (NUMBER,
GENDER, PERSON and ANIMACY) of a candidate
antecedent c, as they are used to represent ¢ when
estimating P(p,|cq, (=1) for each attribute a.

5.1 ANIMACY

We determine the ANIMACY of a candidate an-
tecedent ¢ heuristically.  Specifically, we first
check the NP type of c. If ¢ is a pronoun, we look
up its ANIMACY in Table 1. If ¢ is a named en-
tity, there are two cases to consider: if ¢ is a per-
son*, we label it as animate; otherwise, we label it
as inanimate. If c is a common noun, we look up
the ANIMACY of its head noun in an automatically

3This postprocessing step is needed because the additional
candidate antecedents are only gap fillers.

* A detailed description of our named entity recognizer can
be found in Chen and Ng (2014).



constructed word list W L. If the head noun is not
in W L, we set its ANIMACY to unknown.

Our method for constructing W L is motivated
by an observation of measure words in Chinese:
some of them only modify inanimate nouns while
others only modify animate nouns. For example,
the nouns modified by the measure word 7K are al-
ways inanimate, as in — 5K 4% (one piece of paper).
On the other hand, the nouns modified by the mea-
sure word {\/. are always animate, as in —47 .\
(one worker).

Given this observation, we first define two lists,
M i and Myani. Man 1s a list of measure words
that can only modify animate nouns. M, 4 is a
list of measure words that can only modify inan-
imate nouns.” There exists a special measure
word in Chinese, >, which can be used to mod-
ify most of the common nouns regardless of their
ANIMACY. As a result, we remove “}> from both
lists. After constructing M,,; and M;pani, we (1)
parse the Chinese Gigaword corpus (Parker et al.,
2009), which contains 4,370,600 documents, using
an efficient dependency parser, ctbparser® (Qian et
al., 2010), and then (2) collect all pairs of words
(m,n), where m is a measure word, n is a com-
mon noun, and there is a NMOD dependency re-
lation between m and n. Finally, we determine
the ANIMACY of a given common noun n as fol-
lows. First, we retrieve all of the pairs contain-
ing n. Then, we sum over all occurrences of m
in Mgp; (call the sum Cl,,,;), as well as all occur-
rences of m in Mjyqn; (call the sum Cjpgpi). If
Cuni > Cinani, we label this common noun as an-
imate; otherwise, we label it as inanimate.

Table 2 shows the learned wvalues of
P(panilcani,I=1). These results are consis-
tent with our intuition: an animate (inanimate)
pronoun is more likely to be generated from
an animate (inanimate) antecedent than from an
inanimate (animate) antecedent. Note that animate
pronouns are more likely to be generated than
inanimate pronouns regardless of the antecedent's
ANIMACY. This can be attributed to the fact that
94.6% of the pronouns in our corpus are animate.

5.2 GENDER

We determine the GENDER of a candidate an-
tecedent c as follows. If ¢ is a pronoun, we look up
its GENDER in Table 1. Otherwise, we determine

SWe create these two lists with the help of this page:
http://chinesenotes.com/ref_measure_words.htm
®http://code.google.com/p/ctbparser/
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Pronoun . . .
Antecedont animate | inanimate
animate 0.999 0.001
inanimate 0.858 0.142
unknown 0.945 0.055

Table 2: Learned values of P(pani|cani, [=1).

its GENDER based on its ANIMACY. Specifically,
if ¢ is inanimate, we set its GENDER to neuter.
Otherwise, we determine its gender by looking up
a gender word list constructed by Bergsma and
Lin's (2006) approach. If the word is not in the
list, we set its GENDER to masculine by default.
Next, we describe how the aforementioned gen-
der word list is constructed. Following Bergsma
and Lin (2006), we define a dependency path as the
sequence of non-terminal nodes and dependency
labels between two potentially coreferent entities
in a dependency parse tree. From the parsed Chi-
nese Gigaword corpus, we first collect every de-
pendency path that connects two pronouns. For
each path P collected, we compute C'L(P), the
coreference likelihood of P, as follows:

Ni(P)

CLP) = ) + Mo (P)

(12)

where N;(P) is the number of times P connects
two identical pronouns, and Np (P) is the number
of times it connects two different pronouns. As-
suming that two identical pronouns in a sentence
are coreferent (Bergsma and Lin, 2006), we can
see that the larger a path's C'L value is, the more
likely it is that the two NPs it connects are corefer-
ent. To ensure that we have dependency paths that
are strongly indicative of coreference relations, we
consider a dependency path P a coreferent path if
and only if CL(P) > 0.8.

Given these coreferent paths, we can compute
the GENDER of a noun n as follows. First, we com-
pute (1) Nys(n), the number of coreferent paths
connecting n with a masculine pronoun; and (2)
Np(n), the number of coreferent paths connect-
ing n with a feminine pronoun. Then, if Ng(n) >
Nyr(n), we set n's gender to feminine; otherwise,
we set it to masculine.

Table 3 shows the learned values of
P(pgen|cGen,l=1). These results are con-
sistent with our intuition: a pronoun is a lot more
likely to be generated from an antecedent with the
same GENDER than one with a different GENDER.



Pronoun .. .
Antecedent neuter | feminine | masculine
neuter 0.864 0.018 0.117
feminine 0.065 0.930 0.005
masculine 0.130 0.041 0.828

Table 3: Learned values of P(pgen|cgen, (=1).

Pronoun .
Antecedent singular | plural
singular 0.861 0.139
plural 0.26 0.74

Table 4: Learned values of P(pnum|CNum, [=1).

5.3 NUMBER

When computing the NUMBER of a candidate an-
tecedent in English, Charniak and Elsner (2009)
rely on part-of-speech information. For example,
NN and NNP denote singular nouns, whereas NNS
and NNPS denote plural nouns. However, Chi-
nese part-of-speech tags do not provide such in-
formation. Hence, we need a different method for
finding the NUMBER of a candidate antecedent c in
Chinese. If c is a pronoun, we look up its NUMBER
in Table 1. If ¢ is a named entity, its NUMBER is
singular. If c is a common noun, we infer its NUM-
BER from its string: if the string ends with 1] or is
modified by a quantity word (e.g., —%%, %), ¢
is plural; otherwise, c is singular.

Table 4 shows the learned values of
P(pNum|CNum,!=1). These results are con-
sistent with our intuition: a pronoun is more likely
to be generated from an antecedent with the same
NUMBER than one with a different NUMBER.

5.4 PERSON

Finally, we compute the PERSON of a candi-
date antecedent c. Similar to Charniak and El-
sner (2009), we set & (I) and F&A] (we) to first
person, % (singular you) and {511 (plural you)
to second person, and everything else to third
person. We estimate two sets of probabilities
P(pper|cper,=1), one where p and c are from the
same speaker, and the other where they are from
different speakers.” This is based on our observa-
tion that P(pper|cper, [=1) could be very different
in these two cases.

"We employ a simple heuristic to identify the speaker of
NPs occurring in direct speech: we assume that the speaker
is the subject of the speech's reporting verb. So for example,
we identify Jack as the speaker of This book in the sentence
"This book is good," Jack said.
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Antecedont Pronoun first | second | third
first 0.856 | 0.119 | 0.025
second 0.219 | 0.766 | 0.016
third 0.289 | 0.077 | 0.634

Table 5: Learned values of P(pper|cper,l=1)
(same speaker).

Antecedent Pronoun first second | third
first 0.417 | 0.525 | 0.057
second 0.75 0.23 0.02
third 0.437 | 0.229 | 0.334

Table 6: Learned values of P(pper|cper,l=1)
(different speakers).

Tables 5 and 6 show the learned values of these
two sets of probabilities. These results are consis-
tent with our intuition. In the same-speaker case, a
pronoun is a lot more likely to be generated from
an antecedent with the same speaker than one with
a different speaker. In the different-speaker case,
a first (second) person pronoun is most likely to be
generated from a second (first) person pronoun.

6 Context Features

To fully specify our model, we need to describe
how to represent k., which is needed to compute
P(l=1|k.). Recall that k. encodes the context sur-
rounding candidate antecedent c and the associated
pronoun p. As described below, we represent k.
using eight features, some of which are motivated
by previous work on supervised AZP resolution
(e.g., Zhao and Ng (2007), Chen and Ng (2013)).
Note that (1) all but feature 1 are computed based
on syntactic parse trees, and (2) features 2, 3, 6,
and 8 are ternary-valued features.

1. the sentence distance between c and p;

2. whether the node spanning ¢ has an ancestor
NP node; if so, whether this NP node is a de-
scendant of ¢'s lowest ancestor IP node;

3. whether the node spanning ¢ has an ancestor
VP node; if so, whether this VP node is a de-
scendant of ¢'s lowest ancestor IP node;

4. whether vp has an ancestor NP node, where
vp is the VP node spanning the VP that fol-
lows p;

5. whether vp has an ancestor VP node;



Training Test
Documents 1,391 172
Sentences 36,487 6,083
Words 756,063 | 110,034
Overt Subject Pronouns 13,418 —
AZPs — 1,713

Table 7: Statistics on the training and test sets.

6. whether p is the first word of a sentence; if
not, whether p is the first word of an IP clause;

7. whether c is a subject whose governing verb
is lexically identical to the verb governing p;

8. whether c is the closest candidate antecedent
with subject grammatical role and is seman-
tically compatible with p's governing verb; if
not, whether c is the first semantically com-
patible candidate antecedent®.

Our approach to determine semantic compatibil-
ity (in feature 8) resembles Kehler et al.'s (2004)
and Yang et al.'s (2005) methods for computing se-
lectional preferences. Specifically, for each verb
and each noun that serves as a subject in Chinese
Gigaword, we compute their mutual information
(MI). Now, given a pronoun p and a candidate an-
tecedent c in the training/test corpus, we retrieve
the MI value of ¢ and p's governing verb. We then
consider them semantically compatible if and only
if their MI value is greater than zero.

7 Evaluation

7.1 Experimental Setup

Datasets. We employ the Chinese portion of the
OntoNotes 5.0 corpus that was used in the official
CoNLL-2012 shared task (Pradhan et al., 2012).
In the CoNLL-2012 data, the training set and de-
velopment set contain ZP coreference annotations,
but the test set does not. Therefore, we train our
models on the training set and perform evaluation
on the development set. Statistics on the datasets
are shown in Table 7. The documents in these
datasets come from six sources, namely Broadcast
News (BN), Newswire (NW), Broadcast Conver-
sation (BC), Telephone Conversation (TC), Web
Blog (WB) and Magazine (MZ).

8 We sort the candidate antecedents of p as follows. We
first consider the subject candidate antecedents in the same
sentence as p from right to left, then the other candidate an-
tecedents in the same sentence from right to left. Next, we
consider the candidate antecedents in the previous sentence,
also preferring candidates that are subjects, but in left-to-right

order. Finally, we consider the candidate antecedents two
sentences back, following the subject-first, left-to-right order.

769

Evaluation measures. We express the results of
ZP resolution in terms of recall (R), precision (P)
and F-score (F).

Evaluation settings. Following Chen and Ng
(2013), we evaluate our model in three settings.
In Setting 1, we assume the availability of gold
syntactic parse trees and gold AZPs. In Setting 2,
we employ gold syntactic parse trees and system
(i.e., automatically identified) AZPs. Finally, in
Setting 3, we employ system syntactic parse trees
and system AZPs. The gold and system syntactic
parse trees, as well as the gold AZPs, are obtained
from the CoNLL-2012 shared task dataset, while
the system AZPs are identified by the rule-based
approach described in the Appendix.’ Since our
AZP identification approach does not rely on any
labeled data, we are effectively evaluating an end-
to-end unsupervised AZP resolver in Setting 3.

7.2 Results

Baseline systems. We employ seven resolvers
as baseline systems. To gauge the difficulty of
the task, we employ four simple rule-based re-
solvers, which resolve an AZP z to (1) the can-
didate antecedent closest to z (Baseline 1); (2) the
subject NP closest to z (Baseline 2); (3) the clos-
est candidate antecedent that is semantically com-
patible with z (Baseline 3); and (4) the first can-
didate antecedent that is semantically compatible
with z, where the candidate antecedents are vis-
ited according to the order described in Footnote 8
(Baseline 4). These four baselines allow us to
study the role of (1) recency, (2) salience, (3) re-
cency combined with semantic compatibility, and
(4) salience combined with semantic compatibil-
ity in AZP resolution respectively. The remaining
three baselines are state-of-the-art supervised AZP
resolvers, which include our own resolver (Chen
and Ng, 2013) as well as our re-implementations
of Zhao and Ng's (2007) resolver and Kong and
Zhou's (2010) resolver.

The test set results of these seven baseline re-
solvers when evaluated under the three afore-
mentioned evaluation settings are shown in Ta-
ble 8. The system AZPs employed by the rule-
based resolvers are obtained using our rule-based

One may wonder why we do not train a supervised sys-
tem for identifying AZPs and instead experiment with a rule-
based AZP identification system. The reason is that employ-
ing labeled data defeats the whole purpose of having an unsu-
pervised AZP resolution model: if annotated data is available
for training an AZP identification system, the same data can
be used to train an AZP resolution system.



Setting 1: Setting 2: Setting 3:

Gold Parses, Gold Parses, System Parses,

Gold AZPs System AZPs System AZPs
Baseline R P F R P F R P F
Selecting closest candidate antecedent 25.0 252 25.1] 183 10.8 13.6] 103 6.7 8.1
Selecting closest subject 42.0 43.6 428 31.8 19.2 239 18.0 11.9 144
Selecting closest semantically compatible candidate antecedent || 28.5 28.8 28.7| 20.5 12.2 153 | 11.7 7.6 9.2
Selecting first semantically compatible candidate antecedent 452 457 4551 33.6 20.0 25.1| 18.9 12.3 149
Zhao and Ng (2007) 41.5 415 41.5]| 224 244 233| 12.7 142 134
Kong and Zhou (2010) 449 449 449| 33.0 193 24.4| 18.7 119 145
Chen and Ng (2013) 47.7 477 47.7| 253 27.6 26.4| 149 16.7 15.7

Table 8: AZP resolution results of the baseline systems on the test set.

Setting 1: Gold Parses, Gold AZPs Setting 2: Gold Parses, System AZPs Setting 3: System Parses, System AZPs

Best Baseline Our Model Best Baseline Our Model Best Baseline Our Model
Source || R P F R P F R P F R P F R P F R P F
Overall|| 47.7 47.7 47.7| 47.5 479 47.7|| 253 27.6 26.4| 354 21.0 264 149 16.7 157| 19.9 129 15.7
NW 38.1 38.1 38.1| 41.7 41.7 41.7|| 155 21.7 18.1| 29.8 24.8 27.0| 6.0 122 8.0 | 11.9 13.0 124
MZ 346 34.6 34.6| 34.0 342 34.1 18.5 19.6 19.0| 24.1 145 18.1| 62 94 75 | 62 52 57
WB 46.1 46.1 46.1| 47.9 479 479 21.8 22.0 21.8| 373 18.7 249 85 114 9.7 | 19.0 11.3 14.2
BN 472 472 47.2| 52.8 52.8 52.8| 21.8 33.2 263| 31.5 28.1 29.7|| 14.6 263 18.8| 18.2 19.5 18.8
BC 52.7 52.7 52.7| 49.8 50.3 50.0|| 23.3 30.7 26.5| 38.0 21.0 27.0| 12.7 16.2 14.3| 20.6 12.4 15.5
TC 512 51.2 51.2| 452 46.7 46.0|| 43.1 28.2 34.1| 42.4 20.3 27.4| 33.2 17.1 22.5| 32.2 133 18.8

Table 9: AZP resolution results of the best baseline and our unsupervised model on the test set.

AZP identification system. On the other hand,

Our model.

Results of the best baseline and our

since our supervised resolvers are meant to be re-
implementations of existing resolvers, we follow
previous work and let them employ a supervised
AZP identification system. In particular, we em-
ploy the one described in Chen and Ng (2013).

Several observations can be made about these
results. First, among the rule-based resolvers,
Baseline 4 achieves the best performance, outper-
forming Baselines 1, 2, and 3 by 12.9%, 1.5%,
and 10.8% in F-score respectively when averaged
over the three evaluation settings. From their
relative performance, which remains the same in
the three settings, we can conclude that as far as
AZP resolution is concerned, (1) salience plays a
greater role than recency; and (2) semantic com-
patibility is useful. Second, among the super-
vised baselines, our supervised resolver (Chen and
Ng, 2013) achieves the best performance, outper-
forming Zhao and Ng's resolver and Kong and
Zhou's resolver by 3.9% and 2.0% in F-score re-
spectively when averaged over the three evalua-
tion settings. Finally, comparing the rule-based
resolvers and the learning-based resolvers, we can
see that the best rule-based baseline (Baseline 4)
performs even better than Zhao and Ng's resolver
and Kong and Zhou's resolver.

In the rest of this subsection, we will compare
our unsupervised model against the best baseline,
Chen and Ng's (2013) supervised resolver.

770

model on the entire test set and each of the six
sources are shown in Table 9. As we can see, our
model achieves the same overall F-score as the best
baseline under all three settings, despite the fact
that it is unsupervised. In fact, our model even out-
performs the best baseline on NW, WB and BN in
Setting 1, NW, WB, BN and BC in Setting 2, and
NW, WB and BC in Setting 3.

It is worth mentioning that while the two re-
solvers achieved the same overall performance,
their outputs differ a lot from each other. Specifi-
cally, the two models only agree on the antecedents
of 55% of the AZPs in Setting 1.°

7.3 Ablation Experiments

Impact of P(p,|c,,l=1) and P(l=1]k.). Re-
call that our model is composed of five probability
terms, P(pg|cq, [=1) for each of the four grammat-
ical attributes and P(I=1|k.), the context proba-
bility. To investigate the contribution of context
and each attribute to overall performance, we con-
duct ablation experiments. Specifically, in each
ablation experiment, we remove exactly one prob-
ability term from the model and retrain it.

""Note that it is difficult to directly compare the outputs
produced under Settings 2 and 3: the AZPs identified by the
best baseline are quite different from those identified by our
rule-based system, as can be inferred from the AZP identifi-
cation results in Table 12.



Setting 1 Setting 3
System R P F R P F
Full model 475 479 477 199 129 15.7
— NUMBER 47.5 479 47.7|| 19.7 12.8 155
— GENDER 44,5 45.0 44.7| 19.2 12.5 15.1
— PERSON 452 456 4541 19.1 124 15.1
— ANIMACY 45.1 455 453 19.1 124 15.1
— Context Features 32.9 33.1 33.0|] 152 9.8 11.9

Table 10: Probability term ablation results.

Ablation results under Settings 1 and 3 are
shown in Table 10. As we can see, under Set-
ting 1, after NUMBER is ablated, performance does
not drop. We attribute this to the fact that al-
most all candidate antecedents are singular. On the
other hand, when we ablate any of the remaining
three attributes, performance drops significantly
by 2.3—-3.0% in overall F-score.!! Similar trends
can be observed with respect to Setting 3: after
NUMBER is ablated, performance only decreases
by 0.2%, while ablating any of the other three at-
tributes results in a drop of 0.6%.

Results after ablating context are shown in the
last row of Table 10. As we can see, the F-score
drops significantly by 14.7% and 3.8% under Set-
tings 1 and 3 respectively. These results illustrate
the importance of context features in our model.
Context feature ablation. Recall that we em-
ployed eight context features to encode the rela-
tionship between a pronoun and a candidate an-
tecedent. To determine the relative contribution
of these eight features to overall performance,
we conduct ablation experiments under Settings 1
and 3. In these ablation experiments, all four gram-
matical attributes are retained in the model.

Ablation results are shown in rows 2—9 of Ta-
ble 11. To facilitate comparison, the F-score of the
model in which all eight context features are used
is shown in row 1. As we can see, feature 8 (the
rule-based feature) is the most useful feature: its
removal causes the F-scores of our resolver to drop
significantly by 6.4% under Setting 1 and 1.5% un-
der Setting 3.

7.4 Error Analysis

To gain additional insights into our full model, we
examine its major sources of error below. To focus
on errors attributable to AZP resolution, we ana-
lyze our full model under Setting 1.

Specifically, we randomly select 100 AZPs that
our model incorrectly resolves under Setting 1.

"' All significance tests are paired t-tests, with p < 0.05.
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Setting 1 Setting 3
System R P F R P F
Full model 475 479 47.7] 199 129 157
— Feature 1 || 46.1 46.5 46.3| 194 12.6 153
— Feature 2 || 46.5 469 46.7| 194 12.6 153
— Feature 3 || 45.3 45.7 455] 19.1 124 15.1
— Feature 4 || 47.4 47.8 47.6| 20.1 13.0 158
— Feature 5 || 47.4 47.8 47.6| 19.7 12.8 155
— Feature 6 || 47.1 47.5 47.3| 19.6 12.7 154
— Feature 7 || 47.1 47.5 47.3| 20.1 13.0 158
— Feature 8 || 41.2 41.6 41.4| 18.0 11.8 14.2

Table 11: Context feature ablation results.

We found that 17 errors are attributable to dis-
course disfluency, lack of background knowledge
and subject detection, while the remaining 83 er-
rors can be divided into three types:

Failure to recognize the topics of a document.
Our model incorrectly resolves 32 AZPs that are
coreferent with NPs corresponding to the topics of
the associated documents. Consider the following
example:

U\ 2] T &A@t . 178X R)E T
adb s, Fpro* HHEILEH A ZHITZ —
([Bali Town] is located in the Northwest of Taipei
Basin. Its administrative area is affiliated with
Taipei County, *pro* is one of Taipei County's 29
towns and cities.)!?

The model incorrectly resolves the AZP *pro*
to /T IE[X. (Its administrative area). The reason is
that the correct antecedent, /\ i £ (Bali Town),
is far from *pro*: there are five candidate an-
tecedents between *pro* and /\ §. £ (Bali Town).
Note, however, that it is easy for a human to re-
solve *pro* to /\ H. % (Bali Town) because the
whole passage is discussing /\ . Z (Bali Town).
Hence, to correctly handle such cases, one may
construct a topic model over the passage and as-
sign each candidate antecedent a prior probability
so that the resulting system favors the selection of
candidates representing the topics as antecedents.

Errors in computing semantic compatibility.
This type of error contributes to 28 of the incor-
rectly resolved AZPs. When computing seman-
tic compatibility in our model, we only consider
the mutual information between a candidate an-
tecedent and the pronoun's governing verb, but in
some cases, additional context needs to be taken
into account. Consider the following example:

12The pronoun Jts in the phrase lts administrative area is
inserted into the English translation for the sake of grammat-
icality and correct understanding of the sentence. The corre-
sponding Chinese phrase does not contain any pronoun.



[ SCHEFE R BN] RAE T 20 [24 4TI ~T BRI
hrve N, *pro* BIEEH N4 LT,
([Marines] killed about [24 unarmed Iraqis], *pro*
include women and six children.)

There are two candidate antecedents in this ex-
ample, — 3 4 fififi% P\ (Marines) and 24 % FG
PRI 5 N (24 unarmed Iraqis), which we
denote as ¢; and ¢y respectively. The correct an-
tecedent of *pro* is co , while our model wrongly
resolves *pro* to c;. Note that both ¢; and co are
compatible with the AZP's governing verb 3 #§
(include). However, if the object of the govern-
ing verb, i.e., 127N 44 )L # (women and six
children), were also considered, the model could
determine that c; is not compatible with the object
while ¢ is, and then correctly resolve *pro* to cs.
Failure to recognize and exploit semantically
similar sentences. This type of error contributes
to 23 wrongly resolved AZPs. Recall that an AZP
is omitted for brevity, so the sentence it appears in
often expresses similar meaning to an earlier sen-
tence. However, our model fails to handle such
cases. Consider the following example:
[FEHE A S E BB 2 TF) 25 2k 220045
*pro* RIELZEA T .

([The command and the onrush of troops] lost con-
nection with each other. ... *pro* cannot connect
with each other.)

The above example shows two sentences that
are separated by some other sentences. The AZP
under consideration is in the last sentence, while
the first sentence contains the correct antecedent
FRHE AN S BN (the command and the on-
rush troops), denoted as ¢;. Our model fails to re-
solve *pro* to c;, because there are many com-
peting candidate antecedents between c; and AZP.
However, if our model were aware of the similarity
between the constructions appearing after ¢; and
*pro*, i.e., < [Al 2 K LBk (lost connection
with each other) and BtE(Z$ AN | T (cannot con-
nect with each other), then it might be able to cor-
rectly resolve the AZP.

8 Conclusion

We proposed an unsupervised model for Chinese
zero pronoun resolution, investigating the novel
hypothesis that an unsupervised probabilistic re-
solver trained on overt pronouns can be applied to
resolve ZPs. To our knowledge, this is the first un-
supervised probabilistic model for this task. Ex-
periments on the OntoNotes 5.0 corpus showed
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that our unsupervised model rivaled its state-of-
the-art supervised counterparts in performance.
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Appendix: Automatic AZP Identification

Our automatic AZP identification system employs
an ordered set of rules. The first rule is a positive
rule that aims to extract as many candidate AZPs
as possible. It is followed by seven negative rules
that aim to improve precision by filtering out er-
roneous candidate AZPs. Below we first describe
the rules and then evaluate this rule-based system.

Rule 1. Add candidate AZP z if it occurs before
the leftmost word spanned by a VP node vp.

Rule2. Remove z ifiits associated vp is in a coor-
dinate structure or modified by an adverbial node.

Rule 3. Remove z if the parent of its associated
vp node is not an IP node.

Rule 4. Remove z if its associated vp has a NP
or QP node as an ancestor.

Rule 5. Remove z if one of the left sibling nodes
of vp is NP, QP, IP or ICP.

Rule 6. Remove z if (1) z does not begin a sen-
tence, (2) the highest node whose spanning word
sequence ends with the left non-comma neighbor
word of z is either NP, QP or IP, and (3) the parent
of this node is VP.



Gold Parses System Parses
Systems R P F R P F

Rule-based || 72.4 42.3 53.4] 423 26.8 32.8
Supervised || 50.6 55.1 52.8|| 30.8 34.4 32.5

Table 12: AZP identification results on the test set.

Rule 7. Remove z if vp's lowest IP ancestor has
(1) a VP node as its parent and (2) a VV node as
its left sibling.

Rule 8. Remove z if it begins a document.

To gauge the performance of our rule-based
AZP identification system, we compare it with our
supervised AZP identification system (Chen and
Ng, 2013). Results of the two systems on our test
set are shown in Table 12. As we can see, the F-
scores achieved by the rule-based system is com-
parable to those of the supervised system.
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