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Abstract

In this paper, we present a recursive neural
network (RNN) model that works on a syn-
tactic tree. Our model differs from previous
RNN models in that the model allows for an
explicit weighting of important phrases for the
target task. We also propose to average param-
eters in training. Our experimental results on
semantic relation classification show that both
phrase categories and task-specific weighting
significantly improve the prediction accuracy
of the model. We also show that averaging the
model parameters is effective in stabilizing the
learning and improves generalization capacity.
The proposed model marks scores competitive
with state-of-the-art RNN-based models.

Introduction

there are questions yet to be answered, e.g., whether
such enhancement is beneficial in other NLP tasks
as well, and whether a similar improvement can
be achieved by using syntactic information of more
commonly available types such as phrase categories
and syntactic heads.

In this paper, we present a supervised RNN model
for a semantic relation classification task. Our model
is different from existing RNN models in that impor-
tant phrases can be explicitly weighted for the task.
Syntactic information used in our model includes
part-of-speech (POS) tags, phrase categories and
syntactic heads. POS tags are used to assign vec-
tor representations to word-POS pairs. Phrase cate-
gories are used to determine which weight matrices
are chosen to combine phrases. Syntactic heads are
used to determine which phrase is weighted during
combining phrases. To incorporate task-specific in-

Recursive Neural Network (RNN) models ardormation, phrases on the path between entity pairs

promising deep learning models which have beef® further weighted.
applied to a Variety of natural Ianguage processing The second contribution of our work is the intro-

(NLP) tasks, such as sentiment classification, consiuction of parameter averaging into RNN models.
pound similarity, relation classification and syntactidn our preliminary experiments, we observed that
parsing (Hermann and Blunsom, 2013; Socher et athe prediction performance of the model often fluc-
2012; Socher et al., 2013). RNN models can reprduates significantly between training iterations. This
sent phrases of arbitrary length in a vector space #fictuation not only leads to unstable performance
a fixed dimension. Most of them use minimal Syn.Of the resulting models, but also makes it difficult to
tactic information (Socher et al., 2012). fine-tune the hyperparameters of the model. Inspired
Recently, Hermann and Blunsom (2013) proby Swersky et al. (2010), we propose to average the
posed a method for leveraging syntactic informamodel parameters in the course of training. A re-
tion, namely CCG combinatory operators, to guidéent technique for deep learning models of similar
composition of phrases in RNN models. While theiivein is dropout(Hinton et al., 2012), but averaging
models were successfully applied to binary sentis simpler to implement.
ment classification and compound similarity tasks, Our experimental results show that our model per-
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b2 tor representations iW. Figure 1 shows an example

\WTD N of such recursive representations. A parent vector
vy P1 NN p € R¥1 is computed from its direct child vectors
W W ¢; ande, € RI*1:
e Ks G T.,.T. T.,.T.
i ? : W, p = tanh(oa W, "7 b Wy T ¢ T T ),
a_DT word_NN vector_NN T T T T _
whereW, """ and W, """ € R4 are weight

. ) . Jmatrices that depend on the phrase categories of
Figure 1. A recursive representations of a phrase “a

word vector” with POS tags of the words (DT, NN andand Cr- Here,cl- andc, have phrase Catgg%nésl

NN respectively). For example, the two word-POS pair@ndTC_r respgctlvely (such "’N vV, etc.). b CT_ €
“word_NN" and “vectorNN" with a syntactic category R%*! is a bias vector. To incorporate the impor-
N are combined to represent the phrase “word vector”. tance of phrases into the model, two subtrees of a

node may have different weights, € [0,1] and

ar(= 1 — «g), taking phrase importance into ac-
forms better than standard RNN models. By aVEount. The value oty is manually specified and

eraging the model pf"fame‘.ers’ our model acmev%ﬁtomatically applied to all nodes based on prior
performance competitive with the MV-RNN mOdelknowIedge about the task. In this way, we can com-

in Socher e_t al. (2012), without using Comlwwlt'on|'oute vector representations for phrases of arbitrary
ally expensive word-dependent matrices.

length. We denote a set of such matrice$¥#s and

2 An Averaged RNN Model with Syntax ~ 21as Vectors ab.

Our model is a supervised RNN that works on a bi-2'3 Objective Function and Learning

nary syntactic tree. As our first step to leverage inAs With other RNN models, we add on the top of a
formation available in the tree, we distinguish word§1odex asoftmax classifier. The classifier is used to
with the same spelling but POS tags in the vectdpredict ak-class distributiond(x) € R**! over a
space. Our model also uses different weight mapecific task to train our model:
trices dependent on the phrase (_:a_tegorles of child d(z) — softmax(Wlabelw n blabel% (1)
nodes (phrases or words) in combining phrases. Our
model further weights those nodes that appear to ghere Wietel ¢ RExd js a weight matrix and
important. blabel ¢ RE*1 is a bias vector. We denotéx) <
Compositional functions of our model follow RX*1 as the target distribution vector at node
those of the SU-RNN model in Socher et al. (2013)(x) has a 0-1 encoding: the entry at the correct la-
bel oft(x) is 1, and the remaining entries are 0. We
then compute the cross entropy error betwdéen)
Our model simply assigns vector representations @ndt(x):
word-POS pairs. For example, a word “caused” K
San be reprefented in two ways: “causdsD” and B(z) = — Ztk(w)logdk(:c),
causedVBN". The vectors are represented as col-
umn vectors in a matri¥, € RVl whered is
the dimension of a vector aridlis a set of all word- and define an objective function as the suntigi)
POS pairs we consider. over all training data:

2.1 Word-POS Vector Representations

k=1

A
2.2 Compositional Functions with Syntax J(0) = Z E(x)+ §H<9||2,

In construction of parse trees, we associate each of

the tree node with ité-dimensional vector represen-whered) = (W,, W;,.. b, Wlabel plabely js the set of
tation computed from vector representations of iteur model parameters that should be learned a
subtrees. For leaf nodes, we look up word-POS vewector of regularization parameters.
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To computed(x), we can directly leverage any classifier: Cause-Effect
other nodes’ feature vectors in the same tree. We

7
denote such additional feature vectoreas R9*1, /\
and extend Eq. (1): S
a. (1) ..(Alis caused...

d(x) = softmax(W'ebely + Z Wpddg! 4 plabely entity 1 entity 2

(2

_ _  Figure 2: Classifying the relation between two entities.
whereWdd ¢ RE>d gre weight matrices for addi-

tional features. We denote these matri#¥§? as

Wadd \We also addV 2% to ¢ test. For the validation set, we randomly sampled
2,182 samples from the training data.

0 = (W,, W, b, Wiabel yyadd plabely To predict a class label, we first find the minimal

phrase that covers the target entities and then use the
The gradient of/ (0) vector representation of the phrase (Figure 2).
As explained in Section 2.3, we can directly con-
0J(0) _ 5~ 0E(=) |y nect features on any other nodes toshiémax clas-
o0 — 00 sifier. In this work, we used three such internal fea-

tures: two vector representations of target entities

is efficiently computed via backpropagation througknd one averaged vector representation of words be-
structure (Goller and HKchler, 1996). To minimize tween the entities

J(6), we use batch L-BFGS(Hermann and Blun- _
som, 2013; Socher et al., 2012). 3.2 Weights on Phrases

We tuned the weighty; (or o) introduced in Sec-

24 Averaging tion 2.2 for this particular task. There are two fac-

We use averaged model parameters tors: syntactic heads and syntactic path between tar-
. get entities. Our model puts a weighte [0.5,1]
5— 1 ZHt on head phrases, arid—- 3 on the others. For re-
T+1 lation classification tasks, syntactic paths between

target entities are important (Zhang et al., 2006), so
at test time, wheré, is the vector of model parame- our model also puts another weighte [0.5,1] on
ters aftert iterations of the L-BFGS optimization. phrases on the path, aind- v on the others. When
Our preliminary experimental results suggest thdioth child nodes are on the path or neither of them

averaging exceptW, works well. on the path, we set = 0.5. The two weight fac-
_ _ tors are summed up and divided Byo be the final
3 Experimental Settings weightsa; anda, to combine the phrases. For ex-

. . _ (1-p+ _ p+(1—)
We used the Enju parser (Miyao and Tsujii, 2008fMPle, we sety = “—3 Tando, = S

for syntactic parsing. We usdd phrase categories when the r_ight child node is the head and the left
given by Enju. child node is on the path.

3.3 Initialization of Model Parameters and
Tuning of Hyperparameters

3.1 Task: Semantic Relation Classification

We evaluated our model on a semantic relation clas-

sification task: SemEval 2010 Task 8 (Hendrickx efVe initialized We with 50-dimensional word vec-

al., 2010). Following Socher et al. (2012), we re_tor§ trained with the model of Collobert et

garded the task as a 19-class classification problem. 2Socher et al. (2012) used richer features including words

There are 8,000 samples for training, and 2,717 f@ound entity pairs in their implementation.
The word vectors are provided dtttp://ronan.

We used liIbLBFGS provided athttp://www. collobert.com/senna/ . We used the vectors without any
chokkan.org/software/liblbfgs/ . modifications such as normalization.
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Method F1 (%) 100

Our model 79.4 90 |

RNN 74.8 80 |

MV-RNN 79.1 70 | LA

RNN w/ POS, WordNet, NER 77.6 60|

MV-RNN w/ POS, WordNet, NER 82.4 g s |

SVM w/ bag-of-words 73.1 Lo

SVM w/ lexical and semantic features 82.2 30 |

20 | training set (AVE) —— |

Table 1: Comparison of our model with other methods ol validation set (AVE) ——
SemEval 2010 task 8. 107 - va}[g;"t,'gﬁ ::: : |

Method F1 (%) %0 10 20 30 40 50 6 70 80 9 100 110

Our model 79.4 #L-BFGS iterations

Our model w/o phrase categories (PC) 77.7

Our model w/o head weights (HW) 78.8 Figure 3: F1 vs Training iterations.

Our model w/o path weights (PW) 78.7

Our model w/o averaging (AVE) 76.9 i . .
Our model w/o PC. HW. PW. AVE 741 tably, the score of our model is competitive with that

of the MV-RNN model (79.1% F1), which is com-
Table 2: Contributions of syntactic and task-specific inputationally much more expensive. Readers are re-
formation and averaging. ferred to Hermann and Blunsom (2013) for the dis-
cussion about the computational complexity of the
_ MV-RNN model. We improved the performance of
al. (2011), andW, with 3 + ¢, wherel ¢ RdXd_ RNN models on the task without much increasing
is an identity matrix. Here; is zero-mean gaussian ihe complexity. This is a significant practical advan-

random variable with a variance 0f01. The ini- 546 of our model, although its expressive power is
tialization of W, is the same as that of Socher e{,,t the same as that of the MV-RNN model.

al. (2013). The remaining model parameters were Our model outperforms the RNN model with one

initialized with 0. lexical and two semantic external features: POS

We tuned hyperparameters in our model using thl%gs, WordNet hypernyms and named entity tags
validation set for each experimental setting. The hy(NER) of target word pairs (external features). The
perparameters include the regularization paramete{f,.RNN model with external features shows bet-
for W, Wi, W< andw ¥, and the weight$ 1o herformance than our model. An SVM with rich
and~. For example, the best performance for OUfgyica| and semantic features (Rink and Harabagiu,
model with all the proposed methods was obtaineQOlO) also outperforms ours. Note, however, that
with the va_Iues:l()—ﬁ, 107%,107%,107%, 0.7 and  is s not a fair comparison because those mod-
0.9 respectively. els use rich external resources such as WordNet and
named entity tags.

4 Results and Discussion

Table 1 shows the performance of our model and thét1 Contributions of Proposed Methods

of previously reported systems on the test set. Thé/e conducted additional experiments to quantify the
performance of an SVM system with bag-of-wordsontributions of phrase categories, heads, paths and
features was reported in Rink and Harabagiu (20103wveraging to our classification score. As shown in
and the performance of the RNN and MV-RNNTable 2, our model without phrase categories, heads
models was reported in Socher et al. (2012). Ouwr paths still outperforms the RNN model with ex-
model achieves an F1 score of 79.4% and outpeternal features. On the other hand, our model with-
forms the RNN model (74.8% F1) as well as theout averaging yields a lower score than the RNN
simple SVM-based system (73.1% F1). More nomodel with external features, though it is still bet-
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ter than the RNN model alone. Without utiliz- Geoffrey E. Hinton, Nitish Srivastava, Alex Krizhevsky,

ing these four properties, our model obtained only llya Sutskever and Ruslan R. Salakhutdinov. 2012.
74.1% F1. These results indicate that syntactic and Improving neural networks by preventing co-

task-specific information and averaging contribute 2daptation of feature,'de'tectolr.@ arXiv:1207.0580

to the performance improvement. The improvemen\{usw(e Miyao and Jun’ichi Tsujii. 2008-eature Forest

. hieved b imol dificati f . Models for Probabilistic HPSG Parsingn Computa-
IS achieved Dy a Simple modification of COMPOSI- 44y Linguistics 34(1):35-80, MIT Press.

tional functions in RNN models. Bryan Rink and Sanda Harabagiu. 2010TD: Clas-
sifying Semantic Relations by Combining Lexical and
Semantic Resourcet SemEval 2010

Figure 3 shows the training curves in terms of FRichard Socher, Brody Huval, Christopher D. Manning
scores. These curves clearly demonstrate that pa-and Andrew Y. Ng. 2012Semantic Compositionality
rameter averaging helps to stabilize the learning and Through Recursive Matrix-Vector Spacés EMNLP.

4.2 Effects of Averaging in Training

improve generalization capacity. Richard Socher, John Bauer, C_hristqpher D. Marjrjing and
Andrew Y. Ng. 2013. Parsing with Compositional
5 Conclusion Vector Grammarsin ACL

Kevin Swersky, Bo Chen, Ben Marlin and Nando de Fre-
We have presented an averaged RNN model for se-itas. 2010.A tutorial on stochastic approximation al-
mantic relation classification. Our experimental re- gorithms for training Restricted Boltzmann Machines
sults show that syntactic information such as phrase and Deep Belief Netdn ITA workshop
categories and heads improves the performance, aMB;\ Z(:hc?rrr]]gb Jsii(taezlzgpngél\]tfrllzitl: ;:TdRié?iizggbﬁmgér?oEonel
the task-specific weighting is also beheflmal. The tities wi?h Both Flat and Structured Featurels COL-
results also demonstrate that averaging the model|\c/acL
parameters not only stabilizes the learning but also
improves the generalization capacity of the model.
As future work, we plan to combine deep learning
models with richer information such as predicate-

argument structures.

Acknowledgments

We thank the anonymous reviewers for their insight-
ful comments.

References

Ronan Collobert, Jason Westonédn Bottou, Michael
Karlen, Koray Kavukcuoglu, and Pavel Kuksa. 2011.
Natural Language Processing (almost) from Scratch
In JMLR, 12:2493-2537.

Christoph Goller and Andreasii¢hler. 1996.Learning
Task-Dependent Distributed Representations by Back-
propagation Through Structurén ICNN.

Iris Hendrickx, Su Nam Kim, Zornitsa Kozareva, Preslav
Nakov, DiarmuidO Seaghdha, Sebastian Radarco
Pennacchiotti, Lorenza Romano and Stan Szpakowicz.
2010. SemEval-2010 Task 8: Multi-Way Classication
of Semantic Relations Between Pairs of Nomin&hs
SemEval 2010

Karl Moritz Hermann and Phil Blunsom. 20138he Role
of Syntax in Vector Space Models of Compositional Se-
mantics In ACL.

1376



