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Abstract

Translation into morphologically rich lan-
guages is an important but recalcitrant prob-
lem in MT. We present a simple and effec-
tive approach that deals with the problem in
two phases. First, a discriminative model is
learned to predict inflections of target words
from rich source-side annotations. Then, this
model is used to create additional sentence-
specific word- and phrase-level translations
that are added to a standard translation model
as “synthetic” phrases. Our approach re-
lies on morphological analysis of the target
language, but we show that an unsupervised
Bayesian model of morphology can success-
fully be used in place of a supervised analyzer.
We report significant improvements in transla-
tion quality when translating from English to
Russian, Hebrew and Swahili.

1 Introduction

Machine translation into morphologically rich lan-
guages is challenging, due to lexical sparsity and the
large variety of grammatical features expressed with
morphology. In this paper, we introduce a method
that uses target language morphological grammars
(either hand-crafted or learned unsupervisedly) to
address this challenge and demonstrate its effective-
ness at improving translation from English into sev-
eral morphologically rich target languages.

Our approach decomposes the process of produc-
ing a translation for a word (or phrase) into two
steps. First, a meaning-bearing stem is chosen and
then an appropriate inflection is selected using a

feature-rich discriminative model that conditions on
the source context of the word being translated.

Rather than attempting to directly produce full-
sentence translations using such an elementary pro-
cess, we use our model to generate translations of
individual words and short phrases that augment—
on a sentence-by-sentence basis—the inventory of
translation rules obtained using standard translation
rule extraction techniques (Chiang, 2007). We call
these synthetic phrases.

The major advantages of our approach are: (i)
synthesized forms are targeted to a specific transla-
tion context; (ii) multiple, alternative phrases may
be generated with the final choice among rules left
to the global translation model; (iii) virtually no
language-specific engineering is necessary; (iv) any
phrase- or syntax-based decoder can be used with-
out modification; and (v) we can generate forms that
were not attested in the bilingual training data.

The paper is structured as follows. We first
present our “translate-and-inflect” model for pre-
dicting lexical translations into morphologically rich
languages given a source word and its context (§2).
Our approach requires a morphological grammar to
relate surface forms to underlying 〈stem, inflection〉
pairs; we discuss how either a standard morpholog-
ical analyzer or a simple Bayesian unsupervised an-
alyzer can be used (§3). After describing an ef-
ficient parameter estimation procedure for the in-
flection model (§4), we employ the translate-and-
inflect model in an MT system. We describe
how we use our model to synthesize translation
options (§5) and then evaluate translation quality
on English–Russian, English–Hebrew, and English–
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Swahili translation tasks, finding significant im-
provements in all language pairs (§6). We finally
review related work (§7) and conclude (§8).

2 Translate-and-Inflect Model

The task of the translate-and-inflect model is illus-
trated in Fig. 1 for an English–Russian sentence pair.
The input will be a sentence e in the source language
(in this paper, always English) and any available lin-
guistic analysis of e. The output f will be composed
of (i) a sequence of stems, each denoted σ and (ii)
one morphological inflection pattern for each stem,
denoted µ. When the information is available, a
stem σ is composed of a lemma and an inflectional
class. Throughout, we use Ωσ to denote the set
of possible morphological inflection patterns for a
given stem σ. Ωσ might be defined by a grammar;
our models restrict Ωσ to be the set of inflections
observed anywhere in our monolingual or bilingual
training data as a realization of σ.1

We assume the availability of a deterministic
function that maps a stem σ and morphological in-
flection µ to a target language surface form f . In
some cases, such as our unsupervised approach in
§3.2, this will be a concatenation operation, though
finite-state transducers are traditionally used to de-
fine such relations (§3.1). We abstractly denote this
operation by ?: f = σ ? µ.

Our approach consists in defining a probabilistic
model over target words f . The model assumes in-
dependence between each target word f conditioned
on the source sentence e and its aligned position i in
this sentence.2 This assumption is further relaxed
in §5 when the model is integrated in the translation
system.

We decompose the probability of generating each
target word f in the following way:

p(f | e, i) =
∑
σ?µ=f

p(σ | ei)︸ ︷︷ ︸
gen. stem

× p(µ | σ, e, i)︸ ︷︷ ︸
gen. inflection

Here, each stem is generated independently from a
single aligned source word ei, but in practice we

1This prevents the model from generating words that would
be difficult for the language model to reliably score.

2This is the same assumption that Brown et al. (1993) make
in, for example, IBM Model 1.

use a standard phrase-based model to generate se-
quences of stems and only the inflection model op-
erates word-by-word. We turn next to the inflection
model.

2.1 Modeling Inflection

In morphologically rich languages, each stem may
be combined with one or more inflectional mor-
phemes to express many different grammatical fea-
tures (e.g., case, definiteness, mood, tense, etc.).

Since the inflectional morphology of a word gen-
erally expresses multiple grammatical features, we
would like a model that naturally incorporates rich,
possibly overlapping features in its representation of
both the input (i.e., conditioning context) and out-
put (i.e., the inflection pattern). We therefore use
the following parametric form to model inflectional
probabilities:

u(µ, e, i) = exp
[
ϕ(e, i)>Wψ(µ)+

ψ(µ)>Vψ(µ)
]
,

p(µ | σ, e, i) =
u(µ, e, i)∑

µ′∈Ωσ
u(µ′, e, i)

. (1)

Here, ϕ is an m-dimensional source context fea-
ture vector function, ψ is an n-dimensional mor-
phology feature vector function, W ∈ Rm×n and
V ∈ Rn×n are parameter matrices. As with the
more familiar log-linear parametrization that is writ-
ten with a single feature vector, single weight vec-
tor and single bias vector, this model is linear in its
parameters (it can be understood as working with
a feature space that is the outer product of the two
feature spaces). However, using two feature vectors
allows to define overlapping features of both the in-
put and the output, which is important for modeling
morphology in which output variables are naturally
expressed as bundles of features. The second term
in the sum in u enables correlations among output
features to be modeled independently of input, and
as such can be understood as a generalization of the
bias terms in multi-class logistic regression (on the
diagonal Vii) and interaction terms between output
variables in a conditional random field (off the diag-
onal Vij).
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она пыталась пересечь пути на ее велосипед

she had attempted to cross the road on her bike

PRP   VBD         VBN          TO    VB       DT     NN    IN  PRP$   NN

nsubj

aux

xcomp

σ:пытаться_V,+,μ:mis2sfm2e

C50   C473        C28          C8    C275   C37   C43  C82 C94   C331

root

-1 +1

она пыталась пересечь пути на ее велосипед

she had attempted to cross the road on her bike

PRP   VBD         VBN          TO    VB       DT     NN    IN  PRP$   NN

nsubj

aux

xcomp

σ:пытаться_V,+,μ:mis2sfm2e

C50   C473        C28          C8    C275   C37   C43  C82 C94   C331

root

-1 +1

Figure 1: The inflection model predicts a form for the target verb lemma σ =пытаться (pytat’sya) based on its
source attempted and the linear and syntactic source context. The correct inflection string for the observed Russian
form in this particular training instance is µ = mis-sfm-e (equivalent to the more traditional morphological string:
+MAIN+IND+PAST+SING+FEM+MEDIAL+PERF).

source aligned word ei
parent word eπi

with its dependency πi → i
all children ej | πj = i with their dependency i→ j

source words ei−1 and ei+1


 token

part-of-speech tag
word cluster


– are ei, eπi

at the root of the dependency tree?
– number of children, siblings of ei

Figure 2: Source features ϕ(e, i) extracted from e and its linguistic analysis. πi denotes the parent of the token in
position i in the dependency tree and πi → i the typed dependency link.

2.2 Source Context Features: ϕ(e, i)

In order to select the best inflection of a target-
language word, given the source word it translates
and the context of that source word, we seek to ex-
ploit as many features of the context as are avail-
able. Consider the example shown in Fig. 1, where
most of the inflection features of the Russian word
(past tense, singular number, and feminine gender)
can be inferred from the context of the English word
it is aligned to. Indeed, many grammatical functions
expressed morphologically in Russian are expressed
syntactically in English. Fortunately, high-quality
parsers and other linguistic analyzers are available
for English.

On the source side, we apply the following pro-
cessing steps:

• Part-of-speech tagging with a CRF tagger
trained on sections 02–21 of the Penn Tree-
bank.

• Dependency parsing with TurboParser (Mar-
tins et al., 2010), a non-projective dependency

parser trained on the Penn Treebank to produce
basic Stanford dependencies.

• Assignment of tokens to one of 600 Brown
clusters, trained on 8G words of English text.3

We then extract binary features from e using this
information, by considering the aligned source word
ei, its preceding and following words, and its syn-
tactic neighbors. These are detailed in Figure 2.

3 Morphological Grammars and Features

We now describe how to obtain morphological anal-
yses and convert them into feature vectors (ψ) for
our target languages, Russian, Hebrew, and Swahili,
using supervised and unsupervised methods.

3.1 Supervised Morphology
The state-of-the-art in morphological analysis uses
unweighted morphological transduction rules (usu-

3The entire monolingual data available for the translation
task of the 8th ACL Workshop on Statistical Machine Transla-
tion was used.
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ally in the form of an FST) to produce candidate
analyses for each word in a sentence and then sta-
tistical models to disambiguate among the analy-
ses in context (Hakkani-Tür et al., 2000; Hajič et
al., 2001; Smith et al., 2005; Habash and Rambow,
2005, inter alia). While this technique is capable
of producing high quality linguistic analyses, it is
expensive to develop, requiring hand-crafted rule-
based analyzers and annotated corpora to train the
disambiguation models. As a result, such analyzers
are only available for a small number of languages,
and, as a practical matter, each analyzer (which re-
sulted from different development efforts) operates
differently from the others.

We therefore focus on using supervised analysis
for a single target language, Russian. We use the
analysis tool of Sharoff et al. (2008) which produces
for each word in context a lemma and a fixed-length
morphological tag encoding the grammatical fea-
tures. We process the target side of the parallel data
with this tool to obtain the information necessary
to extract 〈lemma, inflection〉 pairs, from which we
compute σ and morphological feature vectors ψ(µ).

Supervised morphology features: ψ(µ). Since
a positional tag set is used, it is straightforward to
convert each fixed-length tag µ into a feature vector
by defining a binary feature for each key-value pair
(e.g., Tense=past) composing the tag.

3.2 Unsupervised Morphology
Since many languages into which we might want to
translate do not have supervised morphological an-
alyzers, we now turn to the question of how to gen-
erate morphological analyses and features using an
unsupervised analyzer. We hypothesize that perfect
decomposition into rich linguistic structures may not
be required for accurate generation of new inflected
forms. We will test this hypothesis by experimenting
with a simple, unsupervised model of morphology
that segments words into sequences of morphemes,
assuming a (naı̈ve) concatenative generation process
and a single analysis per type.

Unsupervised morphological segmentation. We
assume that each word can be decomposed into any
number of prefixes, a stem, and any number of suf-
fixes. Formally, we let M represent the set of all
possible morphemes and define a regular grammar

M∗MM∗ (i.e., zero or more prefixes, a stem, and
zero or more suffixes). To infer the decomposition
structure for the words in the target language, we as-
sume that the vocabulary was generated by the fol-
lowing process:

1. Sample morpheme distributions from symmet-
ric Dirichlet distributions: θp ∼ Dir|M |(αp)
for prefixes, θσ ∼ Dir|M |(ασ) for stems, and
θs ∼ Dir|M |(αs) for suffixes.

2. Sample length distribution parameters
λp ∼ Beta(βp, γp) for prefix sequences
and λs ∼ Beta(βs, γs) for suffix sequences.

3. Sample a vocabulary by creating each word
type w using the following steps:

(a) Sample affix sequence lengths:
lp ∼ Geometric(λp);
ls ∼ Geometric(λs).

(b) Sample lp prefixes p1, . . . , plp indepen-
dently from θp; ls suffixes s1, . . . , sls in-
dependently from θs; and a stem σ ∼ θσ.

(c) Concatenate prefixes, the stem, and suf-
fixes: w = p1+· · ·+plp+σ+s1+· · ·+sls .

We use blocked Gibbs sampling to sample seg-
mentations for each word in the training vocabulary.
Because of our particular choice of priors, it possible
to approximately decompose the posterior over the
arcs of a compact finite-state machine. Sampling a
segmentation or obtaining the most likely segmenta-
tion a posteriori then reduces to familiar FST opera-
tions. This model is reminiscent of work on learning
morphology using adaptor grammars (Johnson et al.,
2006; Johnson, 2008).

The inferred morphological grammar is very sen-
sitive to the Dirichlet hyperparameters (αp, αs, ασ)
and these are, in turn, sensitive to the number of
types in the vocabulary. Using αp, αs � ασ � 1
tended to recover useful segmentations, but we have
not yet been able to find reliable generic priors for
these values. Therefore, we selected them empiri-
cally to obtain a stem vocabulary size on the parallel
data that is one-to-one with English.4 Future work

4Our default starting point was to use αp = αs =
10−6, ασ = 10−4 and then to adjust all parameters by factors
of 10.
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Table 1: Corpus statistics.

Parallel Parallel+Monolingual
Sentences EN-tokens TRG-tokens EN-types TRG-types Sentences TRG-tokens TRG-types

Russian 150k 3.5M 3.3M 131k 254k 20M 360M 1,971k
Hebrew 134k 2.7M 2.0M 48k 120k 806k 15M 316k
Swahili 15k 0.3M 0.3M 23k 35k 596k 13M 334k

will involve a more direct method for specifying or
inferring these values.

Unsupervised morphology features: ψ(µ). For
the unsupervised analyzer, we do not have a map-
ping from morphemes to structured morphological
attributes; however, we can create features from the
affix sequences obtained after morphological seg-
mentation. We produce binary features correspond-
ing to the content of each potential affixation posi-
tion relative to the stem:

prefix      suffix
...-3 -2 -1 STEM +1 +2 +3...

For example, the unsupervised analysis µ =
wa+ki+wa+STEM of the Swahili word wakiwapiga
will produce the following features:

ψprefix[−3][wa](µ) = 1,

ψprefix[−2][ki](µ) = 1,

ψprefix[−1][wa](µ) = 1.

4 Inflection Model Parameter Estimation

To set the parameters W and V of the inflection pre-
diction model (Eq. 1), we use stochastic gradient de-
scent to maximize the conditional log-likelihood of
a training set consisting of pairs of source (English)
sentence contextual features (ϕ) and target word in-
flectional features (ψ). The training instances are
extracted from the word-aligned parallel corpus with
the English side preprocessed as discussed in §2.2
and the target side disambiguated as discussed in §3.
When morphological category information is avail-
able, we train an independent model for each open-
class category (in Russian, nouns, verbs, adjectives,
numerals, adverbs); otherwise a single model is used
for all words (excluding words less than four char-
acters long, which are ignored).

Statistics of the parallel corpora used to train the
inflection model are summarized in Table 1. It is
important to note here that our richly parameterized
model is trained on the full parallel training cor-
pus, not just on a handful of development sentences
(which are typically used to tune MT system param-
eters). Despite this scale, training is simple: the in-
flection model is trained to discriminate among dif-
ferent inflectional paradigms, not over all possible
target language sentences (Blunsom et al., 2008) or
learning from all observable rules (Subotin, 2011).
This makes the training problem relatively tractable:
all experiments in this paper were trained on a sin-
gle processor using a Cython implementation of the
SGD optimizer. For our largest model, trained on
3.3M Russian words, n = 231K × m = 336 fea-
tures were produced, and 10 SGD iterations were
performed in less than 16 hours.

4.1 Intrinsic Evaluation

Before considering the broader problem of integrat-
ing the inflection model in a machine translation
system, we perform an artificial evaluation to ver-
ify that the model learns sensible source sentence-
target inflection patterns. To do so, we create an
inflection test set as follows. We preprocess the
source (English) sentences exactly as during train-
ing (§2.2), and using the target language morpholog-
ical analyzer, we convert each aligned target word to
〈stem, inflection〉 pairs. We perform word alignment
on the held-out MT development data for each lan-
guage pair (cf. Table 1), exactly as if it were going to
produce training instances, but instead we use them
for testing.

Although the resulting dataset is noisy (e.g., due
to alignment errors), this becomes our intrinsic eval-
uation test set. Using this data, we measure inflec-
tion quality using two measurements:5

5Note that we are not evaluating the stem translation model,

1681



acc. ppl. |Ωσ|

Su
pe

rv
is

ed
Russian

N 64.1% 3.46 9.16
V 63.7% 3.41 20.12
A 51.5% 6.24 19.56
M 73.0% 2.81 9.14

average 63.1% 3.98 14.49

U
ns

up
. Russian all 71.2% 2.15 4.73

Hebrew all 85.5% 1.49 2.55
Swahili all 78.2% 2.09 11.46

Table 2: Intrinsic evaluation of inflection model (N:
nouns, V: verbs, A: adjectives, M: numerals).

• the accuracy of predicting the inflection given
the source, source context and target stem, and

• the inflection model perplexity on the same set
of test instances.

Additionally, we report the average number of pos-
sible inflections for each stem, an upper bound to the
perplexity that indicates the inherent difficulty of the
task. The results of this evaluation are presented in
Table 2 for the three language pairs considered. We
remark on two patterns in these results. First, per-
plexity is substantially lower than the perplexity of a
uniform model, indicating our model is overall quite
effective at predicting inflections using source con-
text only. Second, in the supervised Russian results,
we see that predicting the inflections of adjectives
is relatively more difficult than for other parts-of-
speech. Since adjectives agree with the nouns they
modify in gender and case, and gender is an idiosyn-
cratic feature of Russian nouns (and therefore not
directly predictable from the English source), this
difficulty is unsurprising.

We can also inspect the weights learned by the
model to assess the effectiveness of the features
in relating source-context structure with target-side
morphology. Such an analysis is presented in Fig. 3.

4.2 Feature Ablation
Our inflection model makes use of numerous fea-
ture types. Table 3 explores the effect of removing
different kinds of (source) features from the model,
evaluated on predicting Russian inflections using
supervised morphological grammars.6 Rows 2–3

just the inflection prediction model.
6The models used in the feature ablation experiment were

trained on fewer examples, resulting in overall lower accuracies

show the effect of removing either linear or depen-
dency context. We see that both are necessary for
good performance; however removing dependency
context substantially degrades performance of the
model (we interpret this result as evidence that Rus-
sian morphological inflection captures grammatical
relationships that would be expressed structurally in
English). The bottom four rows explore the effect
of source language word representation. The results
indicate that lexical features are important for accu-
rate prediction of inflection, and that POS tags and
Brown clusters are likewise important, but they seem
to capture similar information (removing one has lit-
tle impact, but removing both substantially degrades
performance).

Table 3: Feature ablation experiments using supervised
Russian classification experiments.

Features (ϕ(e, i)) acc.
all 54.7%
−linear context 52.7%
−dependency context 44.4%
−POS tags 54.5%
−Brown clusters 54.5%
−POS tags, −Brown cl. 50.9%
−lexical items 51.2%

5 Synthetic Phrases

We turn now to translation; recall that our translate-
and-inflect model is used to augment the set of rules
available to a conventional statistical machine trans-
lation decoder. We refer to the phrases it produces
as synthetic phrases.

Our baseline system is a standard hierarchical
phrase-based translation model (Chiang, 2007). Fol-
lowing Lopez (2007), the training data is compiled
into an efficient binary representation which allows
extraction of sentence-specific grammars just before
decoding. In our case, this also allows the creation
of synthetic inflected phrases that are produced con-
ditioning on the sentence to translate.

To generate these synthetic phrases with new in-
flections possibly unseen in the parallel training

than seen in Table 2, but the pattern of results is the relevant
datapoint here.
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Russian supervised
Verb: 1st Person

child(nsubj)=I child(nsubj)=we
Verb: Future tense

child(aux)=MD child(aux)=will
Noun: Animate

source=animals/victims/...
Noun: Feminine gender

source=obama/economy/...
Noun: Dative case

parent(iobj)
Adjective: Genitive case

grandparent(poss)

Hebrew
Suffix ים (masculine plural)

parent=NNS after=NNS
Prefix א (first person sing. + future)

child(nsubj)=I child(aux)='ll
Prefix כ (preposition like/as)

child(prep)=IN parent=as
Suffix י (possesive mark)

before=my child(poss)=my
Suffix ה (feminine mark)

child(nsubj)=she before=she
Prefix כש (when)

before=when before=WRB

Swahili
Prefix li (past)

source=VBD source=VBN
Prefix nita (1st person sing. + future)

child(aux) child(nsubj)=I
Prefix ana (3rd person sing. + present)

source=VBZ
Prefix wa (3rd person plural)

before=they child(nsubj)=NNS
Suffix tu (1st person plural)

child(nsubj)=she before=she
Prefix ha (negative tense)

source=no after=not

Figure 3: Examples of highly weighted features learned by the inflection model. We selected a few frequent morpho-
logical features and show their top corresponding source context features.

data, we first construct an additional phrase-based
translation model on the parallel corpus prepro-
cessed to replace inflected surface words with their
stems. We then extract a set of non-gappy phrases
for each sentence (e.g., X → <attempted,
пытаться V>). The target side of each such phrase
is re-inflected, conditioned on the source sentence,
using the inflection model from §2. Each stem is
given its most likely inflection.7

The original features extracted for the stemmed
phrase are conserved, and the following features
are added to help the decoder select good synthetic
phrases:

• a binary feature indicating that the phrase is
synthetic,

• the log-probability of the inflected forms ac-
cording to our model,

• the count of words that have been inflected,
with a separate feature for each morphological
category in the supervised case.

Finally, these synthetic phrases are combined with
the original translation rules obtained for the base-
line system to produce an extended sentence-specific
grammar which is used as input to the decoder. If a

7Several reviewers asked about what happens when k-best
inflections are added. The results for k ∈ {2, 4, 8} range from
no effect to an improvement over k = 1 of about 0.2 BLEU
(absolute). We hypothesize that larger values of k could have a
greater impact, perhaps in a more “global” model of the target
string; however, exploration of this question is beyond the scope
of this paper.

phrase already existing in the standard phrase table
happens to be recreated, both phrases are kept and
will compete with each other with different features
in the decoder.

For example, for the large EN→RU system, 6%
of all the rules used for translation are synthetic
phrases, with 65% of these phrases being entirely
new rules.

6 Translation Experiments

We evaluate our approach in the standard discrim-
inative MT framework. We use cdec (Dyer et al.,
2010) as our decoder and perform MIRA training
to learn feature weights of the sentence translation
model (Chiang, 2012). We compare the following
configurations:

• A baseline system, using a 4-gram language
model trained on the entire monolingual and
bilingual data available.

• An enriched system with a class-based n-gram
language model8 trained on the monolingual
data mapped to 600 Brown clusters. Class-
based language modeling is a strong baseline
for scenarios with high out-of-vocabulary rates
but in which large amounts of monolingual
target-language data are available.

• The enriched system further augmented with
our inflected synthetic phrases. We expect the
class-based language model to be especially

8For Swahili and Hebrew, n = 6; for Russian, n = 7.
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helpful here and capture some basic agreement
patterns that can be learned more easily on
dense clusters than from plain word sequences.

Detailed corpus statistics are given in Table 1:

• The Russian data consist of the News Com-
mentary parallel corpus and additional mono-
lingual data crawled from news websites.9

• The Hebrew parallel corpus is composed of
transcribed TED talks (Cettolo et al., 2012).
Additional monolingual news data is also used.

• The Swahili parallel corpus was obtained by
crawling the Global Voices project website10

for parallel articles. Additional monolingual
data was taken from the Helsinki Corpus of
Swahili.11

We evaluate translation quality by translating and
measuring the BLEU score of a 2000–3000 sentence-
long evaluation corpus, averaging the results over 3
MIRA runs to control for optimizer instability (Clark
et al., 2011). Table 4 reports the results. For all lan-
guages, using class language models improves over
the baseline. When synthetic phrases are added, sig-
nificant additional improvements are obtained. For
the English–Russian language pair, where both su-
pervised and unsupervised analyses can be obtained,
we notice that expert-crafted morphological analyz-
ers are more efficient at improving translation qual-
ity. Globally, the amount of improvement observed
varies depending on the language; this is most likely
indicative of the quality of unsupervised morpholog-
ical segmentations produced and the kinds of gram-
matical relations expressed morphologically.

Finally, to confirm the effectiveness of our ap-
proach as corpus size increases, we use our tech-
nique on top of a state-of-the art English–Russian
system trained on data from the 8th ACL Work-
shop on Machine Translation (30M words of bilin-
gual text and 410M words of monolingual text). The
setup is identical except for the addition of sparse

9http://www.statmt.org/wmt13/
translation-task.html

10http://sw.globalvoicesonline.org
11http://www.aakkl.helsinki.fi/cameel/

corpus/intro.htm

Table 4: Translation quality (measured by BLEU) aver-
aged over 3 MIRA runs.

EN→RU EN→HE EN→SW

Baseline 14.7±0.1 15.8±0.3 18.3±0.1

+Class LM 15.7±0.1 16.8±0.4 18.7±0.2

+Synthetic
unsupervised 16.2±0.1 17.6±0.1 19.0±0.1

supervised 16.7±0.1 — —

rule shape indicator features and bigram cluster fea-
tures. In these large scale conditions, the BLEU score
improves from 18.8 to 19.6 with the addition of word
clusters and reaches 20.0 with synthetic phrases.
Details regarding this system are reported in Ammar
et al. (2013).

7 Related Work

Translation into morphologically rich languages is
a widely studied problem and there is a tremen-
dous amount of related work. Our technique of syn-
thesizing translation options to improve generation
of inflected forms is closely related to the factored
translation approach proposed by Koehn and Hoang
(2007); however, an important difference to that
work is that we use a discriminative model that con-
ditions on source context to make “local” decisions
about what inflections may be used before combin-
ing the phrases into a complete sentence translation.

Combination pre-/post-processing solutions are
also frequently proposed. In these, the tar-
get language is generally transformed from multi-
morphemic surface words into smaller units more
amenable to direct translation, and then a post-
processing step is applied independent of the trans-
lation model. For example, Oflazer and El-Kahlout
(2007) experiment with partial morpheme groupings
to produce novel inflected forms when translating
into Turkish; Al-Haj and Lavie (2010) compare dif-
ferent processing schemes for Arabic. A related but
different approach is to enrich the source language
items with grammatical features (e.g., a source sen-
tence like John saw Mary is preprocessed into, e.g.,
John+subj saw+msubj+fobj Mary+obj) so as
to make the source and target lexicons have simi-
lar morphological contrasts (Avramidis and Koehn,
2008; Yeniterzi and Oflazer, 2010; Chang et al.,
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2009). In general, this work suffers from the prob-
lem that it is extremely difficult to know a priori
what the right preprocessing is for a given language
pair, data size, and domain.

Several post-processing approaches have relied
on supervised classifiers to predict the optimal com-
plete inflection for an incomplete or lemmatized
translation. Minkov et al. (2007) present a method
for predicting the inflection of Russian and Arabic
sentences aligned to English sentences. They train a
sequence model to predict target morphological fea-
tures from the lemmas and the syntactic structures
of both aligned sentences and demonstrate its ability
to recover accurately inflections on reference trans-
lations. Toutanova et al. (2008) apply this method
to generate inflections after translation in two differ-
ent ways: by rescoring inflected n-best outputs or by
translating lemmas and re-inflecting them a posteri-
ori. El Kholy and Habash (2012) follow a similar
method and compare different approaches for gen-
erating rich morphology in Arabic after a transla-
tion step. Fraser et al. (2012) observe improvements
for translation into German with a similar method.
As in that work, we model morphological features
rather than directly inflected forms. However, that
work may be criticized for providing no mechanism
to translate surface forms directly, even when evi-
dence for a direct translation is available in the par-
allel data.

Unsupervised morphology has begun to play a
role in translation between morphologically com-
plex languages. Stallard et al. (2012) show that an
unsupervised approach to Arabic segmentation per-
forms as well as a supervised segmenter for source-
side preprocessing (in terms of English translation
quality). For translation into morphological rich lan-
guages, Clifton and Sarkar (2011) use an unsuper-
vised morphological analyzer to produce morpho-
logical affixes in Finnish, injecting some linguistic
knowledge in the generation process.

Several authors have proposed using conditional
models to predict the probability of phrase transla-
tion in context (Gimpel and Smith, 2008; Chan et
al., 2007; Carpuat and Wu, 2007; Jeong et al., 2010).
Of particular note is the work of Subotin (2011),
who use a conditional model to predict morpholog-
ical features conditioned on rich linguistic features;
however, this latter work also conditions on target

context, which substantially complicates decoding.

Finally, synthetic phrases have been used for
different purposes than generating morphology.
Callison-Burch et al. (2006) expanded the cov-
erage of a phrase table by adding synthesized
phrases by paraphrasing source language phrases,
Chen et al. (2011) produced “fabricated” phrases
by paraphrasing both source and target phrases, and
Habash (2009) created new rules to handle out-of-
vocabulary words. In related work, Tsvetkov et al.
(2013) used synthetic phrases to improve generation
of (in)definite articles when translating into English
from Russian and Czech, two languages which do
not lexically mark definiteness.

8 Conclusion

We have presented an efficient technique that ex-
ploits morphologically analyzed corpora to produce
new inflections possibly unseen in the bilingual
training data. Our method decomposes into two
simple independent steps involving well-understood
discriminative models.

By relying on source-side context to generate ad-
ditional local translation options and by leaving the
choice of the full sentence translation to the decoder,
we sidestep the difficulty of computing features on
target translations hypotheses. However, many mor-
phological processes (most notably, agreement) are
most best modeled using target language context. To
capture target context effects, we depend on strong
target language models. Therefore, an important
extension of our work is to explore the interaction
of our approach with more sophisticated language
models that more directly model morphology, e.g.,
the models of Bilmes and Kirchhoff (2003), or, alter-
natively, ways to incorporate target language context
in the inflection model.

We also achieve language independence by
exploiting unsupervised morphological segmen-
tations in the absence of linguistically informed
morphological analyses.

Code for replicating the experiments is available from
https://github.com/eschling/morphogen;
further details are available in (Schlinger et al., 2013).
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