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Abstract

Why do certain combinations of words such
as “disadvantageous peace” or “metal to the
petal” appeal to our minds as interesting ex-
pressions with a sense of creativity, while
other phrases such as “quiet teenager”, or
“geometrical base” not as much? We present
statistical explorations to understand the char-
acteristics of lexical compositions that give
rise to the perception of being original, inter-
esting, and at times even artistic. We first ex-
amine various correlates of perceived creativ-
ity based on information theoretic measures
and the connotation of words, then present ex-
periments based on supervised learning that
give us further insights on how different as-
pects of lexical composition collectively con-
tribute to the perceived creativity.

1 Introduction

An essential property of natural language is the gen-
erative capacity that makes it possible for people to
express indefinitely many thoughts through indef-
initely many different ways of composing phrases
and sentences (Chomsky, 1965). The possibility of
novel, creative expressions never seems to exhaust.
Various types of writers, such as novelists, journal-
ists, movie script writers, and creatives in adver-
tising, continue creating novel phrases and expres-
sions that are original while befitting in expressing
the desired meaning in the given situation. Consider
unique phrases such as “geological split personal-
ity”, or “intoxicating Shangri-La of shoes”,' that

"Examples from New York Times articles in 2013.
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continue flowing into the online text drawing atten-
tion from readers.

Writers put significant effort in choosing the per-
fect words in completing their compositions, as a
well-chosen combination of words is impactful in
readers’ minds for rendering the precise intended
meaning, as well as stimulating an increased level
of cognitive responses and attention. Metaphors in
particular, one of the quintessential forms of lin-
guistic creativity, have been discussed extensively
by studies across multiple disciplines, e.g., Cog-
nitive Science, Psychology, Linguistics, and Liter-
ature (e.g., Lakoff and Johnson (1980), McCurry
and Hayes (1992), Goatly (1997)). Moreover, re-
cent studies based on fMRI begin to discover bio-
logical evidences that support the impact of creative
phrases on people’s minds. These studies report that
unconventional metaphoric expressions elicit signif-
icantly increased involvement of brain processing
when compared against the effect of conventional
metaphors or literal expressions (e.g., Mashal et al.
(2007), Mashal et al. (2009)).

Several linguistic elements, e.g., syntax, seman-
tics, and pragmatics, are likely to be working to-
gether in order to lead to the perception of creativ-
ity. However, their underlying mechanisms by and
large are yet to be investigated. In this paper, as a
small step toward quantitative understanding of lin-
guistic creativity, we present a focused study on lex-
ical composition two content words.

Being creative, by definition, implies qualities
such as being unique, novel, unfamiliar or uncon-
ventional. But not every unfamiliar combination of
words would appeal as creative. For example, unfa-
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miliar biomedical terms, e.g., “cardiac glycosides”,
are only informative without appreciable creativity.
Similarly, less frequent combinations of words, e.g.,
“rotten detergent” or “quiet teenager”, though de-
scribing situations that are certainly uncommon, do
not bring about the sense of creativity. Finally, some
unique combinations of words can be just nonsensi-
cal, e.g., “elegant glycosides”.

Different studies assumed different definitions of
linguistic creativity depending on their context and
end goals (e.g., Chomsky (1976), Zhu et al. (2009),
Gervés (2010), Maybin and Swann (2007), Carter
and McCarthy (2004)). In this paper, as an opera-
tional definition, we consider a phrase creative if it
is (a) unconventional or uncommon, and (b) expres-
sive in an interesting, imaginative, or inspirational
way.

A system that can recognize creative expressions
could be of practical use for many aspiring writers
who are often in need of inspirational help in search-
ing for the optimal choice of words. Such a system
can also be integrated into automatic assessment of
writing styles and quality, and utilized to automat-
ically construct a collection of interesting expres-
sions from the web, which may be potentially useful
for enriching natural language generation systems.

With these practical goals in mind, we aim to un-
derstand phrases with linguistic creativity in a broad
scope. Similarly as the work of Zhu et al. (2009),
our study encompasses phrases that evoke the sense
of interestingness and creativity in readers’ minds,
rather than focusing exclusively on clearly but nar-
rowly defined figure of speeches such as metaphors
(e.g., Shutova (2010)), similes (e.g., Veale et al.
(2008), Hao and Veale (2010)), and humors (e.g.,
Mihalcea and Strapparava (2005), Purandare and
Litman (2006)). Unlike the study of Zhu et al.
(2009), however, we concentrate specifically on how
combinations of different words give rise to the
sense of creativity, as this is an angle that has not
been directly studied before. We leave the roles of
syntactic elements as future research.

We first examine various correlates of perceived
creativity based on information theoretic measures
and the connotation of words, then present experi-
ments based on supervised learning that give us fur-
ther insights on how different aspects of lexical com-
position collectively contribute to the perceived cre-
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ativity.

2 Theories of Creativity and Hypotheses

Many researchers, from the ancient philosophers to
the modern time scientists, have proposed theories
that attempt to explain the mechanism of creative
process. In this section, we draw connections from
some of these theories developed for general human
creativity to the problem of quantitatively interpret-
ing linguistic creativity in lexical composition.

2.1 Divergent Thinking and Composition

Divergent thinking (e.g., McCrae (1987)), which
seeks to generate multiple unstereotypical solutions
to an open ended problem has been considered as
the key element in creative process, which contrasts
with convergent thinking that find a single, cor-
rect solution (e.g., Cropley (2006)). Applying the
same high-level idea to lexical composition, diver-
gent composition that explores an unusual, uncon-
ventional set of words is more likely to be creative.

Note that the key novelty then lies in the composi-
tional operation itself, i.e., the act of putting together
a set of words in an unexpected way, rather than the
rareness of individual words being used. In recent
years there has been a swell of work on composi-
tional distributional semantics that captures the com-
positional aspects of language understanding, such
as sentiment analysis (e.g., Yessenalina and Cardie
(2011), Socher et al. (2011)) and language model-
ing (e.g., Mitchell and Lapata (2009), Baroni and
Zamparelli (2010), Guevara (2011), Clarke (2012),
Rudolph and Giesbrecht (2010)). However, none
has examined the compositional nature in quantify-
ing creativity in lexical composition.

We consider two computational approaches to
capture the notion of creative composition. The first
is via various information theoretic measures, e.g.,
relative entropy reduction, to measure the surprisal
of seeing the next word given the previous word.
The second is via supervised learning, where we ex-
plore different modeling techniques to capture the
statistical regularities in creative compositional op-
erations. In particular, we will explore (1) compo-
sitional operations of vector space models, (2) ker-
nels capturing the non-linear composition of differ-
ent dimensions in the meaning space, (3) the use of



neural networks as an alternative to incorporate non-
linearity in vector composition. (See §5).

2.2 Latent Memory and Creative Semantic
Subspace

Although we expect that unconventional composi-
tion has a connection to creativeness of resulting
phrases, that alone does not explain many counter
examples where the composition itself is uncommon
but the resulting expression is not creative due to
lack of interestingness or imagination, e.g., “room
and water”.> Therefore, we must consider addi-
tional conditions that give rise to creative phrases.

Let S represent the semantic space, i.e., the set of
all possible semantic representation that can be ex-
pressed by a phrase that is composed of two content
words.> Then we hypothesize that some subsets of
semantic space {S;|S; C S} are semantically futile
regions for appreciable linguistic creativity, regard-
less of how novel the composition in itself might be.
Such regions may include technical domains such as
law or pharmacology. Similarly, we expect seman-
tically fruitful subsets of semantic space where cre-
ative expressions are more frequently found. For in-
stance, phrases such as “guns and roses” and “metal
to the petal” are semantically close to each other and
yet both can be considered as interesting and cre-
ative (as opposed to one of them losing the sense of
creativity due to its semantic proximity to the other).

This notion of creative semantic subspace con-
nects to theories that suggest that latent memories
serve as motives for creative ideas and that one’s
creativity is largely depending on prior experience
and knowledge one has been exposed to (e.g., Freud
(1908), Necka (1999), Glaskin (2011), Cohen and
Levinthal (1990), Amabile (1997)), a point also
made by Einstein: “The secret to creativity is know-
ing how to hide your sources.”

Figure 5 presents visualized supports for creative
semantic subspace,* where we observe that phrases
in the neighborhood of legal terms are generally
not creative, while the semantic neighborhood of

2With additional context this example may turn into a cre-
ative one, but for simplicity we focus on phrases with two con-
tent words considered out of context.

3Investigation on recursive composition of more than two
content words and the influence of syntactic packaging is left as
future research.

4See §6 for more detailed discussion.
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Source # of #of | Avg
uniq sent sent | Entropy
words len
QUOTES™" | 29498 | 49402 | 28 173.05
GLOSSES"™ ™ | 20869 | 7745 53 96.79

Table 1: Entropy of word distribution in datasets

# of word pairs percentage
Dataset | total | #(-) [ #(+) | #(+)/total %
GLOSSES | 1912 | 149 | 18 0.94
QUOTES | 3298 | 204 | 35 1.06

Table 2: Distribution of creative(+)/common(-) word
pairs over GLOSSES and QUOTES dataset.

“kingdom” and “power” is relatively more fruitful
for composing creative (i.e., unique and uncommon
while being imaginative and interesting, per our op-
erational definition of creativity given in §1) word
pairs, e.g., invisible empire”. In our empirical in-
vestigation, this notion of semantically fruitful and
futile semantic subspaces are captured using dis-
tributional semantic space models under supervised
learning framework (§5).

2.3 Affective Language

Another angle we probe is the connection between
creative expressions and the use of affective lan-
guage. This idea is supported in part by previ-
ous research that explored the connection between
figurative languages such as metaphors and senti-
ment (e.g., Fussell and Moss (1998), Rumbell et
al. (2008), Rentoumi et al. (2012)). The focus of
previous work was either on interpretation of the
sentiment in metaphors, or the use of metaphors
in the description of affect. In contrast, we aim
to quantify the correlation between creative expres-
sions (beyond metaphors) and the use of sentiment-
laden words in a more systematic way. This explo-
ration has a connection to the creative semantic sub-
space discussed earlier (§2.2), but pays a more direct
attention to the aspect of sentiment and connotation.

3 Creative Language Dataset

We start our investigation by considering two types
of naturally existing collection of sentences: (1)
quotes and (2) dictionary glosses. We expect that
quotes are likely to be rich in creative expressions,
while dictionary glosses stand in the opposite spec-
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Figure 1: Distribution of creative (double lines in blue) versus common (single lines in red) word pairs with varying
ranges of frequencies (x-axis) for GLOSSES, QUOTES and both datasets combined.
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Figure 2: Distribution of creative (double lines in blue) versus common (single lines in red) word pairs with varying
ranges of PMI values (x-axis) for GLOSSES, QUOTES and both datasets combined.

trum of being creative.

QUOTES™: We crawled inspirational quotes
from “Brainy Quote”.”
GLOSSES"*: We collected glosses from Ox-

ford Dictionary and Merriam-Webster Dictionary.®
Overall we crawled about 8K definitions. Table 1
shows statistics of the dataset.’

Entropy of word distribution We conjecture that
QUOTES and GLOSSES are different in terms of
word variety, which can be quantified by the entropy

Shttp://www.brainyquote.com/

®http://oxforddictionaries.com/ and http://www.merriam-
webster.com/. We only consider words appearing in both dic-
tionaries to avoid unusual words such as compound words, e.g.,
“zero-base”.

"QUOTES™" contain 30K unique words and GLOSSES™*%
has 20K unique words. QUOTES"** have much arger number
of sentences, while its average sentence is shorter.
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of word distributions. To compute the entropy for
each dataset, we use ngram statistics from the corre-
sponding dataset to measure the probability of each
word.  As expected, QUOTES dataset has higher
entropy than GLOSSES in Table 1.

3.1 Creative Word Pairs

We extract word pairs corresponding to the follow-
ing syntactic patterns: [NN NN], [JJ NN], [NN JJ]
and [JJ JJ]. Not all pairs from QUOTES"*" are cre-
ative, and likewise, not all pairs from GLOSSES"*"
are uncreative. Therefore, we perform manual an-
notations to a subset of the collected pairs as fol-
lows. We obtain a small subset of pairs by apply-
ing stratified sampling based on bigram frequency
buckets: first we sort word pairs by their bigram
frequencies obtained from Web 1T corpus (Brants
and Franz (20006)), group them into consecutive fre-



quency buckets each of which containing 400 word
pairs, then sample 40 word pairs from each bucket.

We label word pairs using Amazon Mechnical
Turk (AMT) (e.g., Snow et al. (2008)). We ask three
turkers to score each pair in 1-5 scale, where 1 is the
least creative and 5 is the most creative. We then
obtain the final creativity scale score by averaging
the scores over 3 users. In addition, we ask turkers
a series of yes/no questions to help turkers to deter-
mine whether the given pair is creative or not.> We
determine the final label of a word pair based on two
scores, creativity scale score and yes/no question-
based score. If creativity scale score is 4 or 5 and
question-based score is positive, we label the pair as
creative. Similarly, if creativity scale score is 1 or
2 and question-based score is negative, we label the
pair as common. We discard the rest from the final
dataset. This filtering process is akin to the removal
of neural sentiment in the early work of sentiment
analysis (e.g., Pang et al. (2002)).° Table 2 shows
the statistics of the resulting dataset.

Creative Pairs and their Frequencies: To gain
insights on the stratified sample of word pairs, we
plot the label (€ {creative, common}) distribution
of word pairs as a function of simple statistics, such
as a range (bucket) of bigram frequencies or PMI
values of the given pair of words. Both bigram fre-
quencies and PMI scores are computed based on
Google Web 1T corpus Brants and Franz (2006).
Figure 1 shows the results for word frequencies. As
expected, word pairs with high frequencies are much
more likely to be common, while word pairs with
low frequencies can be either of the two. Also as ex-
pected, pairs extracted from QUOTES are relatively
more likely to be creative than those from GLOSSES.
In any case, it is clear that not all rare pairs are cre-
ative.

Creative Pairs and their PMI Scores: Similarly
as above, Figure 2 plots the relation between the
distribution of labels of word pairs and their corre-
sponding PMI. As expected, pairs with high PMI are
more likely to be common, though the trend is not as

8E.g., “is this word combination boring and not original?”
or “does it provoke unusual imagination?”.

Cohen’s Kappa and Pearson Correlation on the filtered data
are 0.69 and 0.72 respectively. Corresponding scores for the un-
filtered data drop to 0.26 and 0.29 respectively. All the experi-
ments are performed on the filtered data.
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Common

Creative

quiet teenager
constant longitude
watery juice
noble political
diet cooking
verbal interpretation
unwelcome situation
migratory tuna
lousy businessman
terrific marriage

inglorious success
thorny existence
relaxed symmetry
sardonic destiny
dispassionate history
poetical enthusiasm
verbal beauty
earth breathe
disadvantageous peace
alchemical marriage

solved issue deep nonsense

Table 3: Sample Creative / Common Word Pairs

skewed as before.

Final Dataset: From our initial annotation study,
it became apparent to us that creative pairs are very
rare, perhaps not surprisingly, even among infre-
quent pairs. In order to build the word pair corpus
with as many creative pairs as possible, we focus on
infrequent word pairs for further annotation, from
which we construct a larger and balanced set of cre-
ative and common word pairs, with 394 word pairs
for each class. The specific construction procedure
is as follows: first combine all of the word pairs
extracted from both QUOTES"** and GLOSSES™*%
as a single dataset, sort them by bigram frequency,
group them into consecutive frequency buckets each
of which has 40 word pairs; finally balance each fre-
quency bucket, by discarding word pairs with higher
frequency value from the larger class in that bucket.
Examples of labeled word pairs are shown in Ta-
ble 3. Hereafter we use this balanced dataset of word
pairs for all experiments.'®

4 Creativity Measures

4.1 Information Measures

In this section we explore information theoretic
measures to quantify the surprisal aspect of creative
word pairs, relating to the divergent, compositional
nature of creativity discussed in §2.1.

Entropy of Context Seeing a word w changes our
expectation on what might follow next. Some words
have stronger selective preference (higher entropy)
than others.

0The resulting dataset is available at http://www.cs.
stonybrook.edu/~pkuznetsova/creativity/
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Figure 3: Distribution of creative (double lines in blue) versus common (single lines in red) word pairs with varying

ranges of information or polarity measures (x-axis).
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Figure 4: Conditional probability of neighboring words
for “inglorious” (filled / red) and “very” (unfilled / blue).

”

For instance, the entropy after seeing “very
would be higher than that after seeing “inglorious”,
as the former can be used in a wider variety of con-
text than the later. Figure 4 visualizes relatively
more skewed distribution of “inglorious”. We com-
pute the entropy of future context conditioning on
wy, wy and wjwe, which we denote as H(wy),
H(wq), H(wjws) respectively, latter is shown in
Figure 3 —a.!!

" As before, language models are drawn from Google Web
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Relative Entropy Transformation In order to fo-
cus more directly on the relative change of entropy
as a result of composition, we compute Relative En-
tropy Transformation:

|H (w1) — H(wiws)|
H(wy) + H(wyws)

RH(’U)1,’LU2) = (1)
As expected (Figure 3 — b and Table 4), this relative
quantity captures creativity better than the absolute
measure H (wjws) computed above. The idea be-
hind this measure has a connection to uncertainty
reduction in psycholinguistic literature (e.g., Frank
(2010), Hale (2003), Hale (2006)).

KL divergence To capture unusual combinations
of words, we compare the difference between the
distributional contexts of w; and wjws so that

>

P(wi|w1, ’U)Q)

KL(wjws,w) = P(w;|wy,ws) log

Pl
(2
Figure (3 — c) shows that K L(wjws, wy)'? is among

1T corpus Brants and Franz (2006).
>We also compute K L(wy,ws) in a similar manner as
K L(w1 w2z, wl)



the effective measures in capturing creative pairs.

Mutual Information Finally, we consider mutual
information (Figure 3 — d):

MI(wi,ws) Z P(w;|wy, we) X

w; eV

Correlation coefficients Pearson coefficients for
all measures are shown in Table 4. Interestingly, in-
formation theoretic measures that compare the dis-
tribution of word’s context, such as RH(w;,ws),
K L(wjwe,wy) and MI(wy,ws), capture the sur-
prisal aspect of creativity better than simple frequen-
cies or PMI scores that do not consider contextual
changes. But even for those cases when the corre-
lation is statistically significant, the values are not
too high. We conjecture that there are two reasons
for this. First, Pearson assumes linear correlations,
hence not sensitive enough to capture non-linear cor-
relations that are evident in graphs shown in Fig-
ure 3. Second, these measures only capture the sur-
prisal aspect of creativity, missing the other impor-
tant qualities: interestingness or imaginativeness.

4.2 Sentiment and Connotation

Next we investigate the connection between creativ-
ity and sentiment, as illustrated in §2.3. We con-
sider both sentiment (more explicit) and connotation
(more implicit) words,!3 and consider them with
or without distinguishing the polarity (i.e., positive,
negative). To determine sentiment and connotation,
we use lexicons provided by OpinionFinder (Wilson
et al. (2005)) and Feng et al. (2013) respectively. We
denote polarity of a word w; as L(w;).'* When w;
has a negative polarity L(w;) is assigned a value of
-1, and when w; is positive L(w;) is equal to 1. We
assume that a word is neutral when it is not in the
lexicon, assigning 0 to L(wj;). For a word pair wjws
we compute absolute difference L%/ (wy, ws) be-
tween polarities of tokens in a word pair in order to
catch examples such as “inglorious success”.

3E.g., expressions such as “blue sky” or “white sand” are
not sentiment-laden, but do have positive connotation.

'“We denote polarity from OpinionFinder as Lsupj and con-
notation as Lconn
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| Measure [ Corr Coeff | p-value® | adj p-value™™
pointwise, noncontextual
Freq(wiwsz) 0.014 0.67 0.86
PMI(w1,ws) 0.011 0.75 0.86
information theoretic, contextual
E(wn) -0.038 0.26 0.49
E(w2) -0.126 0.00019 0.00083
E(w1,ws) 0.013 0.71 0.86
RH (w1, w2) 0.113 0.00081 0.0024
K L(wiwsz, w1) 0.134 7.152-05 0.00054
KL(w1,ws) -0.080 0.018 0.039
MI(w1,ws) 0.125 0.00022 0.00083
sentiment & connotation
Lgypj(wi) 0.006 0.87 0.87
Loy (w2) 0.031 0.36 0.60
L& (w1, ws) 0.168 6.67e-07 1.00e-05
Leonn(w1) 0.023 0.49 0.74
Leconn(w2) 0.008 0.80 0.86
LIS (w1, ws) 0.082 0.015 0.038

Table 4: Pearson correlation between various measures
and creativity of word pairs. Boldface denotes statistical
significance (p < 0.05).

note *: Two-tailed p-value, 394 word pairs per class

note **: We used Benjamini-Hochberg method to adjust
p-values for multiple tests

Table 4 shows Pearson coefficient for sentiment
and connotation based measures. It turns out that
polarity of each word on its own does not have a
high impact on the creativity of a word pair. Rather,
it is the difference between the two words that gives
rise the sense of creativity.

4.3 Learning to Recognize Creativity

Now we put together all measures explored in §4.1
and 4.2 in a supervised-learning framework. As ex-
pected, rather than either one alone, the combination

of various measures leads to the best performance:
Fio = [RH(wy,ws); KL(wy, wn); H(wyws);
Leghh, (wy,wa); PMI(wl, wy);
H(ws); K L(wiws, w1 ); K L(ws, wy);
Lgiﬁ(wh wa); M1I(wy, w2);
Freq(wyws); H(wy)]

Table 5 shows the performance of the above fea-
ture vector with 12 features using libsvm (Chang and
Lin, 2011). We use C-Support Vector Classification
(C-SVC). Performance is reported in accuracy using
5-fold cross validation.'

15 Among these 12 features, the feature selection algorithm



5 Learning Creative Pairs with
Distributional Semantic Vectors

The measures explored in §4 were largely unin-
formed of distributional semantic dimensions of
each word. However, in order to pursue the concep-
tual aspect of creativity illustrated in §2.2, that is, the
notion of semantic subspaces that are inherently fu-
tile or fruitful for creativity, we need to incorporate
semantic representations more directly. We there-
fore explore the use of distributional vector space
models. Another goal of this section will be addi-
tional learning-based investigation to the composi-
tional nature of creative word pairs, complementing
the investigation in §4, which focused on the com-
positional aspect of creativity described in §2.1.
With above goals in mind, in what follows, we ex-
plore three different ways to learn compositional as-
pect of creative word pairs: (1) learning with explicit
compositional vector operations (§5.1), (2) learning
nonlinear composition via kernels (§5.2), (3) learn-
ing nonlinear composition via deep learning (§5.3).
Note that in all these approaches, the notion of cre-
ative semantic subspace is integrated indirectly, as
the feature representation always incorporates the
resulting (composed) vector representations.

Baseline & Configuration We consider the con-
catenation of two word vectors [w7; Wa] as the base-
line, since it can be viewed as what simple bag-of-
word features would be. Since the size of creative
pair dataset is not at scale yet, we choose to work
with vector space models that are in reduced dimen-
sions. We experimented with both Non-Negative
Sparse Embedding (Murphy et al. (2012)) and neu-
ral semantic vectors of Huang et al. (2012), but re-
port experiments with the latter only as those gave
us slightly better results.

5.1 Compositional Vector Operations
We consider the following compositional vector op-
erations inspired by recent studies for composi-
tional distributional semantics (e.g., Guevara (2011),
Clarke (2012), Mitchell and Lapata (2008), Wid-
dows (2008)).

e ADD: Wy + W

e DIFF: abs(w; — W)

of Chen and Lin (2005) determines that the most two important
ones are RH (w1, w2) and K L(w1,ws).
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e MULT: w1 .* wWo

e MIN: min{y, Ws}

o MAX: max{wi,wa}
All operations take two input vectors € R", and
output a vector € R™. Each operation is applied
element-wise. We then perform binary classifica-
tion over the composed vectors using linear SVM.
Besides using features based on the composed vec-
tors, we also experiment with features based on con-
catenating multiple composed vectors, in the hope to
capture more diverse compositional operations. See
Table 5 for more details and experimental results.

5.2 Learning Nonlinear Composition via
Kernels

As an alternative to explicit vector compositions, we
also probe implicit operations based on non-linear
combinations of semantic dimensions using kernels
(e.g., Scholkopf and Smola (2002), Shawe-Taylor
and Cristianini (2004)), in particular:

e Polynomial: K (z,y) = (yzTy +7)%, v>0
e RBF: K(z,y) = exp(—7 |l —y[*), 7 > 0
e Laplacian: K(z,y) = exp(—v||lz —yl[), v > 0

5.3 Learning Non-linear Composition via Deep
Learning

Yet another alternative to model non-linear com-
position is deep learning. To learn the non-linear
transformation of a pair of semantic vectors, we ex-
plore the use of autoencoders (e.g., Pollack (1990),
Voegtlin and Dominey (2005)). We follow the for-
mulation of vector composition proposed by Socher
et al. (2011) except that we do not stack autoen-
coders for recursion. More specifically, given the
two input words Wi, Wy € R", we want to learn
a vector space representation of their combination
p € R™ The recursive auto encoder (RAE) of
Socher et al. (2011) models the composition of a
word pair as a non-linear transformation of their
concatenation [ ; ws):

p= f(My[iy; %] + by) 4
where M; € R™?2". After adding a bias term
by € R", a nonlinear element-wise function f such
as tanh is applied to the resulting vector. The repre-
sentation p of the word pair is then fed into a recon-
struction layer to reconstruct the two input vectors,



Methods Accuracy
’ Creativity measures (§4.3) ‘

Fuiy | 62.30

’ Baseline: vector concatenation (no composition) ‘
[1171; 1172] H 67.51

’ Explicit vector composition (85.1) ‘
W1 + W 66.62
abs(wW; — Wa) 60.03
min{wy, Wa} 66.08
max{wy, Ws } 64.97
1171 K ’lDQ 56.34
[abs(u‘il — 1172), 1171; 1.[)‘2} 69.54
[max{u’fl, 'U._)'Q}; 1171; ’LBQ] 68.02

’ Non-linear composition via kernels (§5.2) ‘
Polynomial 65.86
RBF 69.16
Laplacian 68.15

’ Non-linear composition via deep learning (§5.3) ‘
F(My [t o] + b)) || 67.25

Table 5: Performance comparison of creativity classifiers.

Incorrectly predicted y* || Semantically close y*
word pairs word pairs
| CONFUSION DUE TO WORD SIMILARITY (20/42) |
“entire carton” - “whole angst” +
“outdated tax” - “graconian tax” +
“dismissive way” - “amorous way” +
“insidious part” + “leather part” -
] CONFUSION DUE TO SUBJECTIVE LABELING (8/42) \
“independent + “wonderful -
religion” religion”
] WORD SENSE DISAMBIGUATION PROBLEMS (2/42) \
“fiscal cliff” - “winding lake” +
“opera window” + “work-shop floor” -

Table 6: Error analysis: y* denotes the true label. For
each incorrectly predicted word pair (left column), we
show an example of semantically close word pairs (right
column) with the opposite true label that might have con-
fused learning.

and a softmax layer to predict the probability of the
word pair being creative and not creative. We ini-
tialize the word vectors using the pre-learned vector
space representations in Huang et al. (2012).

5.4 Experimental Results

Table 5 shows the performance comparison of dif-
ferent features sets and algorithms. In all cases,
parameters are tuned from the training portion of
the data. We see that simple vector composition
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alone does not perform better than vector concate-
nation [ ; wWs|. However, combining abs(w; — ws)
or max{w; Wy} with [@Wy;wWs] perform better than
concatenation. Kernels with non-linear transforma-
tion of feature space generally improve performance
over linear SVM, suggesting that kernels capture
some of the interesting compositional aspect of cre-
ativity that is not covered by some of the explicit
vector compositions considered in §5.1. We also ex-
perimented with additional features driven from the
creativity measures explored in §4, but we omit their
results as those did not help improving the perfor-
mance. Unfortunately learning nonlinear composi-
tion with deep learning did not yield better results.
We conjecture that it is due to the small dataset we
were able to obtain for this study, which may have
not been enough to learn the rich parameter space of
the nonlinear transformation matrix.

6 Analysis and Insight

Error analysis We manually inspected a ran-
domly chosen 42 error cases, and characterize the
potential causes of those errors. Examples of three
types of errors are shown in Table 6. For each incor-
rectly predicted word pair, we also show a seman-
tically close word pair with the opposite true label
that might have confused the learning algorithm.

Visualization To gain additional insight, we
project word pairs represented in their vec-
tor concatenations onto 2-dimensional space us-
ing t-Distributed Stochastic Neighbor Embedding
(van der Maaten and Hinton (2008)). Figure 5
shows some of the interesting regions of the pro-
jection: some regions are relatively futile in hav-
ing creative phrases (e.g., regions involving simple
adjectives such as “good”, “bad”, regions corre-
sponding to legal terms), while some regions are rel-
atively more fruitful (e.g., regions involving abstract
adjectives such as “infinite”, “universal”, “funda-
mental”). There are also many other regions (e.g., in
the vicinity of “true”, “perfect” or “intelligent” in
Figure 5) where the separation between creative and
noncreative phrases are not as prominent. In those
regions, compositional aspects would play a bigger
role in determining creativity than memorizing fruit-
ful semantic subspaces.



................. * human spark

* human incompetence

* good marathon .
* human masterpiece

. * bad profession
* good custodian prof

* bad motivation

X . * infinite promise
* perfect disorder

i « infinite leisure
* lrue LHU/?I/IUH

* perfect fire

* true golfer * universal aspiration

« perfect land ~ ° frue perversion

* pure phenomenology

« absolute barbarism
* normal professor
* normal adulthood

* invisible empire

* omnipotent realm
« finite realm

* universal anguish

* fundamental key

* logical market

* human architecture

* legal slavery « legal corporation

* legal trading

* legal progress

* judicial verdict

* fundamental soul
* intelligent manipulation
* theoretical wisdom . .
) X * intelligent vocabulary
* technological refinement

* honest coward

Figure 5: Creative (blue bold) and not creative (red italic) word pairs graph.

7 Related Work

Among computational approaches that touch on lin-
guistic creativity, many focused on metaphor (e.g.,
Dunn (2013), Krishnakumaran and Zhu (2007),
Mashal et al. (2007), Rumbell et al. (2008), Ren-
toumi et al. (2012), Mashal et al. (2009)). Other lin-
guistic devices and phenomena related to creativity
include irony (e.g., Davidov et al. (2010), Gonzdlez-
Ibanez et al. (2011), Filatova (2012)), neologism
(e.g., Cartoni (2008)), humor (e.g., Mihalcea and
Strapparava (2005), Purandare and Litman (2006)),
and similes (e.g., Hao and Veale (2010)).

Veale (2011) proposed the new task of creative
text retrieval to harvest expressions that potentially
convey the same meaning as the query phrase in
a fresh or unusual way. Our work contributes to
the retrieval process of recognizing more creative
phrases. Ozbal and Strapparava (2012) explored
automatic creative naming of commercial products
and services, focusing on the generation of creative
phrases within a specific domain. Costello (2002)
investigated the cognitive process that guides peo-
ple’s choice of words when making up a novel noun-
noun compound. In contrast, we present a data-
driven investigation to quantifying creativity in lex-
ical composition. Memorability is loosely related to
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linguistic creativity (Danescu-Niculescu-Mizil et al.
(2012)) as some of the creative quotes may be more
memorable, but not all creative phrases are memo-
rable and vice versa.

8 Conclusion

We presented the first study that focuses on learn-
ing and quantifying creativity in lexical composi-
tions, exploring statistical techniques motivated by
three different theories and hypotheses of creativ-
ity, ranging from divergent thinking, compositional
structure, creative semantic subspace, and the con-
nection to sentiment and connotation. Our experi-
mental results suggest the viability of learning cre-
ative language, and point to promising directions for
future research.
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