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Abstract

Domain adaptation for SMT usually adapts
models to an individual specific domain.
However, it often lacks some correlation
among different domains where common
knowledge could be shared to improve the
overall translation quality. In this paper, we
propose a novel multi-domain adaptation ap-
proach for SMT using Multi-Task Learning
(MTL), with in-domain models tailored for
each specific domain and a general-domain
model shared by different domains. The pa-
rameters of these models are tuned jointly via
MTL so that they can learn general knowledge
more accurately and exploit domain knowl-
edge better. Our experiments on a large-
scale English-to-Chinese translation task val-
idate that the MTL-based adaptation approach
significantly and consistently improves the
translation quality compared to a non-adapted
baseline. Furthermore, it also outperforms the
individual adaptation of each specific domain.

1 Introduction

Domain adaptation is an active topic in statisti-
cal machine learning and aims to alleviate the do-
main mismatch between training and testing data.
Like many machine learning tasks, Statistical Ma-
chine Translation (SMT) assumes that the data dis-
tributions of training and testing domains are sim-
ilar. However, this assumption does not hold for
real world SMT systems since training data for
SMT models may come from a variety of domains.
The translation quality is often unsatisfactory when

This work was done while the first and second authors were
visiting Microsoft Research Asia.

1055

translating texts from a specific domain using a gen-
eral model that is trained over a hotchpotch of bilin-
gual corpora. Therefore, domain adaptation is cru-
cial for SMT systems to achieve better performance.
Previous research on domain adaptation for SMT
includes data selection and weighting (Eck et al.,
2004; Lii et al., 2007; Foster et al., 2010; Moore and
Lewis, 2010; Axelrod et al., 2011), mixture mod-
els (Foster and Kuhn, 2007; Koehn and Schroeder,
2007; Sennrich, 2012; Razmara et al., 2012), and
semi-supervised transductive learning (Ueffing et
al., 2007), etc. Most of these methods adapt SMT
models to a specific domain according to testing data
and have achieved good performance. It is natural
that real world SMT systems should adapt the mod-
els to multiple domains because the input may be
heterogeneous, so that the overall translation qual-
ity can be improved. Although we can easily ap-
ply these methods to multiple domains individually,
it is difficult to use the common knowledge across
different domains. To leverage the common knowl-
edge, we need to devise a multi-domain adaptation
approach that jointly adapts the SMT models.
Multi-domain adaptation has been proved quite
effective in sentiment analysis (Dredze and Cram-
mer, 2008) and web ranking (Chapelle et al., 2011),
where the commonalities and differences across
multiple domains are explicitly addressed by Multi-
task Learning (MTL). MTL is an approach that
learns one target problem with other related prob-
lems at the same time, using a shared feature repre-
sentation. The key advantage of MTL is to enable
implicit data sharing and regularization. Therefore,
it often leads to a better model for each task. Anal-
ogously, we expect that the overall translation qual-
ity can be further improved by using an MTL-based
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Figure 1: An example with N pre-defined domains, where 7 is the entire training corpus. 7; is the in-domain training
data for the i-th domain selected from 7" using the bilingual cross-entropy based method (Axelrod et al., 2011). The
in-domain TM; and LM; are trained using the in-domain training data 7;;. The general-domain models TM-G and LM-
G are trained using the entire training corpus 7". .S; is the domain-specific SMT system for the ¢-th domain, leveraging
the in-domain models and the general-domain models as features.

multi-domain adaptation approach.

In this paper, we use MTL to jointly adapt SMT
models to multiple domains. Specifically, we de-
velop multiple SMT systems based on mixture mod-
els, where each system is tailored for one specific
domain with an in-domain Translation Model (TM)
and an in-domain Language Model (LM). Mean-
while, all the systems share a same general-domain
TM and LM. These SMT systems are considered as
several related tasks with a shared feature represen-
tation, which fits well into a unified MTL frame-
work. With the MTL-based joint tuning, general
knowledge can be better learned by the general-
domain models, while domain knowledge can be
better exploited by the in-domain models as well.
By using a distributed stochastic learning approach
(Simianer et al., 2012), we can estimate the fea-
ture weights of multiple SMT systems at the same
time. Furthermore, we modify the algorithm to treat
in-domain and general-domain features separately,
which brings regularization to multiple SMT sys-
tems in an efficient way. Experimental results have
shown that our method can significantly improve the
translation quality on multiple domains over a non-
adapted baseline. Moreover, the MTL-based adap-
tation also outperforms the conventional individual
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adaptation approach towards each domain.

The rest of the paper is organized as follows: The
proposed approach is explained in Section 2. Exper-
imental results are presented in Section 3. Section 4
introduces some related work. Section 5 concludes
the paper and suggests future research directions.

2 The Proposed Approach

Figure 1 gives an example with N pre-defined do-
mains to illustrate the main idea. There are three
steps in the training phase. First, in-domain train-
ing data is selected according to the pre-defined do-
mains (Section 2.1). Second, in-domain models and
general-domain models are trained to develop the
domain-specific SMT systems (Section 2.2). Third,
multiple domain-specific SMT systems are tuned
jointly by using an MTL-based approach (Section
2.3).

2.1 In-domain Data Selection

In the first step, in-domain bilingual data is selected
from all the bilingual data to train in-domain TMs.
We use the bilingual cross-entropy based approach
(Axelrod et al., 2011) to obtain the in-domain data:

[Hlfsrc(s)_HGfsrc<S)]+[H17tgt (t)_HGftgt (t)] (1)



where {s,t} is a bilingual sentence pair in the entire
bilingual corpus. Hj_xxx(-) and Hg_xxx(+) repre-
sent the cross-entropy of a string according to an in-
domain LM and a general-domain LM, respectively.
”xxx”” denotes either the source language (src) or the
target language (tgt). Hr—src(s) — Ha—src(s) is the
cross-entropy difference of string s between the in-
domain and general-domain source-side LMs, and
Hi_14¢(t) — Hg—t4:(t) is the cross-entropy differ-
ence of string ¢ between the in-domain and general-
domain target-side LMs. This criterion biases to-
wards sentence pairs that are like the in-domain cor-
pus but unlike the general-domain corpus. There-
fore, the sentence pairs with lower scores (larger dif-
ferences) are presumed to be better.

Now, the question is how to find sufficient mono-
lingual data to train in-domain LMs. A straight-
forward solution is to collect the data from the in-
ternet. There are a large number of monolingual
webpages with domain information from web por-
tal sites!, which can be collected to train in-domain
LMs. In large-scale real world SMT systems, practi-
cal domain adaptation techniques should target more
domains rather than just one due to heterogeneous
input. Therefore, we use a web crawler to collect
monolingual webpages of N domains from web por-
tal sites, for both the source language and the tar-
get language. The statistics of web-crawled data is
given in Section 3.1. We use the web-crawled mono-
lingual documents to train N in-domain source-side
LMs and N in-domain target-side LMs. Addition-
ally, we also train the source-side and target-side
general-domain LMs with all the web-crawled doc-
uments from different domains. Finally, these in-
domain and general-domain LMs are used to select
in-domain bilingual data for different domains ac-
cording to Formula (1).

2.2 SMT Systems with Mixture Models

In the second step, with the selected in-domain train-
ing data, we develop SMT systems based on mix-
ture models. In particular, we use the mixture model
based approach proposed by Koehn and Schroeder

'"Many web portal sites contain domain information
for webpages, such as “www.yahoo.com” in English and
“www.sina.com.cn” in Chinese and etc. The webpages are of-
ten categorized by human editors into different domains, such
as politics, sports, business, etc.
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(2007). Specifically, we have developed N SMT
systems for N domains respectively, where each
system is a typical log-linear model. For each sys-
tem, the best translation candidate f is given by:

f= arg]{nax{P(ﬂe)} (2)

where the translation probability P(f|e) is given by:
P(fle) o< > w; -log ¢i(f,e)
= w;-logg;(f,e)+ > wy - log gi(f,e)

jel keG

General domain

3)

where ¢;( f, e) is the in-domain feature function and
wj is the corresponding feature weight. ¢y (f,e) is
the general-domain feature function and wy is the
feature weight. The detailed feature description is
as follows:

In-domain

In-domain features

e An in-domain TM, including phrase translation
probabilities and lexical weights for both direc-
tions (4 features)

e An in-domain target-side LM (1 feature)

e word count (1 feature)

e phrase count (1 feature)

e NULL penalty (1 feature)

e Number of hierarchical rules used (1 feature)
General-domain features

e A general-domain TM, including phrase trans-
lation probabilities and lexical weights for both
directions (4 features)

e A general-domain target-side LM (1 feature)

The feature description indicates that each SMT
system contains two TMs and two LMs. The in-
domain TMs are trained using the selected bilin-
gual training data according to Formula (1), and the
general-domain TM is trained using the entire bilin-
gual training data. For the LMs, we re-use the target-
side in-domain LMs and general-domain LM trained



for data selection (Section 2.1). Compared with a
normal single-model system, the system with mix-
ture models can balance the contributions from the
general-domain and in-domain knowledge. Hence it
potentially benefits from both.

2.3 MTL-based Tuning

In the third step, the feature weights in multiple
domain-specific SMT systems are estimated. In-
stead of tuning each domain-specific system sepa-
rately, we treat different systems as related tasks and
tune them jointly in an MTL framework. There are
two main reasons for MTL-based tuning:

1. Domain-specific translation tasks share the
same general-domain LM and TM. MTL often
leads to better performance by leveraging com-
monalities among different tasks.

2. By enforcing that the general-domain LM and
TM perform equally across different domains,
MTL provides a kind of regularization to pre-
vent over-fitting.

Formally, the objective function of the proposed
MTL-based approach is described as follows:

N
H‘l)‘i/n {Z Loss(E;, e(F;, w;)) }

i=1

4)

where N is the number of pre-defined domains.
{F;.E;} is the in-domain development dataset for the
i-th domain. F; denotes the source sentences and E;
denotes the reference translations. w; is a D-length
feature weight column vector for the ¢-th domain,
where D is the dimension of the feature space. W is
a N-by-D matrix, representing [wi|ws|...|wx]%.
¢(F;,w;) are the best translations obtained for F;
with parameters w;. Loss(-,) denotes the loss be-
tween the system’s output and the reference trans-
lations. The basic idea of the objective function is
to minimize the sum of loss functions for all the do-
mains, rather than one domain at a time. Therefore,
by adjusting the in-domain and general-domain fea-
ture weights, the translation quality is expected to be
good across different domains.

To effectively tune SMT systems jointly, we mod-
ify the asynchronous Stochastic Gradient Descend
(SGD) Algorithm (Simianer et al., 2012) to optimize
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objective function (4). We follow the pairwise rank-
ing approach with the perceptron algorithm (Shen
and Joshi, 2005) to update feature weights. Let a
translation candidate be denoted by its feature vector
v € RP, the pairwise preference for training is con-
structed by ranking two candidates according to the
smoothed sentence-level BLEU (Liang et al., 2006).
For a preference pair V[j]=(V(1), v®) where v(1) is
preferred, a hinge loss is used:

L(wi) = (= {wi, v =v®)), 5)

where ()1 = max(0,x) and (-,-) denotes the in-
ner product of two vectors. With the perceptron al-
gorithm (Shen and Joshi, 2005), the gradient of the
hinge loss is:

(6)

V(W) v — v if(w, v — () <0
W;) = .
0 otherwise

The training instances for the discriminative
learning in pairwise ranking are made by comparing
the N-best list of the translation candidates scored
by the smoothed sentence-level BLEU (Liang et al.,
2006). Following Simianer et al. (2012), the N-best
list is divided into three bins: the top 10% (High),
the middle 80% (Middle), and the last 10% (Low).
These bins are used for pairwise ranking where the
translation preference pairs are built between the
candidates in High-Middle, Middle-Low, and High-
Low, but not the candidates within the same bin,
which is shown in Figure 2. The idea is to guar-
antee that the ranker is more discriminative to prefer
the good translations to the bad ones.

High: 10% |

N-best list Middle: 80%

Figure 2: Training instances for pairwise ranking.



Algorithm 1 Modified Asynchronous SGD
1: Distribute N domain-specific decoders to N ma-
chines
2: Initialize wi,wo,... , Wy < 0
3: for epochst «— 0...7 — 1 do

4:  for all domains d € {1... N}: parallel do
5: Ugt,0,0 = Wq

6: S = ‘Fd|

7: foralli € {0...5 — 1} do

8: Decode i-th sentence with ug ; ; o

9: P =No. of pairs built from the N-best list

10: for all pairs v;;,j € {0... P — 1} do
1: Ua,tij+1 < Ui — NV L(Wa i)
12: end for
13: U ti+1,0 < Wdt,i P
14: end for
15:  end for
16:  for alldomainsd € {1... N} do
17 Wq = U450
18:  end for
9 W Wl wg]”
20:  for all domainsd € {1... N} do
21: fork — 1...|w§]|do
N G

22: WdG[k] = % Zn:l w [’n’} [k}
23: end for ,

. w
24: wa — [34]
25:  end for
26: end for
27: return wi,Wo, ..., Wy

Our modified algorithm is illustrated in Algorithm
1. Each column vector w; is further split into two
parts WZ-I and wiG, representing the In-domain and
General-domain feature weights respectively. In Al-
gorithm 1, we first distribute the domain-specific
SMT decoders to different machines and initialize
the feature weights (line 1-2). Typically, the SGD al-
gorithm runs in several iterations (In this study, we
set the number of epochs 7' to 20) (line 3). Multi-
ple SMT decoders run in parallel and each decoder
updates its feature weights individually using its in-
domain development data (line 4-15). For each do-
main, the domain-specific decoder translates each
in-domain development sentence and determines the
N-best translations (line 4-8). The preference pairs
are built and used to update the parameters by gra-
dient descent with n = 0.0001 (line 9-13). Each
domain-specific decoder translates its in-domain de-
velopment data multiple times. After each itera-
tion, feature weights from all decoders are collected
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(line 16-19). In contrast to the original algorithm
(Simianer et al., 2012), we only average the general-
domain feature weights le, cee w%, but do not av-
erage the in-domain feature weights (line 20-25).
The reason is we hope to leverage the commonalities
among these systems. Meanwhile, general knowl-
edge is enforced to be conveyed equally across dif-
ferent domains. Finally, the algorithm returns all
the domain-specific feature weights w1, wa, ..., Wy
that are used for testing (line 27).

After the joint MTL-based tuning, the feature
weights tailored for domain-specific SMT systems
are used to translate the testing data. We collect in-
domain testing data for each domain to evaluate the
domain-specific systems. Although this is not al-
ways the case in real applications where the testing
domain is known, this study mainly focuses on the
effectiveness of the MTL-based tuning approach.

3 Experiments

3.1 Data

We evaluated our MTL-based domain adaptation
approach on a large-scale English-to-Chinese ma-
chine translation task. The training data consisted
of two parts: monolingual data and bilingual data.
The monolingual data was used to train the source-
side and target-side LMs, both of which were used
for data selection in Section 2.1. In addition, the
target-side LMs were re-used in the SMT systems
as features. As mentioned in Section 2.1, we built a
web crawler to collect a large number of webpages
from web portal sites in English and Chinese respec-
tively. In the experiments, we mainly focused on six
popular domains, namely Business, Entertainment,
Health, Science & Technology, Sports, and Politics.
For both English and Chinese webpages, the HTML
tags were removed and the main content was ex-
tracted. The data statistics are shown in Table 1.
The bilingual data we used was mainly mined
from the web using the method proposed by Jiang
et al. (2009), with a post-processing step using our
bilingual data cleaning method (Cui et al., 2013).
Therefore, the data quality is pretty good. In addi-
tion, we also used the English-Chinese parallel cor-
pus released by LDC?2. In total, the bilingual data

2LDC2003E07, LDC2003E14, LDC2004E12,
LDC2005T06, LDC2005T10, LDC2005E83, LDC2006E26,



Domain English Chinese
Docs | Words | Docs | Words
Business 21M 104B | 791M 2.73B
Ent. 18.3M 8.29B | 4.16M 1.31B
Health 8. 7M 4.73B 0.9M 0.42B
Sci&Tech | 109M | 5.33B | 5.28M 1.6B
Sports 18.9M 9.58B | 2.49M 0.59B
Politics 10.3M | 5.56B | 1.67M | 0.39B

Table 1: Statistics of web-crawled monolingual data, in
numbers of documents and words (main content). "M”
refers to million and ”B” refers to billion.

contained around 30 million sentence pairs, with
404M words in English and 329M words in Chi-
nese. For each domain, we used the cross-entropy
based method in Section 2.1 to rank the entire bilin-
gual data, and the top 10% sentence pairs from the
ranked bilingual data were selected as the in-domain
data to train the in-domain TM. Moreover, we pre-
pared 2,000 in-domain sentences for development
and 1,000 in-domain sentences for testing in each
domain. The details are shown in Table 2.

Domain Train Dev Test

En \ Ch En \ Ch | En \ Ch
Business 30M | 28M | 36K | 35K | 19K | 19K
Ent. 25M | 22M | 21K | 18K | 13K | 12K
Health 23M | 20M | 33K | 33K | 21K | 22K
Sci&Tech | 28M | 26M | 46K | 45K | 27K | 27K
Sports 19M | 16M | 18K | 14K | 10K | 9K
Politics 28M | 24M | 19K | 17K | 13K | 12K

Table 2: Statistics of in-domain training, development
and testing data, in number of words.

3.2 Setup

An in-house hierarchical phrase-based SMT de-
coder was implemented for our experiments. The
CKY decoding algorithm was used and cube prun-
ing was performed with the same default parameter
settings as in Chiang (2007). We used a 100-best
list from the decoder for the pairwise ranking al-
gorithm. Translation models were trained over the
bilingual data that was automatically word-aligned
using GIZA++ (Och and Ney, 2003) in both direc-
tions, and the diag-grow-final heuristic was used to

LDC2006E34, LDC2006E85, LDC2006E92.
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refine the symmetric word alignment. The phrase
tables were filtered to retain top-20 translation can-
didates for each source phrase for efficiency. An
in-house language modeling toolkit was used to
train the 4-gram language models with modified
Kneser-Ney smoothing (Kneser and Ney, 1995) over
the web-crawled data. The evaluation metric for
the overall translation quality was case-insensitive
BLEU4 (Papineni et al., 2002). A statistical sig-
nificance test was performed using the bootstrap re-
sampling method (Koehn, 2004).

3.3 Baseline

We have two baselines. The first baseline is a non-
adapted Hiero using our implementation. It con-
tained the general-domain TM and LM, as well as
other standard features. In addition, the fix-discount
method (Foster et al., 2006) for phrase table smooth-
ing was also used. The system was general-domain
oriented and it was tuned by using MERT (Och,
2003) with a combination of six in-domain develop-
ment datasets. The second baseline is Google Online
Translation Service’>. We obtained the English-to-
Chinese translations of the testing data from Google
Translation to have a more solid comparison.

Moreover, we also compared our method with the
adapted systems towards each domain individually
(Koehn and Schroeder, 2007). This is to demon-
strate the superiority of our MTL-based tuning ap-
proach across different domains.

3.4 Results

The end-to-end translation performance is shown in
Table 3. We found that the baseline has a similar
performance to Google Translation, with certain do-
mains performed even better (Business, Sci&Tech,
Sports, Politics). This demonstrates that the transla-
tion quality of our baseline is state-of-the-art. More-
over, we can answer three questions according to the
experimental results as follow:

First, is domain mismatch a significant prob-
lem for a real world SMT system? We used the
same system only with general-domain TM and LM,
but tuned towards each domain individually using
in-domain dev data. Table 3 shows that the setting
“[A] G-TM + G-LM” performs much better than

3http://translate.google.com



] | Business | Ent. | Health [ Sci&Tech | Sports | Politics
[N] Baseline (G-TM + G-LM) 27.19 17.87 | 25.79 25.34 25.53 23.01
Google Translation 26.01 18.44 | 27.71 25.07 24.08 22.97
[A] G-TM + G-LM 29.58 19.08 | 28.80 26.84 30.28 25.64
[A]I-TM + I-LM 28.20 17.25 | 27.20 2541 30.12 22.97
[A] (G+D)-TM + G-LM 29.45 19.22 | 2893 27.01 31.01 25.40
[A] (G+D)-TM + I-LM 29.60 1943 | 28.94 27.05 34.36 25.98
[A] (G+D)-LM + G-TM 29.66 19.50 | 29.00 27.10 33.60 26.03
[A] (G+D)-LM + I-TM 28.50 17.66 | 27.58 25.99 30.44 23.30
[A] (G+D)-TM + (G+I)-LM 29.82 19.53 | 29.03 26.94 33.77 26.09

[TAMTL] (G+)-TM + (G+D-LM | 3026 | 1994 | 29.08 | 27.17 | 34.11 | 2650 |

Table 3: End-to-end experimental results (BLEU4%) with large-scale training data (p < 0.05). ”[N]” means the system
is non-adapted and tuned using MERT on general-domain dev data. ”[A]” denotes that the system is adapted towards
each domain individually using MERT on in-domain dev data. ”[A,MTL]” indicates that the system was tuned using
our MTL-based approach on in-domain dev data. ”/-TM” and ”G-TM” denote the in-domain and general-domain
translation model. ”’/-LM” and ”G-LM” denote the in-domain and general-domain language model. We also obtained
translations of the testing data using Google Translation for comparison.

the non-adapted baseline across all domains with at
least 1.2 BLEU points. In addition, the setting "[A]
G-TM + G-LM” also outperforms Google Transla-
tion on all domains. Analogous to previous research,
this confirms that the domain mismatch indeed ex-
ists and the parameter estimation using in-domain
dev data is quite useful.

Second, does the mixture models based adap-
tation work for a variety of domains? We experi-
mented with different settings with multiple TMs or
LMs, or both. It is interesting to note that for large-
scale SMT systems, using in-domain models alone
is inferior to using the general models alone. The
setting "[A] G-TM + G-LM” is better than the set-
ting "[A] I-TM + [-LM” across different domains.
The reason is the data for general models has already
included the in-domain data and the data coverage is
much larger, thus the probability estimation is more
reliable and the translation quality is much better.

For the LM, the in-domain LM performs better
than the general-domain LM because our mono-
lingual data (Table 1) for each domain is already
sufficient for training an in-domain LM with good
performance. From Table 3, we observed that the
setting ’[A] (G+I)-TM + I-LM” outperforms “[A]
(G+D)-TM + G-LM”, with the ’Sports” domain be-
ing the most significant. For the TM, the per-
formance of the in-domain TM is inferior to the
general-domain TM. The results show that the set-
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ting ’[A] (G+I)-LM + G-TM” is significantly better
than ”[A] (G+I)-LM + I-TM”. The main reason is
the data coverage for in-domain TM is much smaller
than the general model. When each system uses two
TMs and two LMs, it consistently results in better
performance, indicating that mixture models are cru-
cial for domain adaptation in SMT.

Third, can MTL further improve the transla-
tion quality? We used the MTL-based approach to
jointly tune multiple domain-specific systems, lever-
aging the commonalities among different but related
tasks. From Table 3, the MTL-based approach sig-
nificantly improve the translation quality over the
non-adapted baseline, and also outperforms conven-
tional mixture models based methods. In particular,
the ”Sports” domain benefits the most from the in-
domain knowledge, which confirms that domain dis-
crepancy should be addressed and may bring large
improvements on certain domains.

3.5 Discussion

According to our experiments, only averaging over
the out-of-domain feature weights returned robust
and converged results. We do not have theoreti-
cally grounded guarantee. However, we observed
that the BLEU score of our method on DEV data
was slightly lower than that in the baseline system,
which indicates the out-of-domain features are less
over-fitting on the domain-specific DEV data since



SOURSE

REF

[N] Baseline (G-TM + G-LM)

[A] (G+])-TM + (G+I)-LM

[A,MTL](G+I)-TM + (G+I)-LM

A point begins with a player serving the ball. This means one player hits

the ball towards the other player. (The serve must be played from behind the

baseline and must land in the . Players get two attempts to make

a good serve.)

Bk — ARRE KL . X AH - AEREA S — ARRH
B (RN T M ERAZI, RLAEEAE T KRR A
FRERAHH —RKIE )

BARTREREZO - A . TEREFRES L BIREY &K .
(TR B s N J6 AT 0 3 iAo ik MG | SR |- 3R R A R R B &
H—=ANFaRE-)

— A ROER, R ERA —LER RAT O L ER . (L AN
RAKHR, LA E KRR WRE. RARAAREREU— A8
R )

BoRORR. TEckE -4 RRA S - ARRHR. (LAEK
BB BER, FH L AEEE KRR KR AKKERY -8

LEE 3

Table 4: Examples illustrating some different translations, where the Chinese phrases are translated from the English
phrases with the same symbols (e.g., underline, wavy-line, and box). The details are explained in Section 3.5.

we enforced them to play the same role across dif-
ferent domains. It seems that averaging the out-of-
domain feature weights can be considered as a kind
of regularization.

An example sentence from the Sports domain
with translations from different methods is shown
in Table 4. In this sentence, the baseline always
translates “’player” to ¥t %" (game player), which
should be ”# B> (ball player). And, the base-
line translates “’serve” to "k % (work for), which
should be ” & #” (put the ball into play). The phrase
“service box” here means ” & ¥k X, which denotes
the zone where the ball is to be served. However, the
baseline incorrectly splits them into two words, then
translates “service” to /R % and “box” to "1E”.
In contrast, the approaches with adapted models are
able to translate these words very well.

Both our MTL-based approach and the conven-
tional adaptation methods leverage the mixture mod-
els. A natural question is why our MTL-based ap-
proach performs better than the individual adapta-
tion. To answer this question, we looked into the
details of the tuning and decoding procedures in the
MTL-based approach. We observed that the BLEU
score on the development data for each system was
lower than the score when conducting individual
adaptation. Considering that the algorithm enforc-
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ing the general features play the same role across
different domains, we suspect that MTL-based ap-
proach introduces a kind of regularization for each
domain-specific system. The regularization prevents
the general features from biasing towards certain do-
mains to the extreme. This property is quite impor-
tant for real world SMT systems. Usually, a sen-
tence is composed of some domain-specific words
and some general words, so it is often improper to
translate every word in the sentence using the in-
domain knowledge. For the example in Table 4,
the individual adaptation method “[A] (G+I)-TM +
(G+I)-LM” translates ”land” to ” X ¥ (zone) im-
properly, because ” X 3 appears more often in the
Sports text than the general-domain text. This shows
that the individual adaptation methods tend to over-
fit the in-domain development data. In contrast, the
MTL-based approach ”[A,MTL](G+I)-TM + (G+I)-
LM” just translates “land” to "% % " (fall on),
which is more appropriate.

4 Related Work

4.1 Domain Adaptation

One direction of domain adaptation explored the
data selection and weighting approach to improve
the performance of SMT on specific domains. Eck




et al. (2004) first decoded the testing data with a
general TM, and then used the translation results
to train an adapted LM, which was in turn used to
re-decode the testing data. Lii et al. (2007) tried
to weight the training data according to the similar-
ity with test data using information retrieval mod-
els, while Foster et al. (2010) trained a discrimina-
tive model to estimate a weight for each sentence
in the training corpus. Other methods conducted
data selection based on cross-entropy (Moore and
Lewis, 2010), and Axelrod et al. (2011) further ex-
tended their cross-entropy based method to the se-
lection of bilingual corpus in the hope that more rel-
evant corpus to the target domain could yield smaller
models with better performance. Other methods
included using semi-supervised transductive learn-
ing techniques to exploit the monolingual in-domain
data (Ueffing et al., 2007).

Adaptation methods also involved the utiliza-
tion of mixture models. Foster and Kuhn (2007)
explored a number of variants of utilizing multi-
ple TMs and LMs by interpolation. Koehn and
Schroeder (2007) used MERT to simultaneously
tune two TMs or LMs. Sennrich (2012) investi-
gated the TM perplexity minimization as a method
to set model weights in mixture modeling. In ad-
dition, inspired by system combination approaches,
Razmara et al. (2012) used the ensemble decoding
method to mix multiple translation models, which
outperformed a variety of strong baselines.

Generally, most previous methods merely con-
ducted domain adaption for a single domain, rather
than multiple domains at the same time. One could
also simply build multiple SMT systems that were
adapted to multiple domains, but they were often
separated and not tuned together. So far, there has
been little research into the multi-domain adaptation
problem over mixture models for SMT systems, as
proposed in this paper.

4.2 Multi-task Learning

In machine learning, MTL is an approach to learn
one target problem with other related problems at
the same time. This often leads to a better model for
the main task because it allows the learner to use the
commonality among the tasks. MTL is performed
by learning tasks in parallel while using a shared
representation. Therefore, what is learned for each
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task can help other tasks be learned better.

MTL was successfully applied in some Natu-
ral Language Processing (NLP) tasks. For exam-
ple, Blitzer et al. (2006) extended the MTL ap-
proach (Ando and Zhang, 2005) to domain adapta-
tion tasks in part-of-speech tagging. Collobert and
Weston (2008) proposed using deep neural networks
to train a set of tasks, including part-of-speech tag-
ging, chunking, named entity recognition, and se-
mantic roles labeling. They reported that jointly
learning these tasks led to superior performance.
MTL was also applied in sentiment analysis (Dredze
and Crammer, 2008) and web ranking (Chapelle
et al.,, 2011) to address the multi-domain learning
and adaptation. In SMT, Duh et al. (2010) pro-
posed using MTL for N-best re-ranking on sparse
feature sets, where each N-best list corresponded to
a distinct task. Simianer et al. (2012) proposed dis-
tributed stochastic learning with feature selection in-
spired by MTL. The distributed learning approach
outperformed several other training methods includ-
ing MIRA and SGD.

Inspired by these methods, we used MTL to tune
multiple SMT systems at the same time, where each
system was composed of in-domain and general-
domain models. Through a shared feature represen-
tation, the commonalities among the SMT systems
were better learned by the general models. In ad-
dition, domain-specific translation knowledge was
also better characterized by the in-domain models.

5 Conclusion and Future Work

In this paper, we propose an MTL-based approach to
address multi-domain adaptation for SMT. We first
use the cross-entropy based data selection method
to obtain in-domain bilingual data. After that, in-
domain TMs and LMs are trained for each domain-
specific SMT system. In addition, the general-
domain TM and LM are also trained and shared
across different systems. Finally, MTL is lever-
aged to tune multiple systems jointly. Experimen-
tal results have shown that our approach is quite
promising for the multi-domain adaptation problem,
and it brings significant improvement over both the
non-adapted baselines and the conventional domain
adaptation methods with mixture models.

We assume the domain information for testing



data is known beforehand in this study. However,
this is not always the case for real world SMT sys-
tems. Therefore, to apply our approach in real appli-
cations, the domain information needs to be identi-
fied automatically. In the future, we will pre-define
more popular domains and develop automatic do-
main classifiers. For those domains that are iden-
tified with high confidence, we use the domain-
specific system to translate the texts. For other texts,
we use the general system to translate them. Fur-
thermore, since our approach is a general training
method, we may also combine this approach with
other domain adaptation methods to get more per-
formance improvement.
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