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Abstract 

Scope detection is a key task in information ex-
traction. This paper proposes a new approach for 
tree kernel-based scope detection by using the 
structured syntactic parse information. In addi-
tion, we have explored the way of selecting 
compatible features for different part-of-speech 
cues. Experiments on the BioScope corpus show 
that both constituent and dependency structured 
syntactic parse features have the advantage in 
capturing the potential relationships between 
cues and their scopes. Compared with the state 
of the art scope detection systems, our system 
achieves substantial improvement.* 

1 Introduction 

The task of scope detection is to detect the linguis-
tic scope dominated by a specific cue. Current re-
searches in this field focus on two semantic as-
pects: negation and speculation. The negative 
scope detection is to detect the linguistic scope 
which is repudiated by a negative word (viz., nega-
tive cue, e.g., “not”). In other side, the speculative 
scope detection is to detect the uncertain part in a 
sentence corresponding to the speculative word 
(viz., speculative cue, e.g., “seems”). See the sen-
tence 1) below, the negative cue “not” dominates 
the scope of “not expensive”. Similarly, the specu-
lative cue “possible” in sentence 2) dominates the 
uncertain scope “the possible future scenarios”. 

1) The chair is [not expensive] but comfortable.  
2) Considering all that we have seen, what are now 

[the possible future scenarios]? 

                                                 
*	Corresponding	author	

The negative and speculative scope detection 
task consists of two basic stages. The first one is to 
identify the sentences involving negative or specu-
lative meaning. The second stage is to detect the 
linguistic scope of the cue in sentences (Velldal et 
al, 2012). In this paper, we focus on the second 
stage. That is, by given golden cues, we detect 
their linguistic scopes. 

We propose a tree kernel-based negation and 
speculation scope detection with structured syntac-
tic parse features. In detail, we regard the scope 
detection task as a binary classification issue, 
which is to classify the tokens in a sentence as be-
ing inside or outside the scope. In the basic 
framework, we focus on the analysis and applica-
tion of structured syntactic parse features as fol-
lows: 

Both constituent and dependency syntactic fea-
tures have been proved to be effective in scope 
detection (Özgür et al, 2009; Øvrelid et al, 2010). 
However, these flat features are hardly to reflect 
the information implicit in syntactic parse tree 
structures. Our intuition is that the segments of the 
syntactic parse tree around a negative or specula-
tive cue is effective for scope detection. The relat-
ed structures normally underlay the indirect clues 
to identify the relations between cues and their 
scopes, e.g., in sentence 1), “but something”, as a 
frequently co-occurred syntactic structure with 
“not something”, is an effective clue to determine 
the linguistic scope of “not”. 

The tree kernel classifier (Moschitti, 2006) 
based on support vector machines uses a kernel 
function between two trees, affording a compari-
son between their substructures. Therefore, a tree 
kernel-based scope detection approach with struc-
tured syntactic parse tree is employed. The tree 
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kernel has been already proved to be effective in 
semantic role labeling (Che et al, 2006) and rela-
tion extraction (Zhou et al, 2007). 

In addition, the empirical observation shows 
that features have imbalanced efficiency for scope 
classification, which is normally affected by the 
part-of-speech (abbr., POS) of cues. Hence, we 
build the discriminative classifiers for each kind of 
POS of cues, then explore and select the most 
compatible features for them. 

We construct a scope detection system by using 
the structured syntactic parse features based tree 
kernel classification. Compared with the state of 
the art scope detection systems, our system 
achieves the performance of accuracy 76.90% on 
negation and 84.21% on speculation (on Abstracts 
sub-corpus). Additionally, we test our system on 
different sub-corpus (Clinical Reports and Full 
Papers). The results show that our approach has 
better cross-domain performance. 

The rest of this paper is organized as follows: 
Section 2 reviews related work. Section 3 intro-
duces the corpus and corresponding usage in our 
experiments. Section 4 describes our approach and 
the experiments are presented in Section 5. Finally, 
there is a conclusion in Section 6. 

2 Related Work 

Most of the previous studies on negation and spec-
ulation scope detection task can be divided into 
two main aspects: the heuristic rule based methods 
and the machine learning based methods. We re-
spectively introduce the aspects in below. 

2.1 Heuristic Rule based Methods 

The initial studies for scope detection are to com-
pile effective heuristic rules (Chapman et al, 2001; 
Goldin et al, 2003). Recently, the heuristic rule 
based methods have further involved the syntactic 
features. 

Huang et al (2007) implemented a hybrid ap-
proach to automated negation scope detection. 
They combined the regular expression matching 
with grammatical parsing: negations are classified 
on the basis of syntactic categories and located in 
parse trees. Their hybrid approach is able to identi-
fy negated concepts in radiology reports even 
when they are located at some distance from the 
negative term. 

Özgür et al (2009) hypothesized that the scope 
of a speculation cue can be characterized by its 
part-of-speech and the syntactic structure of the 
sentence and developed rules to map the scope of a 
cue to the nodes in the syntactic parse tree. By 
given golden speculation cues, their rule-based 
method achieves the accuracies of 79.89% and 
61.13% on the Abstracts and the Full-Papers sub-
corpus, respectively. 

Øvrelid et al (2010) constructed a small set of 
heuristic rules which define the scope for each cue. 
In developing these rules, they made use of the 
information provided by the guidelines for scope 
annotation in the BioScope corpus, combined with 
manual inspection of the training data in order to 
further generalize over the phenomena discussed 
by Vincze et al (2008) and work out interactions of 
constructions for various types of cues. 

Apostolova et al (2011) presented a linguistical-
ly motivated rule-based system for the detection of 
negation and speculation scopes that performs on 
par with state-of-the-art machine learning systems. 
The rules are automatically extracted from the Bi-
oScope corpus and encode lexico-syntactic pat-
terns in a user-friendly format. While their system 
was developed and tested using a biomedical cor-
pus, the rule extraction mechanism is not domain-
specific. 

The heuristic rule based methods have bad ro-
bustness in detecting scopes crossing different 
meaning aspects (e.g., negative vs. speculative) 
and crossing different linguistic resources (e.g., 
Technical Papers vs. Clinical Reports). 

2.2 Machine Learning based Methods 

The machine learning based methods have been 
ignored until the release of the BioScope corpus 
(Szarvas et al, 2008), where the large-scale data of 
manually annotated cues and corresponding scopes 
can support machine learning well. 

Morante et al (2008) formulated scope detection 
as a chunk classification problem. It is worth not-
ing that they also proposed an effective proper 
post-processing approach to ensure the consecu-
tiveness of scope. Then, for further improving the 
scope detection, Morante et al (2009a) applied a 
meta-learner that uses the predictions of the three 
classifiers (TiMBL/SVM/CRF) to predict the 
scope. 

For the competitive task in CoNLL’2010 (Far-
kas et al, 2010), Morante et al (2010) used a 
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memory-based classifier based on the k-nearest 
neighbor rule to determine if a token is the first 
token in a scope sequence, the last, or neither. 
Therefore, in order to guarantee that all scopes are 
continuous sequences of tokens they apply a first 
post-processing step that builds the sequence of 
scope. 

The existing machine learning based approaches 
substantially improve the robustness of scope de-
tection, and have nearly 80% accuracy. However, 
the approaches ignore the availability of the struc-
tured syntactic parse information. This information 
involves more clues which can well reflect the re-
lations between cues and scopes. Sánchez et al 
(2010) employed a tree kernel based classifier with 
CCG structures to identify speculative sentences 
on Wikipedia dataset. However, in Sánchez’s ap-
proach, not all sentences are covered by the classi-
fier. 

3 Corpus 

We have employed the BioScope corpus (Szarvas 
et al, 2008; Vincze et al, 2008)1, an open resource 
from the biomedical domain, as the benchmark 
corpus. The corpus contains annotations at the to-
ken level for negative and speculative cues and at 
the sentence level for their linguistic scope (as 
shown in Figure 1). 

 
(Note: <Sentence> denotes one sentence and the tag “id” denotes its 
serial number; <xcope> denotes the scope of a cue; <cue> denotes the 
cue, the tag “type” denotes the specific kind of cues and the tag “ref” 
is the cue’s serial number.) 

Figure 1. An annotated sentence in BioScope. 

The BioScope corpus consists of three sub-
corpora: biological Full Papers from FlyBase and 
BMC Bioinformatics, biological paper Abstracts 
from the GENIA corpus (Collier et al, 1999), and 
Clinical Reports. Among them, the Full Papers 
sub-corpus and the Abstracts sub-corpus come 
from the same genre. In comparison, the Clinical 
Reports sub-corpus consists of clinical radiology 
reports with short sentences. 

                                                 
1 http://www.inf.u-szeged.hu/rgai/bioscope 

In our experiments, if there is more than one cue 
in a sentence, we treat them as different cue and 
scope (two independent instances). The statistical 
data for our corpus is presented in Table 1 in be-
low. 

The average length of sentences in the negation 
portion is almost as long as that in speculation, 
while the average length of scope in negation is 
shorter than that in speculation. In addition, the 
length of sentence and scope in both Abstracts and 
Full Papers sub-corpora is comparative. But in 
Clinical Reports sub-corpus, it is shorter than that 
in Abstracts and Full Papers. Thus, looking for the 
effective features in short sentences is especially 
important for improving the robustness for scope 
detection. 

(Note: “Av. Len” stands for average length.) 

Table 1. Statistics for our corpus in BioScope. 

4 Methodology 

We regard the scope detection task as a binary 
classification problem, which is to classify each 
token in sentence as being the element of the scope 
or not. Under this framework, we describe the flat 
syntactic features and employ them in our bench-
mark system. Then, we propose a tree kernel-
based scope detection approach using the struc-
tured syntactic parse features. Finally, we con-
struct the discriminative classifier for each kind of 
POS of cues, and select the most compatible fea-
tures for each classifier. 

4.1 Flat Syntactic Features 

In our benchmark classification system, the fea-
tures relevant to the cues or tokens are selected. 
Then, we have explored the constituent and de-
pendency syntactic features for scope detection. 
These features are all flat ones which reflect the 
characteristic of tokens, cues, scopes, and the rela-
tion between them. 

 Abstract Paper Clinical

Nega-
tion 

Sentences 1594 336 441 
Words 46849 10246 3613 
Scopes 1667 359 442 
Av. Len Sentence 29.39 30.49 8.19 
Av. Len Scope 9.62 9.36 5.28 

Specu-
lation

Sentences 2084 519 854 
Words 62449 16248 10241
Scopes 2693 682 1137 
Av. Len Sentence 29.97 31.31 11.99
Av. Len Scope 17.24 15.58 6.99 

<sentence id=”S26.8”> These findings <xcope id=”X26.8.2”> 
<cue type=”speculation” ref=”X26.8.2”> indicate that </cue> 
<xcope id=”X26.8.1”> corticosteroid resistance in bronchial 
asthma <cue type=”negation” ref=”X26.8.1”> can not </cue> 
be explained by abnormalities in corticosteroid receptor char-
acteristics </xcope></xcope> . </sentence> 
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Basic Features: Table 2 shows the basic fea-
tures which directly relate to the characteristic of 
cues or tokens in our basic classification. 

Feature Remark 

B1 Cue. 
B2 Candidate token. 
B3 Part-of-speech of candidate token. 
B4 Left token of candidate token. 
B5 Right token of candidate token. 
B6 Positional relation between cue and token.

   Table 2. Basic features. 

Constituent Syntactic Features: For improv-
ing the basic classification, we employ 10 constit-
uent features belonging to two aspects. On the one 
hand, we regard the linguistic information of the 
neighbor locating around the candidate tokens as 
the coherent features (CS1~CS6 in Table 3). These 
features are used for detecting the close coopera-
tion of a candidate token co-occurring with its 
neighbors in a scope. On the other hand, we regard 
the linguistic characteristics of the candidate to-
kens themselves in a syntactic tree as the inherent 
features (CS7~CS10 in Table 3). These features 
are used for determining whether the token has the 
direct relationship with the cue or not. 

Features Remarks 

CS1 POS of left token. 
CS2 POS of right token. 
CS3 Syntactic category of left token. 
CS4 Syntactic category of right token. 
CS5 Syntactic path from left token to the cue. 
CS6 Syntactic path from right token to the cue. 
CS7 Syntactic category of the token. 
CS8 Syntactic path from the token to the cue. 
CS9 Whether the syntactic category of the token is 

the ancestor of the cue. 
CS10 Whether the syntactic category of the cue is the 

ancestor of the token. 

Table 3. Constituent syntactic features. 

Features Remarks 

DS1 Dependency direction (“head”or “dependent”). 
DS2 Dependency syntactic path from the token to cue. 
DS3 The kind of dependency relation between the token 

and cue. 
DS4 Whether the token is the ancestor of the cue. 
DS5 Whether the cue is the ancestor of the token. 

Table 4. Dependency syntactic features. 

Dependency Syntactic Features: For the effec-
tiveness to obtain the syntactic information far 
apart from cues, we use 5 dependency syntactic 
features which emphasize the dominant relation-

ship between cues and tokens by dependency arcs 
as shown in Table 4. 

The features in Table 2, 3, and 4 have imbal-
anced classification for the scope classification. 
Therefore, we adopt the greedy feature selection 
algorithm as described in Jiang et al (2006) to pick 
up positive features incrementally according to 
their contributions. The algorithm repeatedly se-
lects one feature each time, which contributes most, 
and stops when adding any of the remaining fea-
tures fails to improve the performance. 

4.2 Structured Syntactic Features 

Syntactic trees involve not only the direct bridge 
(e.g., syntactic path) between cue and its scope but 
also the related structures to support the bridge 
(e.g., sub-tree). The related structures normally 
involve implicit clues which underlay the relation 
between cue and its scope. Therefore, we use the 
constituent and dependency syntactic structures as 
the supplementary features to further improve the 
benchmark system. 

Furthermore, we employ the tree kernel-based 
classifier to capture the structured information 
both in constituent and dependency parsing trees. 
The results of the constituent syntactic parser are 
typical trees which always consist of the syntactic 
category nodes and the terminal nodes. Thus, the 
constituent syntactic tree structures could be used 
in tree kernel-based classifier directly, but not for 
the dependency syntactic tree structures. As Figure 
2 shows, in sentence “The chair is not expensive 
but comfortable.” the tree kernels cannot represent 
the relations on the arcs (e.g., “CONJ” between 
“expensive” and “comfortable”). It is hard to use 
the relations between tokens and cues in tree ker-
nels. 

 
Figure 2: The dependency tree of sentence “The 

chair is not expensive but comfortable.” 
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Figure 3. Two transformational rules. 

To solve the problem, we transform the depend-
ency tree into other two forms capable of being 
used directly as the compatible features in tree-
kernel based classification. The transformational 
rules are described as below: 

(1) Extracting the dependency relations to gen-
erate a tree of pure relations (named dependency 
relational frame), where the tokens on the nodes of 
original dependency tree are ignored and only the 
relation labels are used. E.g., the tokens “chair”, 
“is”, etc in Figure 2 are all deleted and replaced by 
the corresponding relation labels. E.g., “NSUBJ”, 
“COP”, etc are used as nodes in the dependency 
relational frame, see (1a) & (1b) in Figure 3. 

(2) Inserting the tokens which have been deleted 
in step (1) into the dependency relational frame 
and making them follow and link with their origi-
nal dependency relations. E.g., the tokens “chair”, 
“is”, etc are added below the nodes “NSUBJ”, 
“COP”, etc, see (2a) & (2b) in Figure 3. 

 
Figure 4. Two transformations for tree-kernel. 

Within the constituent and dependency syntactic 
trees, we have employed both the Completed Sub-
Tree and the Critical Path as the syntactic structure 

features for our classification. The former is a min-
imum sub-tree that involves the cues and the to-
kens, while the latter is the path from the cues to 
the tokens in the completed tree containing the 
primary structural information. Figure 4 shows 
them. 

4.3 Part-of-Speech Based Classification Op-
timization 

Motivating in part by the rule-based approach of 
Özgür et al (2009), we infer that features have im-
balanced efficiency for scope classification, nor-
mally affected by the part-of-speech (POS) of cues.  

POS of Cues Number POS of Cues Number
CC 157 VB 31 
IN 115 VBD 131 
JJ 238 VBG 225 

MD 733 VBN 112 
NN 43 VBP 561 
RB 137 VBZ 207 

Table 5. Distribution of different POSs of specula-
tive cues in Abstracts sub-corpus. 

Table 5 shows the distribution for different 
POSs of cues in the Abstracts sub-corpus of Bio-
Scope for speculation detection task. The cues of 
different POS usually undertake different syntactic 
roles. Thus, there are different characteristics in 
triggering linguistic scopes. See the two examples 
below: 

3) TCF-1 contained a single DNA box in the [putative 
mammalian sex-determining gene SRY]. 

4) The circadian rhythm of plasma cortisol [either 
disappeared or was inverted]. 

The speculative cue “putative” in sentence 3) is 
an adjective. The corresponding scope is its modi-
ficatory structure (“putative mammalian sex-
determining gene SRY”). In sentence 4), “ei-
ther…or…” is a conjunction speculation cue. Its 
scope is the two connected components (“either 
disappeared or was inverted”). Thus, the effective 
features for the adjectival cue are normally the de-
pendency features, e.g., the features of DS1 and 
DS5 in Table 4, while the features for the conjunc-
tion cue are normally the constituent information, 
e.g., the features of CS9 in Table 3.  

In Table 5, considering the different function of 
verb voice, we cannot combine the “VB(*)” POS. 
For instance, the POS of “suggest” in sentence 5) 
is “VBP” (the verb present tense). The correspond-
ing scope does not involve the sentence subject. 
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The POS of “suggested” in sentence 6) is “VBN” 
(the past participle). The scope involves the sub-
ject “An age-related decrease”. 

5) These results [suggest that the genes might be in-
volved in terminal granulocyte differentiation]. 

6) [An age-related decrease was suggested between 
subjects younger than 20 years]. 

As a result, we have built a discriminative clas-
sifier for each kind of POS of cues, and then ex-
plored and selected the most compatible features 
for each classifier. 

5 Experiments and Results 

5.1 Experimental Setting 

Considering the effectiveness of different features, 
we have split the Abstracts sub-corpus into 5 equal 
parts, within which 2 parts are used for feature 
selection (Feature Selection Data) and the rest for 
the scope detection experiments (Scope Detection 
Data). The Feature Selection Data are divided into 
5 equal parts, within which 4 parts for training and 
the rest for developing. In our scope detection ex-
periments, we divide the Scope Detection Data 
into 10 folds randomly, so as to perform 10-fold 
cross validation. As the experiment data is easily 
confusable, Figure 5 illustrates the allocation. 

Checking the validity of our method, we use the 
Abstracts sub-corpus in Section 5.2, 5.3 and 5.4, 
while in Section 5.5 we use all of the three sub-
corpora (Abstracts, Full Papers, and Clinical Re-
ports) to test the robustness of our system when 
applied to different text types within the same do-
main. 

 
Figure 5. The allocation for experiment data. 

The evaluation is made using the precision, re-
call and their harmonic mean, F1-score. Addition-
ally, we report the accuracy in PCS (Percentage of 
Correct Scopes) applied in CoNLL’2010, within 
which a scope is fully correct if all tokens in a sen-

tence have been assigned to the correct scope class 
for a given cue. The evaluation in terms of preci-
sion and recall measures takes a token as a unit, 
whereas the evaluation in terms of PCS takes a 
scope as a unit. The key toolkits for scope classifi-
cation include: 

Constituent and Dependency Parser: All the 
sentences in BioScope corpus are tokenized and 
parsed using the Berkeley Parser (Petrov et al, 
2007) 2  which have been trained on the GENIA 
TreeBank 1.0 (Tateisi et al, 2005)3, a bracketed 
corpus in PTB style. 10-fold cross-validation on 
GTB1.0 shows that the parser achieves 87.12% in 
F1-score. On the other hand, we obtain the de-
pendency relations by the Stanford Dependencies 
Parser4. 

Support Vector Machine Classifier: SVMLight5 
is selected as our classifier, which provides a way 
to combine the tree kernels with the default and 
custom SVMLight kernels. We use the default pa-
rameter computed by SVMLight. 

Besides, according to the guideline of the Bio-
Scope corpus, scope must be a continuous chunk. 
The scope classifier may result in discontinuous 
blocks, as each token may be classified inside or 
outside the scope. Therefore, we perform the rule 
based post-processing algorithm proposed by Mo-
rante et al (2008) to obtain continuous scopes. 

5.2 Results on Flat Syntactic Features 

Relying on the results of the greedy feature selec-
tion algorithm (described in Section 4.1), we ob-
tain 9 effective features {B1, B3, B6, CS3, CS4, 
CS9, DS1, DS3, DS5} (see Table 2, 3 and 4) for 
negation scope detection and 13 effective features 
{B3, B4, B5, B6, CS1, CS5, CS6, CS8, CS9, CS10, 
DS1, DS4, DS5} for speculation. Table 6 lists the 
performances on the Scope Detection Data by per-
forming 10-fold cross validation. It shows that flat 
constituent and dependency syntactic features sig-
nificantly improve the basic scope detection by 
13.48% PCS for negation and 30.46% for specula-
tion (χ2; p < 0.01). It demonstrates that the selected 
syntactic features are effective for scope detection. 

 

 

                                                 
2 http://code.google.com/p/berkeleyparser 
3 http://www-tsujii.is.s.u-tokyo.ac.jp/GENIA 
4 http://nlp.stanford.edu/software/lex-parser.shtml 
5 http://svmlight.joachims.org 
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Negation 

Features P R F PCS
Basic 89.89 68.72 77.86 39.50
Con.  85.72 67.80 75.66 41.81
Dep.  90.31 69.01 78.19 40.08
Bas.&Con.  88.86 79.07 83.61 51.64
Bas.&Dep. 90.44 73.62 81.17 49.36
All 91.21 76.57 83.25 52.98

Speculation 

Features P R F PCS
Basic 89.67 86.86 88.24 40.09
Con.  96.43 87.46 91.72 66.57
Dep.  90.84 87.04 88.89 44.45
Bas.&Con.  95.66 92.08 93.83 69.59
Bas.&Dep. 92.39 88.27 90.28 67.49
All 95.71 92.09 93.86 70.55

(Note: “Bas.” denotes basic features; “Con.” denotes Constituent 
features; “Dep.” denotes Dependency features; “All” contains Basic, 
Constituent, and Dependency features being selected.) 

Table 6. Performance of flat syntactic features. 

The results also show that the speculative scope 
detection achieves higher performance (16.98% 
higher in PCS) (χ2; p < 0.01) than the negation 
scope detection. The main reason is that although 
the average sentence length of negation and specu-
lation are comparable (29.97 vs. 29.39 words, in 
Table 1), the average length of speculation scopes 
is much longer than the negation (17.24 vs. 9.62 
words, in Table 1) in Abstracts sub-corpus. With 
the shorter scopes in training data, the classifier 
inevitably have more negative samples. Thus, by 
using a token as the basic unit in our classification, 
the imbalanced samples will seriously mislead the 
classifier and result in bias on the negative samples. 

In addition, both constituent and dependency 
flat features can improve the scope classification, 
for the reason that the constituent features usually 
provide the nearer syntactic information of the 
cues, and that the further syntactic information 
between cues and scopes have been obtained by 
the dependency features. 

5.3 Results on Structured Syntactic Parse 
Features 

Table 7 and Table 8 give the scope detection per-
formance using the different structured syntactic 
parse features on negation and speculation respec-
tively. Compared to the optimal system (using all 
of the selected flat features in Table 6) in Section 
5.2, the structured syntactic parse features at best 
improve the scope classification nearly 17.29% on 
negation (PCS=70.27%) and 12.32% on specula-
tion (PCS=82.87%) (χ2; p < 0.01). It indicates that 
the structured syntactic parse features can provide 
more implicit linguistic information, as supple-
mentary clues, to support scope classification. 

The improvements also show that both the com-
pleted syntactic sub-trees and critical paths in con-
stituent and dependency parsing trees are effective. 
The reason is that the completed syntactic sub-
trees contain the surrounding information related 
to cues and tokens, while there are more direct 
syntactic information in the critical paths between 
cue and its scope. 

Features P R F PCS 
Con. CT 91.12 83.25 86.89 54.57 
Con. CT&CP 93.31 89.32 91.20 66.58 
Dep. T1 CT 87.29 84.37 85.81 53.07 
Dep. T1 CT&CP 90.03 86.77 88.37 59.53 
Dep. T2 CT 88.17 84.58 86.34 53.76 
Dep. T2 CT&CP 91.09 87.31 89.16 60.11 
All 93.84 91.94 92.88 70.27 

(Note: “Con.” denotes Constituent features; “Dep.” denotes Depend-
ency features; “T1” use the transformational rule (1) in Section 4.2 to 
get the dependency tree; “T2” use the transformational rule (2) in 
Section 4.2 to get the dependency tree; CT-“Completed syntactic sub-
Tree”; CP-“Critical Path”; “All” contains Con CT&CP, Dep T1 
CT&CP and Dep T2 CT&CP) 
Table 7. Performance of structured syntactic parse 

features on negation. 

Features P R F PCS 
Con. CT 95.89 93.37 94.61 75.17 
Con. CT&CP 96.05 94.36 95.20 76.73 
Dep. T1 CT 93.24 90.77 91.99 72.31 
Dep. T1 CT&CP 94.28 92.30 93.28 73.75 
Dep. T2 CT 93.76 89.68 91.67 73.06 
Dep. T2 CT&CP 95.29 94.55 94.92 75.69 
All 96.93 96.86 96.89 82.87 

Table 8. Performance of structured syntactic parse 
features on speculation. 

5.4 Results on Part-of-Speech Based Classifi-
cation 

To confirm the assumption in Section 4.3, we have 
built a discriminative classifier for each kind of 
POS of cues. Considering that the features involv-
ing the global structured syntactic parse infor-
mation in Section 4.2 are almost effective to all 
instances, we only use the flat syntactic features in 
Section 4.1. 

Negation
System P R F PCS

All Features 91.21 76.57 83.25 52.98
POS Classifier 91.79 78.29 84.50 56.77

Specula-
tion 

System P R F PCS
All Features  95.71 92.09 93.86 70.55
POS Classifier 95.79 93.13 94.44 71.68

(Note: “All Features” System is the optimal system in Section 5.2) 
Table 9. Performances of POS based classification. 

Table 9 shows the performance of POS based 
classification. Compared with the system which 
only uses one classifier for all cues in Section 5.2, 
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the POS based classification improves 1.13% on 
PCS (χ2; p < 0.01), as different POS kinds of cues 
involve respectively effective features with more 
related clues between cue and its scope. 

Table 10 lists the performance of each POS kind 
of cues in speculation scope classification. There 
are still some low performances in some kinds of 
POS of cues. We consider it caused by two reasons. 
Firstly, some kinds of POS of cues  (e.g. NN etc.) 
have fewer samples (just 43 samples shown in Ta-
ble 5). For this reason, the training for classifier is 
limited. Then, for these low performance kinds of 
POS of cues, we may have not found the effective 
features for them. Although there are some kinds 
of cues with low performance, the whole perfor-
mance of part-of-speech based classification is 
improved. 
Cue’s 
POS 

B1~B6 
  1   2   3   4   5   6 

CS1~CS10 
1   2   3   4    5   6   7   8   9 10 

DS1~DS5 
1   2   3   4   5

PCS 

CC √    √ √    √ √   √ √ √ √ √ 38.45

IN √    √ √    √ √ √  √ √  √ √ √ 87.99

JJ √     √    √  √  √    √ 31.83

MD    √ √ √  √  √  √ √ √ √ √  √ √ 79.84

NN √     √ √ √   √   √  √  √ 65.83

RB      √ √ √   √ √    √    √ 37.03

VB      √ √       √ √   44.29

VBD    √ √    √ √ √ √ √ √ √ √  √ 63.57

VBG    √ √    √ √ √  √ √ √ √  √ √ 82.89

VBN    √ √    √  √  √ √ √ √  √ 66.38

VBP    √ √ √ √   √ √  √ √ √ √ √  √ 81.91

VBZ    √ √ √ √   √ √  √ √ √ √ √  √ 77.16

Table 10. Performance of each POS kind of cues 
in speculation scope classification. 

5.5 Results of Comparison Experiments 

To get the final performance of our approach, we 
train the classifiers respectively by different effec-
tive features in Section 4.1 for POS kinds of cues, 
and use the structured syntactic parse features in 
Section 4.2 on Abstracts sub-corpus by performing 
10-fold cross validation. 

Negation 

System Abstract Paper Clinical
Morante (2008) 57.33 N/A N/A 
Morante (2009a) 73.36 50.26 87.27 
Ours 76.90 61.19 85.31 

Specula-
tion 

System Abstract Paper Clinical
Morante (2009b) 77.13 47.94 60.59 
Özgür (2009) 79.89 61.13 N/A 
Ours 84.21 67.24 72.92 

Table 11. Performance comparison of our system 
with the state-of-the-art ones in PCS. 

The results in Table 11 show that our system 
outperforms the state of the art ones both on nega-

tion and speculation scope detection. Results also 
show that the system is portable to different types 
of documents, although performance varies de-
pending on the characteristics of the corpus. 

In addition, on both negation and speculation, 
the results on Clinical Reports sub-corpus are bet-
ter than those on Full Papers sub-corpus. It is 
mainly due to that the clinical reports are easier to 
process than full papers and abstracts. The average 
length of sentence for negative clinical reports is 
8.19 tokens, whereas for abstracts it is 29.39 and 
for full papers 30.49. Shorter sentences imply 
shorter scopes. The more unambiguous sentence 
structure of short sentence can make the structured 
constituent and dependency syntactic features eas-
ier to be processed. 

6 Conclusion 

This paper proposes a new approach for tree ker-
nel-based scope detection by using the structured 
syntactic parse information. In particular, we have 
explored the way of selecting compatible features 
for different part-of-speech cues. Experiments 
show substantial improvements of our scope clas-
sification and better robustness. 

However, the results on the Full Papers and the 
Clinical Reports sub-corpora are lower than those 
on the Abstracts sub-corpus for both negation and 
speculation. That is because the structured syntac-
tic parse features contain some complicated and 
lengthy components, and the flat features cross 
corpus are sparse. Our future work will focus on 
the pruning algorithm for the syntactic structures 
and analyzing errors in depth in order to get more 
effective features for the scope detection on differ-
ent corpora. 
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